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Abstract: Dripping rainfall simulators are important instruments in soil research. However, a large
number of non-standardized simulators have been developed, making it difficult to combine and
compare the results of different studies in which they were used. To overcome this problem, it is
necessary to become familiar with the design and performances of the current rainfall simulators. A
search has been conducted for scientific papers describing dripping rainfall simulators (DRS) and
papers that are thematically related to the soil research using DRS. Simulator design analysis was
performed integrally, for simulators with more than one dripper (DRS>1) and with one dripper
(DRS=1). Descriptive and numerical data were extracted from the papers and sorted by proposed
categories, according to which the types and subtypes of used simulators are determined. The six
groups of elements that simulators could consist of have been determined, as well their characteristics,
representation and statistical analyses of the available numerical parameters. The characteristics of
simulators are analyzed and presented, facilitating the selection of simulators for future research.
Description of future simulators in accordance to the basic groups of simulator elements should
provide all data necessary for their easier replication and provide a step closer to the reduction of
design diversification and standardization of rainfall simulators intended for soil research.

Keywords: dripping rainfall simulator; drippers; rainfall simulators review; soil research; rainfall
simulator construction

1. Introduction

Simulation of rainfall is often a necessary and unavoidable part of experimental soil
research, both in laboratory conditions and in the field [1–5]. The advantage of research
using rainfall simulators is that it is possible to generate precipitation when, where and how
much we want. This is especially important for research in arid areas where rainy events are
rare, saving time and money. On the other hand, there are some difficulties in simulations,
such as the limited size of the wetted surface, the difference in the size distribution of
raindrops and the kinetic energy of simulated and natural precipitation [6–10].

Rainfall simulators are used in wide specter of mutually related research as are hydrol-
ogy, soil erosion, runoff, infiltration, evaporation, chemical transport, aggregate stability
etc. so the same simulators could suits to different research requirements. In an attempt
to make a rainfall simulator that would closely mimic natural precipitation and meet
the requirements of specific methods of research, different types of simulators have been
developed and they can be divided into simulators that generate drops in a processes of
spraying [11–16] and dripping [5,17–19]. Dripping rainfall simulators have very little head
pressure associated with their creation and gravity is the main force for its acceleration.
Whereas spraying rainfall simulators use pressure heads and nozzles to create raindrops
and typically throw the drops outwards upwards or downwards, creating nonlinear drop
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paths. According to [20], dripping rainfall simulators are used in about 20% of the to-
tal number of rainfall simulation experiments. In addition to these two basic groups of
simulators, there is a group of simulators that generate drops by the combined action of
the mentioned processes, created in an attempt to compensate for the shortcomings of
simulators from the two previously mentioned groups or as a consequence of specific
research methodology [8,21–26].

The design of rainfall simulators is based on the requirements of future and the
analysis of previous scientific research during which rainfall simulators were applied
and/or described, available resources and personal ideas of researchers. Accordingly,
different criteria are given on the basis of which the simulators are designed [7,17,27–32].

Parr & Bertrand (1960), Mutchler & Hermsmeier (1965), Yakubu & Yusop, (2017),
Ngasoh et al., (2020) [33–36] classified rainfall simulators. A description of their design and
individual performances or a description of the basic groups to which they belong were
obtained. Also, [37,38] conducted an exhaustive inventory of rainfall simulators, presented
the historical development of simulators, the basic features of classification groups and
individual factors of design and performance of simulators. However, a detailed design
analysis and a comparative analysis of individual simulator design elements are lacking.

The aim of this review is to provide information needed for adequate design of future
rainfall simulators and implementation of research under identical conditions of simulated
precipitation. The analysis of technical specifications of elements of non-standardized
simulators will also provide the necessary data for their development and reduce diversifi-
cation of design of future simulators, used in soil research. Given the scope of the task, this
scientific paper will analyze the design of rainfall simulators with drippers, which generate
primary drops exclusively by drippers, together with a group of simulators that generate
drops by the combined processes of spraying and dripping.

2. Materials and Methods

Internet research databases Research Gate, Google Scholar, KoBSON, COBISS,
Academia.edu, JSTOR and Scopus were used in the research. A search has been conducted
for available scientific papers describing dripping rainfall simulators (DRS), generating
drip in a process of dripping and papers covering a wide range of thematically related to
the soil research using DRS from 1941 to the present. The analysis includes the design of
simulators that generate primary drops exclusively by drippers and those that generate
drops by the combined action of spraying and dripping processes, with data on elements
of their design that differ from DRS excluded from the analysis.

Simulator design analysis was performed integrally, for simulators with more than
one dripper (DRS>1) and with one dripper (DRS=1), through determination of different
elements that can make one DRS simulator, their frequency of application and statistical
analysis of their numerical parameters.

In order to facilitate the analysis of DRS design, descriptive and numerical data were
derived from the articles, sorted by categories for each type and subtype of simulator,
as follows:

• general data: year of publication, author and title of the scientific paper in which the
simulator was applied or described, simulator type designation,

• structural support: role, conditions in which it is placed (laboratory or field), existence
of wind protection, portability, shape of elements, material of which the structural
support elements are made, type of support, number of support points, height at
which the water tank with drippers is placed, existence and type of water tank with
drippers levelling system,

• water tank: role, shape, form, material of which it is made, position in relation to other
elements of the simulator, volume,

• water moving mechanism: type,
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• mechanism of water flow regulation and simulator operation: type, existence of
oscillations of water tank with drippers, type of measuring equipment, position of
measuring equipment,

• water tank with drippers: type, shape, material of which it is made, dimensions,
modularity, type of its connection with drippers, number of drippers, distance be-
tween drippers,

• drippers: designation of the type and subtype, diameter.

Determining the types and subtypes of simulators is the basis for analysis. The type
of simulator is determined on the basis of a complete or partial description of the design
elements or performance factors of the simulator, which appear for the first time in the
scientific literature. The simulator subtype was determined based on the similarities with
certain type of simulator and determined simulator type modification. The design types
of simulators are made up of the capital letter of the first author’s last name and the year
of publication of the paper in which some of the simulators are listed for the first time
(example: K-1974). If the beginning of the author’s surname and the year of publication of
the papers with different simulators coincide, more capital letters in the type designation
are added until a difference is established (example: RI-1985). To the simulator types that
has a one or more simulator subtypes is adding a lowercase letter ‘’a” (example: A-1957
a). The lowercase letters that come next are added in alphabetical order after the year
and indicate the order of occurrence of the subtypes (example: A-1981 c). Since not all
types or subtypes of the simulator had all the data available according to the selected
categories, an independent comparative analysis of the available data within the categories
was conducted.

The collected data were classified, analyzed statistically and presented using the
software packages LibreOffice and IBM SPSS Statistics 20.

3. Results and Discussion

Out of a total of 188 scientific papers included in the analysis, 51 different types
and 27 subtypes of DRS>1 were singled out in 149 papers (Table 1), and in the remaining
39 papers as many as 25 different types 4 subtypes of DRS=1 (Table 2), so it can be noticed
that rainfall simulators DRS>1 are almost four times more represented than DRS=1.

DRS is an apparatus that can consist of several elements, namely:

• structural support,
• water tank,
• water moving mechanism,
• mechanism of water flow regulation and simulator operation
• water tank with drippers and
• drippers.

3.1. Structural Support

The primary role of the structural support is to enable the installation of water tank
with drippers in the appropriate position and height. In addition to this, the structural
support can also support the hydraulic water supply tank [39,40], wind protection in
the form of a curtain [41–43] or pipes [28,44–47], water supply hoses, various measuring
equipment and accessories. It can be made of metal, plastic or wooden profiles, beams,
slabs, pipes, cables and chains of different dimensions [4,8,19,29,40,48–53]. The structural
support can rest on a surface, over legs whose ends can be pointed or over plates of different
dimensions. It can also be attached to the wall or ceiling of a room (Figure 1a) or off-road
vehicle (Figure 1b). The water tank with drippers can be supported or hung from the
bracket, where, if the tank hangs, the connection between the structural support and the
tank it can be rigid or loose [18,23,49,54–58].

The structural support usually rests over the 4 legs placed vertically or at an angle
with the possibility of levelling the water tank with drippers (Figure 1c), interconnected
with cables, braces and horizontal prismatic elements to increase stability and strength of



Water 2022, 14, 3309 4 of 25

the structure [22,50,59]. The 3-leg structural supports (Figure 1d) are usually placed at an
angle, connected at the ends by a ring, which allows easy height adjustment of water tank
with drippers [18,28,39,45–47,60,61].

The structural support can also occur in the form of a vertically placed pipe carrying
(Figure 1e) or passing through a water tank with drippers attached to it [62,63] (Figure 1f).
The support must be rigid enough to prevent unwanted oscillations of the water tank
with drippers during the simulation. Field simulators usually have a structural support
that is portable and collapsible [29,40,46,50], which makes it easier for researchers to work.
Another distinction between field and laboratory simulators is the windshield, although its
presence in laboratory conditions does not necessarily exclude it. However, there is very
little data available about windshield presence when it comes to DRS.
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Figure 1. Six examples of simulators structural support: (a) Structural support attached to the labora-
tory ceiling [54] (Reprinted/adapted with permission from Ref. [Israelsen et al., 1979]); (b) Structural
support attached to an off-road vehicle [64] (Reprinted/adapted with permission from Ref. [Epstein
& Grant, 1966]); (c) Four-legged simulator support [50] (Reprinted/adapted with permission from
Ref. [Munn & Huntington, 1976]); (d) Three-legged simulator support [39] (Reprinted/adapted with
permission from Ref. [Tricker, 1979]); (e) Structural support of DRS=1 [65] (Reprinted/adapted with
permission from Ref. [Riezebos & Epema]); (f) Structural support in the form of a rotating vertical
pipe [63] (Reprinted/adapted with permission from Ref. [Blackburn et al., 1974]).

Depending on the height of the structural support, i.e., the height at which the water
tank with drippers can be placed, the drops of simulated rain can reach a certain percentage
of the terminal fall velocity [9]. Most often, the heights are up to 2 m. The number of
simulations with a drop height over 2 m gradually decreases to a height of 5 m. The number
of simulations with drop heights over 5 m is relatively uniform, while the highest recorded
drop height is 14 m (Figure 2).
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3.2. Water Tank

The water tank provides the water for the water tank with drippers (Section 3.5) [61,66,67]
and sometimes there is only one tank with dual function [68–71]. It is usually cylindrical or
rectangular shape, made of plastic (Plexiglas or clirit) or metal (aluminium, stainless steel
or brass), open or closed, with a volume of several liters to several thousand liters. It could
be placed on the ground, structural support, specially made structural support or off-road
vehicle, in close proximity to other simulator elements [29,49,51,54,61,72]. The amount of
water in the tank is finite or conditionally infinite in the case when the tank is constantly
replenished with water.

3.3. Water Moving Mechanism

The water moving mechanism can be water or air pumps, the mechanism of gravita-
tional movement of water [28,69] or specific mechanisms [73] (Table 1). Pumps could be
powered with electric motor supply from the electric mains, power generators [61,74] or
batteries [19,49] and internal combustion engine [16]. It has been noticed that peristaltic
water pumps are very often used during simulations. Pumps with internal combustion and
gravitational movement of water from the tank are more suitable for field use than electric
pumps due to lower power requirements [10,16,29,52,58,61,67,75,76]). The mechanism of
gravitational movement of water involves establishing water levels above the drippers
level, which is gradually released through the drippers while reducing the water level
in the water tank with drippers [8,43,77]. There are also specific types of water-starting
mechanisms, such as a battery of water-filled syringes, whose pistons are gradually moved
by a special mechanism and push water through the opening at the end [73].

3.4. Mechanism of Water Flow Regulation and Simulator Operation

Regulation of water flow can be done through the mechanism of water moving in the
form of pumps and specific mechanisms [73,78] (Figure 3a–c), by gravitational movement
of water according to the Mariotte’s bottle principle [50] (Figure 3e), using pipe or hose
systems, valves and fittings [16] (Figure 3d) or by changing the number, type and size
of drippers [40,56,79,80], where the regulation of the entire hydraulic system could be
analogue or digital [54,76,81].

Some pumps have the ability to regulate the power of their work, which can directly
regulate the flow of water in closed and open hydraulic systems [52,58,61,76]. On the other
hand, the flow in open box water tank with drippers can be maintained by adjusting the
height of the water column through the opening on the side of the tank or reaching their
maximum height after which water overflows [62] (Figure 3a,b).
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If a simulator with one dripper is used with a large enough surface of the tank and a
constant inflow of water is not necessary, then it is possible to ignore the change in water
level that occurs due to drip consumption for a certain amount of water consumed.

Regulation of the flow of specific mechanisms depends on the intensity of the water
movement mechanism work [73] (Figure 3c).

The principle of operation of the Mariotte’s bottle enables uniform release of water
regardless of the level in the water tank or in the water tank with drippers. By changing the
height at which the tube of the Mariotte’s bottle or the bottle itself relative to the drippers
is located, the pressure and flow of water can be regulated [80]. Since this mechanism of
regulating the flow of the water involves storing the final amount of water at a certain
height, above the drippers, the amount of water available for an individual simulation is
relatively small. However, it is possible to use several smaller water tanks, which would
be alternately filled and emptied, thus overcoming the problem of limited simulation
duration [8,40,43] (Figure 3e).
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Ref. [Terry & Shakesby, 1993]); (b) Flow control by pump, maintenance of water level in the wa-
ter tank with drippers and adjustable valves [83] (Reprinted/adapted with permission from Ref.
[Cousen & Farres, 1984]); (c) Specific mechanism of flow control and simulator operation [73]
(Reprinted/adapted with permission from Ref. [Römkens et al., 1975]); (d) Mechanism in the form
of hose system with valves and fittings [16]; (e) The mechanism of gravitational motion of water
according to the principle of a Marriott bottle [80] (Reprinted/adapted with permission from Ref.
[Regmi & Thompson, 2000]).

All elements of the hydraulic system of the rainfall simulator are connected by a
system of pipes and hoses of different diameters, connectors, valves, extensions, reducing
diameters, forked and T connectors and rails, thus forming a complete system. Flow control
can be done directly by means of a T-pipe or hose system by directing the water into the
water tank with drippers with one arm, in the path of which there is a flow control valve,
and the other arm returns to the water tank [8,16,18,42,84].

The size of the generated drops and the flow of water in the hydraulic system are
dominantly regulated by the number, size of the opening and the length of the drippers, as
well as by the type of drippers. The larger the diameter of the drippers in the form of a tube
is, the lower flow resistance is considerably, providing greater flexibility in applying a wide
range of intensities for a small change in pressure [40,80]. When regulating the flow and the
operation of the simulator in general, it is important to point out some difficulties that may
arise, especially in terms of proper operation of the drippers. The use of thread drippers (see
Section 3.6. Drippers) involves the use of simulators with high water consumption, which
also makes it difficult to regulate the intensity of precipitation [50]. The main problem that
occurs with simulators with tube drippers is the uniformity of the operation of the drippers
due to their clogging with dirt or air bubbles.

Clogging of needles with dirt can be prevented to some extent by using distilled water
or filters [18], while clogged needles can be cleaned with a smaller needle [85]. The release
of needles from air bubbles can be carried out by applying a vacuum to the needle with a
hypodermal needle syringe [81] or a higher water or air pressure can be applied for a short
period of time [40].

Filling of box tanks water tank with drippers can be done by immersing the tank in
water or turning it on its back and pumping water and then returning it to its original
position [42]. Also, filling can be carried out by applying a vacuum in a box tank with
simultaneous filling with water, which prevents dripping and the appearance of bubbles in
the caps during filling [81]. Flow control can be performed by simultaneously regulating
the water and air pressure in the water tank with drippers [1] (Figure 4a).

Depending on the design of the structural support, it is possible to change the position
of the water tank with drippers, along the vertical axis [29,85] in order to regulate the kinetic
energy of precipitation. Also it is noticed a horizontal repositioning in order to equalize
the spatial distribution of drops, in the horizontal plane by circular [69,86] or translational
motion [58,87,88] (Figure 4b,c). Also, some simulators have vibration motors mounted on a
water tank with drippers, which increase the spatial uniformity of precipitation [59].

Hydraulic and pneumatic pressure or hydraulic flow meters are important elements
of rainfall simulators [41,48,87,89] which are regulated by flow control mechanisms, so
that the regulation of the hydraulic system of the simulator is done in accordance with
their measurement data [16,18,90]. Pressure gauges come in the form of manometers or
Venturi tubes with measuring scale and can be digital or analogous as flow gauges [8,58]
(Figure 4b,d). Water pressure and flow are closely related, so the appropriate water flow
can be determined on the basis of pressure measurements, by calibrating the simulator.
Meters are usually placed between the water tank and the water tank with drippers, or are
attached directly to the water tank with drippers [1,48,58] (Figure 4e,f).
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Figure 4. Different mechanisms of simulator operation: (a) Air and water medium inside the
water tank with drippers [1] (Reprinted/adapted with permission from Ref. [Riezebos & Seyhan,
1977]); (b) Low speed motors rotating mechanism of drippers reservoir with pressure gauge [58]
(Reprinted/adapted with permission from Ref. [Wang et al., 2018]); (c) DRS>1 with flow meter and
water tank with drippers rotation mechanism [87] (Reprinted/adapted with permission from Ref.
[Guerrant et al., 1990 ]); (d) Water pressure gauge with control valves [8] (Reprinted/adapted with
permission from Ref. [Bowyer & Burt, 1989]); (e,f) Schematic representation of the order of DRS>1

elements [1,19] (Reprinted/adapted with permission from Ref. [Riezebos & Seyhan, 1977; Battany &
Grismer, 2000]).
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3.5. Water Tank with Drippers

The water tank with drippers is an element of the simulator to which the drippers are
attached and which directly supplies them with water. It can consist of a curtain of fabric
placed on a metal mesh [91–93], interconnected system of plastic pipes or hoses [22,53,94]
and boxes [46,95,96].

The fabric placed on a metal mesh at a certain distance from the surface is soaked
with water from a sprayer, which will collect in the depressions of the fabric formed at the
openings of the mesh, after which the water would be further transferred to the drippers in
the form of hanging threads. The water tank with drippers in the form of a pipe system
consists of parallel plastic pipes of round or rectangular profile, with two vertical pipes for
water supply. The drippers are mounted along these pipes (Figure 5a). The water tank with
drippers can also appear in the form of dendritically connected fork hoses that start from
one water supply hose and end with a large number of hoses connected to the drippers,
placed on a plate with holes [22] (Figure 5b). A rainfall simulator with a box water tank
with drippers is most commonly used and can occur as an open or closed box [50] (more
common), cylindrical (Figure 5d,g), rectangular (Figure 4a,b and Figure 5c) or complex
shape (Figure 5e,f) (Table 1), made of plastic, PVC or Plexiglas. A box water tank with
drippers may have an inlet through which water is delivered to it and an outlet through
which air is released [18,19,61,97] (Figure 5h).

Box water tank with drippers elements can be interconnected by bonding materials,
aluminium profiles or screws [51,81,98]. Teflon tape, silicone or adhesives of different
composition are most often used for sealing connection hoses, meters and drippers. The
drippers themselves can be glued directly to the bottom plate of the box or removed, if
necessary, from a fixed adapter or with it if connected via a thread [56,80,85,99] (Figure 6a,b).

The oldest type mentioned E-1944 is a bit special: it uses a water pump, and cloth on
chicken wire and the WTD box type shape is not specified. Almost all DRS>1 after 1944.
use a Box as the “Dripping Reservoir Type”, with a few exceptions. Until 1963 most WTD
box type shape were cylindrical. After that rectangular is the most common type, but
sometimes also cylindrical is used. The water moving mechanism often is not specified,
but when it is specified it is almost always a water pump or gravity (Table 1).

Although DRS=1 are included in the integral analysis, data on their water movement
mechanism are often not given, while the shape of the water tank with drippers is excluded
from the analysis since it is a single dripper, so only the types and subtypes of simulators
are presented (Table 2).

In a cylindrical box water tank with drippers, box is between 0.15 and 1.37 m in
diameter, while their height is up to 0.35 m [45,63,69]. The cylindrical box water tank with
drippers is less common than the rectangular. Reservoirs of complex shape are usually a
combination of rectangular and Cylindrical boxes, in which water moves gravitationally
according to the principle of a Mariotte’s bottle [100].

The length of the long edge of the rectangular box water tank with drippers usually
does not exceed 1.50 m, while the length of the largest number of simulators is in the range
from 0.50 to 1.00 m. Simulators with a long edge greater than 1.50 m are only used rarely,
with a maximum length of 4.00 m (Figure 7a). Most rectangular water tank with drippers
are square (length/width ratio 1.0) (Figure 7b). The highest length/width ratio was 4. The
height of the tank usually ranges from 20 to 30 mm and from 40 to 50 mm, while higher
tanks are less often used (Figure 7c).
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Figure 5. Different water tanks with drippers: (a) The water tank with drippers in a
form of tubes [53] (Reprinted/adapted with permission from Ref. [Nampulá et al., 2016]);
(b) Dendritic plastic tubes water tank with drippers [22] (Reprinted/adapted with permis-
sion from Ref. [Imeson, 1977]); (c) Closed rectangular box water tank with drippers [10]
(Reprinted/adapted with permission from Ref. [Corona et al., 2013]); (d) Open cylindric box
water tank with drippers [63] (Reprinted/adapted with permission from Ref. [Blackburn et al.,
1974]); (e,f) Complex box water tank with drippers [101,102] (Reprinted/adapted with permission
from Ref. [Kamphorst, 1987; Eijkelkamp, 2018 (Eijkelkamp—Laboratory equipment. Available on-
line: https://www.royaleijkelkamp.com/products/?gclid=Cj0KCQjw166aBhDEARIsAMEyZh7B0
oWCwK61ruEC4Ex0SFSpnAGOWcLClIa915RX HzgnKfzxq8rk6MMaAuh3EALw_wcB (accessed
on 7 July 2018))]; (g) Closed cylindric box water tank with drippers [39] (Reprinted/adapted with
permission from Ref. [Tricker, 1979]); (h) Closed rectangular box water tank with drippers with
opening for air and water [60] (Reprinted/adapted with permission from Ref. [Andersen, 1999]).

https://www.royaleijkelkamp.com/products/?gclid=Cj0KCQjw166aBhDEARIsAMEyZh7B0oWCwK61ruEC4Ex0SFSpnAGOWcLClIa915RX
https://www.royaleijkelkamp.com/products/?gclid=Cj0KCQjw166aBhDEARIsAMEyZh7B0oWCwK61ruEC4Ex0SFSpnAGOWcLClIa915RX


Water 2022, 14, 3309 11 of 25
Water 2022, 14, x FOR PEER REVIEW 12 of 26 
 

 

 

Figure 6. Drippers with threads for connection to the water tank with drippers and additional tubes 

for modification of their performances: (a) Metal tube dripper with plastic threaded adapter at the 

end and plastic tube at the other end [58] (Reprinted/adapted with permission from Ref. [Wang et 

al., 2018]); (b) Dripper in the form of a metal tube with a metal adapter with a thread at the end and 

a metal tube at the other end [80] (Reprinted/adapted with permission from Ref. [Regmi & Thomp-

son, 2000]). 

 

Figure 7. Rectangular box water tank with drippers size: (a) Number of different simulators of a 

certain size of the long side of a rectangular box water tank with drippers; (b) Number of different 

simulators of certain values of the ratio of the long and short; (c) Number of different simulators of 

certain height. 

Table 1. Classification of DRS>1 according to water moving mechanism and water tank with drip-

pers type and shape, with listed literature sources of papers in which simulators are described or 

applied (W. pump—water pump; CCW—cloth on chicken wire; Not Spec.—not specified; WTD—

water tank with drippers). Note: background colours signify different groups in a classification table 

only to make it easier for reader to observe data. 
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Figure 6. Drippers with threads for connection to the water tank with drippers and additional
tubes for modification of their performances: (a) Metal tube dripper with plastic threaded adapter
at the end and plastic tube at the other end [58] (Reprinted/adapted with permission from Ref.
[Wang et al., 2018]); (b) Dripper in the form of a metal tube with a metal adapter with a thread at the
end and a metal tube at the other end [80] (Reprinted/adapted with permission from Ref. [Regmi &
Thompson, 2000]).
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Figure 7. Rectangular box water tank with drippers size: (a) Number of different simulators of a
certain size of the long side of a rectangular box water tank with drippers; (b) Number of different
simulators of certain values of the ratio of the long and short; (c) Number of different simulators of
certain height.
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Table 1. Classification of DRS>1 according to water moving mechanism and water tank with drippers
type and shape, with listed literature sources of papers in which simulators are described or applied
(W. pump—water pump; CCW—cloth on chicken wire; Not Spec.—not specified; WTD—water tank
with drippers). Note: background colours signify different groups in a classification table only to
make it easier for reader to observe data.

Type or Subtype of DRS Water Movement
Mechanism

Water Tank with
Drippers WTD Box Type Shape

E-1944 a W. pump CCW / [91,103]
E-1944 b W. pump CCW / [104]
E-1944 c W. pump CCW / [105]
E-1944 d W. pump CCW / [92]
E-1944 e W. pump CCW / [93]
E-1944 f W. pump CCW / [106]
E-1948 Gravity Box Complex [107–109]
R-1953 Air pump Box Cylindrical [110]

A-1957 a Gravity Box Cylindrical [111,112]
A-1957 b Gravity Box Cylindrical [28,47]
A-1957 c Gravity Box Cylindrical [113]
A-1957 d Gravity Box Cylindrical [46]
R-1960 Not Sp. Box Cylindrical [79]
M-1963 W. pump Box Cylindrical [62,63,114–117]

C-1965 a Not Sp. Box Rectangular [17,118]
C-1965 b Gravity Box Rectangular [18]
C-1965 c Gravity Box Rectangular [49,64,119]
C-1965 d Gravity Box Rectangular [50,120]
C-1965 e W. pump Box Rectangular [1,121–124]
C-1965 f Gravity Box Rectangular [51,87,125,126]
C-1965 g Not Spec. Not Spec. Not Spec. [127]
C-1965 h Not Spec. Not Spec. Not Spec. [128]
C-1965 i Not Spec. Box Rectangular [24,90,129]
S-1966 W. pump Box Rectangular [24]
B-1971 Gravity Box Rectangular [85]

W-1973 a W. pump Box Rectangular [41,130–132]
W-1973 b W. pump Box Rectangular [32,133]
W-1973 c Not Spec. Box Rectangular [134]
K-1974 W. pump Box Rectangular [81,84,135–147]

D-1975 a Not Spec. Not Spec. Not Spec. [21,148,149]
D-1975 b Gravity Dendritic / [22,150]
G-1975 Not Spec. Not Spec. Not Spec. [151]
R-1975 Specific / / [73]
H-1976 Not Spec. Box Rectangular [152,153]
W-1976 Not Spec. Not Spec. Not Spec. [154]
I-1979 W. pump Box Rectangular [54]
T-1979 Gravity Box Cylindrical [39]
C-1984 W. pump Tubes / [155]

R-1985 a Gravity Box Rectangular [40];
R-1985 b Not Spec. Box Rectangular [97,156]
T-1985 Not Spec. Box Cylindrical [56]

F-1987 a W. pump Box Rectangular [23]
F-1987 b W. pump Box Rectangular [82]
K-1987 a Gravity Box Complex [96,100,101,157–160]
K-1987 b Gravity Box Complex [161]
C 1988 Gravity Box Rectangular [57]

B-1989 a Gravity Box Rectangular [8,43,77]
B-1989 b Gravity Box Rectangular [89,162]
B-1989 c Air pump Box Rectangular [60]
B-1989 d Gravity Box Rectangular [163,164]
L-1991 W. pump Box Rectangular [95,165]
B-1992 Gravity Box Cylindrical [45,86,166]
A-1994 Not Spec. Box Rectangular [167]
H-1996 Not Spec. Not Spec. Not Spec. [168]
L-1998 Not Spec. Box Rectangular [66,169,170]
B-2000 W. pump Box Rectangular [19]
R-2000 Gravity Box Rectangular [80,98]
D-2001 Not Spec. Box Rectangular [171]

H-2001 a Gravity Box Cylindrical [69]
H-2001 b W. pump Box Cylindrical [88,172,173]
H-2001 c W. pump Box Cylindrical [67]

J-2001 W. pump Box Rectangular [42]
W-2001 W. pump Box Rectangular [25]
A-2006 W. pump Box Rectangular [174]
C-2007 Gravity Box Rectangular [99]
D-2008 W. pump Box Rectangular [76,175]
F-2008 W. pump Box Rectangular [61]
V-2008 Gravity Box Rectangular [4]
B-2012 Not Spec. Box Rectangular [26]
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Table 1. Cont.

Type or Subtype of DRS Water Movement
Mechanism

Water Tank with
Drippers WTD Box Type Shape

R-2012 W. pump Box Rectangular [74]
C-2013 Not Spec. Box Rectangular [10]
H-2013 Gravity Box Rectangular [59]
N-2016 Not Spec. Tubes / [53]
F-2017 Not Spec. Box Cylindrical [70]
M-2017 Gravity Box / [94]
X-2017 Not Spec. Box Cylindrical [78]
W-2018 W. pump Box Rectangular [58]
N-2020 Not Spec. Tubes / [5,176]

Table 2. DRS=1 with the listed sources of papers in which they are described or applied.

Simulator Type Mark Research Paper Authors and Year of Publishing

L 1941 [177]

M 1944 [178]

L 1947 [48]

G 1949 [179]

M 1954 [180]

M 1956 [181]

P 1962 [75]

M 1963 [182]

P 1963 [183,184]

M 1965 [44,185,186]

M 1967 [187,188]

B 1975 [189]

R 1976 [190]

A 1981 a [191–194]

A 1981 b [72,195]

A 1981 c [196]

B 1981 [197]

S 1981 [55]

F 1983 a [198]

F 1984 b [83]

F 1984 c [68]

RI 1985 [65]

G 1988 [199]

R 1990 [200]

M 2003 [201]

F 2007 [202]

R 2012 [52,203]

Y 2016 [204]

YA 2016 [205]

Modular design of a small number of rainfall simulators with a rectangular box water
tank with drippers implies the simultaneous application of a number of identical water tank
with drippers within a single system, with the aim of easier handling, transport, installation
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and maintenance of simulators while multiplying the area covered by the simulator of 4, 6
or even 10 m2 (Figure 8a,b).
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Figure 8. (a,b) Modular design of rectangular box water tank with drippers [17,206] (Utah State
University/Utah Water Research Laboratory. Available online: https://uwrl.usu.edu/hydraulics/
hydraulic-testing (accessed on 19 August 2022)).

Several simulators that use airflow during the simulation to control droplet size
or specific raindrop research, have a special system with an additional chamber into
which air is pumped and released in the immediate vicinity of the drippers during the
simulation [32,41,54,84,110,134] (Figure 9).
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Figure 9. Box tank with drippers with air and water chambers [32] (Reprinted/adapted with permis-
sion from Ref. [Onstad et al., 1981]).

Drippers could be arranged according to a rectangular [87] (Figure 10a), triangular [18]
(Figure 10b) or circular [86] (Figure 10c) pattern. With a rectangular pattern, the distance
of drippers within a row can be the same as, or different from the distance between the
rows. In the triangular pattern [18], each dripper is equidistant from the neighboring ones,
increasing the number of rows of drippers parallel to the direction of water runoff, which
reduces the possibility of forming concentrated flows on the experimental plot compared to
the rectangular pattern. The circular pattern occurs in simulators with a Cylindrical shape
of the water tank with drippers and is determined by the distance between the radii of the
circular lines by which they are arranged and the distance between the drippers on the
same circular line [62,75].

https://uwrl.usu.edu/hydraulics/hydraulic-testing
https://uwrl.usu.edu/hydraulics/hydraulic-testing
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Figure 10. Patterns of drippers arrangement: (a) Rectangular [17] (Reprinted/adapted with permis-
sion from Ref. [Chow et al., 1965]); (b) Triangular [18] (Reprinted/adapted with permission from Ref.
[Meeuwig et al., 1971]); (c) Circular [28] (Reprinted/adapted with permission from Ref. [Steinhardt &
Hillel, 1966]).

The distance between the drippers arranged according to the rectangular and triangu-
lar pattern commonly ranges from 15 to 30 mm. Few simulators apply a drippers distance
of less than 15 mm or in the range from 30 to 40 mm. The minimum and maximum recorded
distance are 12.7 mm and 200 mm respectively (Figure 11).
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Figure 11. Number of different simulators of a certain value of the mutual spacing of the drippers.
Note: the analysis also includes individual simulations with different values of the drippers distance
of one simulator.

With a smaller distance between the drippers, their number per unit area will be
larger. The number of drippers is determined by the size of the wetted surface and the
distance between the drippers. Figure 12 presents the values of the dripper density of the
analyzed simulators.
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3.6. Drippers

Rainfall simulator drippers are the last in a series of simulator elements, on which end
water drops are formed. They are also mentioned in scientific literature as drop formers,
drop producers, dripping valves, nuzzles, orifices, and they appear in a form of:

• tubes,
• metal tubes (MT) (hypo needle tubes, hypodermic syringe needles, syringe needles,

hypodermic needles with rectangular tip, protruding needles, blunted needles, hy-
podermic tubing, stainless steel tubing, stainless steel tubes, milled stainless steel
tubing, stainless steel capillary tubes, drip needles made from hypodermic tubing,
coper tubing, coper tubes, brass tubes) [62,75,135,174,194],

• glass tubes (GT) (glass burette, glass capillary tubes, glass capillaries) [107,108,178,201],
• plastic tubes (PT) (plastic capillary tubes, plastic needle caps, polyethylene tubes,

polyethylene catheter tubes, tygon tubes, nylon tubes, Teflon capillary tubes, micro
syringe) [17,58,129,136,152],

• holes in dripper reservoir (HO) [39,53,101,157],
• irrigation drippers (ID) (standard plastic irrigation dripper, PCJ-CNL drippers [5,76]
• hanging yarn (YA) (woolen string, woolen yarn) [91,103,104,106] and
• drippers of unspecified type and material (UN) [26,55,154,199].

For some drippers the performance is modified by the use of the thin threads of
different materials that are placed inside the tubes or holes (80–20 nickel-chromium alloy
wire, chromium alloy wire, chromium plated brass wire, 1.016 mm tick chromium alloy
wire, stainless steel or plated wire, double 0.2 mm tick nylon thread, 0.55, 0.60, 0.66 mm
tick fishing line) (index “wire”) [47,48,89,111,164]. Also, performance is changed by the
influence of air flow (index “air”) and vibration (index “vib”), or by the simultaneous
influence of air flow and threaded wire on the drops during the simulation [48,59,134,179,181].

Until the beginning of the 1960’s, drippers in the form of glass tubes, hanging yarn
and metal tubes were mostly used. After that, the use of drippers in the form of metal
tubes became dominant, and from the second half of the 1970s, drippers in the form of
plastic pipes began to be used in large numbers. Later, drippers in the form of holes in
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water tank with drippers and irrigation drippers were used on several occasions. Also, the
use of drippers of unknown type was noted (Figure 13).
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Figure 13. Type and subtype (modified performance drippers) of drippers and corresponding sizes
of generated drops applied in previous rainfall simulations (GT—Glass tubes, GT wire—Glas tubes
with threads, HO—Holes in dripper reservoir, HO wire—Holes in dripper reservoir with threads,
ID—Irrigation drippers, MT—Metal tubes, MT air—Metal tubes under influence of air flow, MT
vib—Metal tubes under influence of vibration, MT wire air—Metal tubes with threads under influence
of air flow, PT—Plastic tubes, PT wire—Plastic tubes with threads, YA—Hanging yarn and UN—
unspecified drippers type). Note: for markers that are on a horizontal line with a value of 0, they are
not given values of the corresponding diameter of the generated drop.

By far the most common are drippers in the form of metal pipes, followed by drippers
in the form of plastic pipes, the same number of drippers in the form of glass pipes and holes
in tanks and the smallest number of drippers in the form of hanging threads and irrigation
drippers. Modified performance drippers appear in significantly smaller numbers within
their groups and subgroups. In addition to the above, there is a relatively small number
of drippers for which no description has been given on the basis of which they could be
classified into any of the groups (Figure 14).
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4. Conclusions

The paper presents the so far used DRS applied in soil research. Based on the con-
ducted classification, it was determined that a relatively large number of different types
DRS and their modified versions were used. Simulators with one dripper were used signif-
icantly less than simulators with multiple drippers. The analyzed data provide insight into
the most commonly used types or subtypes of simulators, as well as the numerical values of
some of the elements that define their design. Research has determined six basic groups of
elements that these simulators can consist of: structural support, water tank, water moving
mechanism, mechanism of water flow regulation and simulator operation, water tank with
drippers and drippers. For each of the groups, the basic purpose and forms in which the
elements of the simulator appear are presented. Also, a statistical analysis of the numerical
parameters of the elements for which the data was available was carried out. This approach
to the analysis of the DRS design should provide insight into the design of simulators used
and facilitate the selection of future simulators. In addition to descriptive and numerical
descriptions of the basic elements of the simulator according to the classification categories
in which the data on them are grouped, a graphic presentation and technical drawings of
the simulator in future works should also be provided. This would provide almost all the
information necessary for other researchers to make an identical simulator, which should
in the future reduce the appearance of simulators of different design and performance. In
addition to saving resources during the construction of the simulator, this would bring a
step closer to the standardization of rainfall simulators with drippers, which would provide
consolidation and comparative analysis of data from different soil research under equal
conditions of simulated rainfall. It is important to keep in mind that simulators design and
performances are mutually conditional, so to understand the simulator design completely
it is needed to analyzed also their performances.
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158. Hlavčová, K.; Danáčová, M.; Kohnová, S.; Szolgay, J.; Valent, P.; Výleta, R. Estimating the Effectiveness of Crop Management on

Reducing Flood Risk and Sediment Transport on Hilly Agricultural Land—A Myjava Case Study, Slovakia. Catena 2019, 172,
678–690. [CrossRef]

159. Danacova, M. The Impact of Slope Gradients on the Generation of Surface Runoff in Laboratory Conditions. In Proceedings
of the 17th International Multidisciplinary Scientific GeoConference SGEM2017, Water Resources, Forest, Marine and Ocean
Ecosystems, Vienna, Austria, 27–29 November 2017.

160. Cerdà, A.; García-Fayos, P. The Influence of Seed Size and Shape on Their Removal by Water Erosion. Catena 2002, 48, 293–301.
[CrossRef]

161. Boers, T.M.; van Deurzen, F.J.M.P.; Eppink, L.A.A.J.; Ruytenberg, R.E. Comparison of Infiltration Rates Measured with an
Infiltrometer, a Rainulator and a Permeameter for Erosion Research in SE Nigeria. Soil Technol. 1992, 5, 13–26. [CrossRef]

162. Dalgleish, H.Y.; Foster, I.D.L. 137Cs Losses from a Loamy Surface Water Gleyed Soil (Inceptisol); a Laboratory Simulation
Experiment. Catena 1996, 26, 227–245. [CrossRef]

163. Mohr, C.; Anton, H. Design and Application of a Drip-Type Rainfall Simulator Adapted to Steep Topography and Low Intensity-
Rainfall Characteristics in the Coastal Range of Southern Chile. In Proceedings of the EGU General Assembly Conference
Abstracts, Vienna, Austria, 9–24 April; 2009.

164. Mohr, C.H.; Coppus, R.; Iroumé, A.; Huber, A.; Bronstert, A. Runoff Generation and Soil Erosion Processes after Clear Cutting:
Runoff and Erosion After Clear Cutting. J. Geophys. Res. Earth Surf. 2013, 118, 814–831. [CrossRef]

165. Levin, J.; Ben-Hur, M.; Gal, M.; Levy, G.J. Rain Energy and Soil Amendments Effects on Infiltration and Erosion of Three Different
Soil Types. Soil Res. 1991, 29, 455. [CrossRef]

166. Mohanty, S.; Singh, R. Determination of Soil Hydrologic Properties under Simulated Rainfall Condition. Agric. Water Manag.
1996, 29, 267–281. [CrossRef]

http://doi.org/10.2136/sssaj1978.03615995004200050029x
http://doi.org/10.1016/0022-1694(79)90057-X
http://doi.org/10.1016/0037-0738(79)90051-4
http://doi.org/10.1016/0021-8634(82)90081-6
http://doi.org/10.1071/SR9830257
http://doi.org/10.1016/0022-1694(85)90209-4
http://doi.org/10.1071/SR9870009
http://doi.org/10.1071/SR9880575
http://doi.org/10.1071/SR9880443
http://doi.org/10.1002/esp.221
http://doi.org/10.1071/SR01112
http://doi.org/10.2136/sssaj2004.0273
http://doi.org/10.1002/esp.3290060311
http://doi.org/10.1016/S0341-8162(82)80010-6
http://doi.org/10.1016/0378-3774(92)90087-D
http://doi.org/10.1029/JC081i024p04482
http://doi.org/10.1017/S0022112079002408
http://doi.org/10.2307/3897424
http://doi.org/10.1080/00022470.1984.10465755
http://doi.org/10.1002/jpln.19911540205
http://doi.org/10.3390/hydrology8030095
http://doi.org/10.1016/j.catena.2018.09.027
http://doi.org/10.1016/S0341-8162(02)00027-9
http://doi.org/10.1016/0933-3630(92)90003-J
http://doi.org/10.1016/0341-8162(96)00002-1
http://doi.org/10.1002/jgrf.20047
http://doi.org/10.1071/SR9910455
http://doi.org/10.1016/0378-3774(95)01202-8


Water 2022, 14, 3309 24 of 25

167. Agassi, M.; Bloem, D.; Ben-Hur, M. Effect of Drop Energy and Soil and Water Chemistry on Infiltration and Erosion. Water Resour.
Res. 1994, 30, 1187–1193. [CrossRef]

168. Heathwaite, A.L.; Johnes, P.J. Contribution of Nitrogen Species and Phosphorus Fractions to Stream Water Quality in Agricultural
Catchments. Hydrol. Process. 1996, 10, 971–983. [CrossRef]

169. Lu, J.-Y.; Chen, J.-Y.; Chang, F.-H.; Lu, T.-F. Characteristics of Shallow Rain-Impacted Flow over Smooth Bed. J. Hydraul. Eng.
1998, 124, 1242–1252. [CrossRef]

170. Lu, J.-Y.; Chen, J.-Y.; Hong, J.-H.; Lu, T.-F.; Liu, C.-S. Turbulence Intensities of Shallow Rain-Impacted Flow over Rough Bed.
J. Hydraul. Eng. 2001, 127, 881–886. [CrossRef]

171. Dimoyiannis, D.G.; Valmis, S.; Vyrlas, P. A Rainfall Simulation Study of Erosion of Some Calcareous Soils. Glob. Nest 2001,
3, 179–183.

172. Gao, B.; Todd Walter, M.; Steenhuis, T.S.; Hogarth, W.L.; Parlange, J.-Y. Rainfall Induced Chemical Transport from Soil to Runoff:
Theory and Experiments. J. Hydrol. 2004, 295, 291–304. [CrossRef]

173. Gao, B.; Walter, M.T.; Steenhuis, T.S.; Parlange, J.-Y.; Richards, B.K.; Hogarth, W.L.; Rose, C.W. Investigating Raindrop Effects on
Transport of Sediment and Non-Sorbed Chemicals from Soil to Surface Runoff. J. Hydrol. 2005, 308, 313–320. [CrossRef]

174. Abu-Zreig, M. Control of Rainfall-Induced Soil Erosion with Various Types of Polyacrylamide (8 Pp). J. Soils Sediments 2006, 6,
137–144. [CrossRef]

175. Dunkerley, D. Effects of Rainfall Intensity Fluctuations on Infiltration and Runoff: Rainfall Simulation on Dryland Soils, Fowlers
Gap, Australia: Rainfall Intensity Fluctuations in Fowlers Gap. Hydrol. Process. 2012, 26, 2211–2224. [CrossRef]

176. Naves, J.; Anta, J.; Suárez, J.; Puertas, J. Hydraulic, Wash-off and Sediment Transport Experiments in a Full-Scale Urban Drainage
Physical Model. Sci. Data 2020, 7, 44. [CrossRef] [PubMed]

177. Laws, J.O. Measurements of the Fall-Velocity of Water-Drops and Raindrops. Trans. Am. Geophys. Union 1941, 22, 709–721.
[CrossRef]

178. Mccalla, T.M. Water-Drop Method of Determining Stability of Soil Structure. Soil Sci. 1944, 58, 117–122. [CrossRef]
179. Gunn, R.; Kinzer, G.D. The Terminal Velocity of Fall for Water Droplets in Stagnant Air. J. Meteorol. 1949, 6, 243–248. [CrossRef]
180. Magono, C. On the Shape of Water Drops Falling in Stagnant Air. J. Meteorol. 1954, 11, 77–79. [CrossRef]
181. Magarvey, R.H.; Taylor, B.W. Apparatus for the Production of Large Water Drops. Rev. Sci. Instrum. 1956, 27, 944–947. [CrossRef]
182. Cruse, R.M.; Larson, W.E. Effect of Soil Shear Strength on Soil Detachment Due to Raindrop Impact1. Soil Sci. Soc. Am. J. 1977,

41, 777. [CrossRef]
183. Palmer, R.S. The Influence of a Thin Water Layer on Waterdrop Impact Forces. Int. Assoc. Sci. Hydrol. Publ. 1963, 65, 141–148.
184. Palmer, R.S. Waterdrop Impact Forces. Trans. ASAE 1965, 8, 69–70. [CrossRef]
185. Mutchler, C.K.; Hansen, L.M. Splash of a Waterdrop at Terminal Velocity. Science 1970, 169, 1311–1312. [CrossRef] [PubMed]
186. Mutchler, C.K.; Larson, C.L. Splash Amounts from Waterdrop Impact on a Smooth Surface. Water Resour. Res. 1971, 7, 195–200.

[CrossRef]
187. Hobbs, P.V.; Osheroff, T. Splashing of Drops on Shallow Liquids. Science 1967, 158, 1184–1186. [CrossRef]
188. Macklin, W.C.; Hobbs, P.V. Subsurface Phenomena and the Splashing of Drops on Shallow Liquids. Science 1969, 166, 107–108.

[CrossRef]
189. Bruce-Okine, E.; Lal, R. Soil Erodibility as Determined by Raindrop Technique. Soil Sci. 1975, 119, 149–157. [CrossRef]
190. Ryan, R.T. The Behavior of Large, Low-Surface-Tension Water Drops Falling at Terminal Velocity in Air. J. Appl. Meteorol. 1976, 15,

157–165. [CrossRef]
191. Al-Durrah, M.; Bradford, J.M. New Methods of Studying Soil Detachment Due to Waterdrop Impact. Soil Sci. Soc. Am. J. 1981, 45,

949–953. [CrossRef]
192. Al-Durrah, M.M.; Bradford, J.M. The Mechanism of Raindrop Splash on Soil Surfaces. Soil Sci. Soc. Am. J. 1982, 46, 1086–1090.

[CrossRef]
193. Al-Durrah, M.M.; Bradford, J.M. Parameters for Describing Soil Detachment Due to Single Waterdrop Impact. Soil Sci. Soc. Am. J.

1982, 46, 836–840. [CrossRef]
194. Nearing, M.A.; Bradford, J.M. Single Waterdrop Splash Detachment and Mechanical Properties of Soils. Soil Sci. Soc. Am. J. 1985,

49, 547–552. [CrossRef]
195. Sharma, P.P.; Gupta, S.C.; Rawls, W.J. Soil Detachment by Single Raindrops of Varying Kinetic Energy. Soil Sci. Soc. Am. J. 1991,

55, 301. [CrossRef]
196. Barry, P.V.; Turco, R.F.; Stott, D.E.; Bradford, J.M. Organic Polymers’ Effect on Soil Shear Strength and Detachment by Single

Raindrops. Soil Sci. Soc. Am. J. 1991, 55, 799–804. [CrossRef]
197. Bergsma, E.; Valenzuela, C.R. Drop Testing Aggregate Stability of Some Soils near Merida, Spain. Earth Surf. Process. 1981, 6,

309–318. [CrossRef]
198. Francis, P.B.; Cruse, R.M. Soil Water Matric Potential Effects on Aggregate Stability. Soil Sci. Soc. Am. J. 1983, 47, 578–581.

[CrossRef]
199. Ghadir, H.; Payne, D. The Formation and Characteristics of Splash Following Raindrop Impact on Soil. J. Soil Sci. 1988, 39,

563–575. [CrossRef]
200. Reichard, D.L. A System for Producing Various Sizes, Numbers, and Frequencies of Uniform-Size Drops. Trans. ASAE 1990, 33,

1767–1770. [CrossRef]

http://doi.org/10.1029/93WR02880
http://doi.org/10.1002/(SICI)1099-1085(199607)10:7&lt;971::AID-HYP351&gt;3.0.CO;2-N
http://doi.org/10.1061/(ASCE)0733-9429(1998)124:12(1242)
http://doi.org/10.1061/(ASCE)0733-9429(2001)127:10(881)
http://doi.org/10.1016/j.jhydrol.2004.03.026
http://doi.org/10.1016/j.jhydrol.2004.11.007
http://doi.org/10.1065/jss2006.04.152
http://doi.org/10.1002/hyp.8317
http://doi.org/10.1038/s41597-020-0384-z
http://www.ncbi.nlm.nih.gov/pubmed/32047163
http://doi.org/10.1029/TR022i003p00709
http://doi.org/10.1097/00010694-194408000-00002
http://doi.org/10.1175/1520-0469(1949)006&lt;0243:TTVOFF&gt;2.0.CO;2
http://doi.org/10.1175/1520-0469(1954)011&lt;0077:OTSOWD&gt;2.0.CO;2
http://doi.org/10.1063/1.1715420
http://doi.org/10.2136/sssaj1977.03615995004100040034x
http://doi.org/10.13031/2013.40429
http://doi.org/10.1126/science.169.3952.1311
http://www.ncbi.nlm.nih.gov/pubmed/17772517
http://doi.org/10.1029/WR007i001p00195
http://doi.org/10.1126/science.158.3805.1184
http://doi.org/10.1126/science.166.3901.107
http://doi.org/10.1097/00010694-197502000-00007
http://doi.org/10.1175/1520-0450(1976)015&lt;0157:TBOLLS&gt;2.0.CO;2
http://doi.org/10.2136/sssaj1981.03615995004500050026x
http://doi.org/10.2136/sssaj1982.03615995004600050040x
http://doi.org/10.2136/sssaj1982.03615995004600040034x
http://doi.org/10.2136/sssaj1985.03615995004900030003x
http://doi.org/10.2136/sssaj1991.03615995005500020001x
http://doi.org/10.2136/sssaj1991.03615995005500030028x
http://doi.org/10.1002/esp.3290060310
http://doi.org/10.2136/sssaj1983.03615995004700030037x
http://doi.org/10.1111/j.1365-2389.1988.tb01240.x
http://doi.org/10.13031/2013.31537


Water 2022, 14, 3309 25 of 25

201. Mouzai, L.; Bouhadef, M. Water Drop Erosivity: Effects on Soil Splash. J. Hydraul. Res. 2003, 41, 61–68. [CrossRef]
202. Furbish, D.J.; Hamner, K.K.; Schmeeckle, M.; Borosund, M.N.; Mudd, S.M. Rain Splash of Dry Sand Revealed by High-Speed

Imaging and Sticky Paper Splash Targets. J. Geophys. Res. 2007, 112. [CrossRef]
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