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Abstract: This work is dedicated to parameter optimization for a self-biased amplifier to be used
in preamplifiers for the diagnosis of seizures in neuro-diseases such as epilepsy. For the sake of
maximum compactness, which is obligatory for all implantable devices, power is to be supplied by a
piezoelectric nanogenerator (PENG). Several meta-heuristic optimization algorithms and an ANN
(artificial neural network)-assisted goal attainment method were applied to the circuit, aiming to
provide us with the set of optimal design parameters which ensure the minimal overall area of the
preamplifier. These parameters are the slew rate, load capacitor, gain–bandwidth product, maximal
input voltage, minimal input voltage, input voltage, reference voltage, and dissipation power. The
results are re-evaluated and compared in the Cadence 180 nm SCL environment. It has been observed
that, among the metaheuristic algorithms, the whale optimization technique reached the best values
at low computational cost, decreased complexity, and the highest convergence speed. However, all
metaheuristic algorithms were outperformed by the ANN-assisted goal attainment method, which
produced a roughly 50% smaller overall area of the preamplifier. All the techniques described here
are applicable to the design and optimization of wearable or implantable circuits.

Keywords: microelectronics; MEMS/NEMS; diagnostics of epileptic seizures; implantable devices;
preamplifiers; piezoelectric nanogenerators; metaheuristic algorithms; artificial intelligence; neural
network fitting; goal attainment method

1. Introduction

Millions of people around the world suffer from epileptic seizures, and more than
25% of them are resistant to any medication treatment [1–9]. Monitoring and prevention
through neural stimulation remains a solution of choice for them. Their lives would be
vastly improved if systems for real-time monitoring and electrostimulation for prevention
or mitigation of seizures were to be used on a 24/7 basis [9–11]. From this point of view,
implantable microsystems with long-life implanted power supplies appear superior over
wearable systems. The implantable devices are mostly based on an amalgamation of
microelectronic and micro/nano-system technologies [9–11].

There exist two main groups of implantable devices for epileptic seizure detection and
neurostimulation, the vagus nerve stimulation (VNS) devices [9], typically implanted in
the patient’s neck and much more efficient but also more invasive intracranial Deep Brain
Stimulation (DBS) systems [10]. The DBS electrodes are implanted directly in the patient’s
brain into one or more “hotspots” (epileptogenic zones). Both systems will have most of
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their circuitry built into, for example, in the patient’s chest, and their electrodes will be
directly reading out/stimulating nerves responsible for the seizure onset and incorporate a
preamplifier preceding a seizure detector. Typical low-power systems for epileptic seizure
detection and subsequent neurostimulation have been presented by Salam et al. [11].

Implantable medical devices (IMDs) have been increasing in popularity, but the
absence of long-life power sources to supply them has been observed as one of the major
challenges to their widespread use in acquiring and interpreting electrical data from the
human brain and nervous system [10]. The development of IMDs faces critical challenges
in terms of reducing their size and expanding the device lifetime. When minimizing the
IMDs, we encounter conflicting requirements, since each separate functionality expected
from a detection and neurostimulation system poses a need for an additional dedicated
circuit area and, hence, a dimension increase.

Among the bulkiest parts of an IMD are the implanted power sources, which may
include non-rechargeable batteries that have to be periodically replaced [10], wirelessly
rechargeable batteries (transcutaneous charging) [11], and self-charging nanogenerators [12].

The most advanced power supply devices are nanogenerators. Their main types
include triboelectric, piezoelectric pyroelectric, and hybrid. Each nanogenerator type has
its own advantages and disadvantages.

Piezoelectric nanogenerators (PENGs) are versatile micro/nano-electromechanical
systems (MEMS and NEMS) which utilize the piezoelectric effect to harvest mechanical
energy from the ambient and convert it into electrical energy. Their main advantages are
the ease with which their dimensions can be scaled down, even to the nanometer level;
the ability to merge their function with microelectronic integrated circuits; their durability;
and the ease of their batch fabrication. They are extremely versatile lightweight power
supply devices with an enormous number of possible applications, including such diverse
fields as consumer electronics, smart textiles, optofluidic logical circuitry, home security,
biomedicine, and many others [13–16].

PENGs are probably the best candidates for supplying implantable biomedical devices
by converting biomechanical energy directly into electrical energy [17]. These devices
are mechanically flexible and stretchable because they are used on soft and exceedingly
deformable tissues of the human body [18,19]. As a result, it is possible to harvest biome-
chanical energy from natural body motions, such as muscle contractions and relaxations,
cardiac and lung motions, blood circulation, and even motion caused by gravity, and supply
the generated power to the electronic circuitry.

Some of the biomedical applications of PENGs are presented in References [10–12,17–24],
for example. PENG-powered IMDs inserted directly in the brain have been suggested
by some authors [11,23]. A typical implantable device for epileptic seizure detection and
subsequent neurostimulation, such as that presented by Salam et al. [11], incorporates a
preamplifier preceding a seizure detector. We further dedicate our attention to preamplifier
circuits in the seizure detection part of the such a system.

An operational transconductance amplifier (OTA) in the preamplifier circuits needs
to be properly scaled in order to meet the design target and specifications [24]. The
traditional sizing process of MOSFETs [25] is time-consuming, laborious, and depends
on human expertise. Thus, alternative methods that are robust and reliable, such as
meta-heuristic optimization techniques, have gained popularity in solving complex circuit
design problems [26,27]. Vural et al. [28] and Motlak et al. [29] have implemented particle
swarm optimization (PSO) to minimize the area in a two-stage op-amp and power in a
self-biased folded cascode. Moreover, there are other reported works, such as that by
Kudikala et al. [30], where the harmony search algorithm (HS) and differential evolution
(DE) algorithm were applied for error minimization in a folded cascode structure. Sim-
ilarly, Majeed et al. [31,32] implemented a grey wolf optimization (GWO), gravitational
search algorithm (GSAPSO), and hybrid whale optimization algorithm (WOA) for area
minimization in two-stage op-amp and differential amplifiers.
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Moreover, significant works has been performed in the field of AI-assisted optimal
design of electronic circuits. A parameter optimization of a chaotic circuit by the use of
Bayesian optimization and genetic algorithm has been reported by Acharya et al. [33], and
regression-model-based optimization of analog mixed signal circuits has been reported by
Nam et al. [34]. An overview of various AI applications for power electronics in design,
control, and maintenance life-cycle phase [35] lists typical tasks (optimization, classification,
regression, and data structure exploration) and methods (deterministic programming meth-
ods based on linear or quadratic programming; nondeterministic programming methods,
such as metaheuristic ones) in over 500 publications [36,37]. However, in spite of all the
previous works, predictions and decision-making in the optimal design of implantable
electronic circuits that are capable of exchanging data with the cloud have been and still
are the main focus of active research.

The objectives of the research presented in this paper are focused on the possibilities for
the optimal design of a preamplifier circuit used in the monitoring part of the implantable
seizure control neurostimulator. We seek the optimal set of circuit parameters that ensures
the minimal overall circuit area while keeping all its functionalities intact. In order to
achieve this purpose, we have advanced optimization techniques such as metaheuristic
algorithms and artificial intelligence (artificial neural networks, ANNs). Furthermore, we
performed quantitative and qualitative comparative analyses of the results with respect
to the convergence speed and the possibility of falling into the local optima in high-
dimensional space.

This paper is organized as follows: the explanation of the improvised fully differential
amplifier circuit is given in Section 2, the description of the design methodology related to
the use of metaheuristic optimization algorithms is given in Section 3, the description of
the design methodology related to the use of the ANN-assisted goal attainment method
is given in Section 4, Section 5 presents results and discussion, and Section 6 concludes
the paper.

2. Modified Recycling Folded Cascode Amplifier (MRFC)

The structure for the amplifier proposed by Devi et al. [38] is represented in Figure 1.
The structure uses an adaptive biasing technique in a modified recycling folded design.
The transistors M15 and M16 additionally contribute to the input drive, along with M5 and
M6. To do this, a crossover link is set up between M6–M15 and M7–M16. The transistors M17
and M18 are included in the design to make it a single-ended structure, such that a current
of (k−1)

10 Ibias flows through it. All the devices in the structure operate in weak inversion
regions [39,40]. Whenever a substantial signal is employed into Vref, the transistors M1 and
M2 are turned off, and M4 will function in the deep triode region of the weak inversion.
The bias current conducting through M3 is imaged by k and (k − 1) into M9 and M10, and
then into the load capacitor CL by M17 and M18. The design shows improvement in slew
rate as it is multiplied by a factor of (2k − 1) than the conventional structures [41]. There is
an overall increase in transconductance, gain bandwidth product, and slew rate. Higher
values of k lead to the degradation of the phase-margin in the design and make it unstable.
To avoid this, compensation resistors realized by transistors Mc1 and Mc2 working in deep
triode regions are inserted between the gates of the current mirror [42].

2.1. Drain Current Equations in Weak Inversion

The weak inversion region extends high gain and low power consumption. The
specific current (IS) in weak inversion is given by the following:

IS = KwµCox

(
W
L

)
VT

2, (1)

and Kw = 2× η. Then Equation (1) is modified into the following:
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IS = 2ηµCox

(
W
L

)
VT

2, (2)

where η is the aspect ratio; µ is the mobility; Cox is the oxide capacitance; and VT = kT
q is

the thermal voltage, where k is the Boltzmann’s constant, T is the temperature in Kelvin,
and q is the single electron charge. Then the expression of drain current for conduction in
weak inversion is given by the following:

ID = KwβVT
2e

VG−Vtho
ηVT

[
e
−VS
VT − e

−VD
VT

]
, (3)

where β = µCox

(
W
L

)
. Using the values of Kw in (3), the equation changes to the following:

ID = 2ηβVT
2e

VG−Vtho
ηVT

[
e
−VS
VT − e

−VD
VT

]
. (4)

where η is the subthreshold slope factor and is given by 1 + Cd
Cox

; the threshold voltage is
denoted by Vtho; and the gate, source, and drain voltages are symbolized by VG, VS, and
VD [43]. By substituting the terms of (4) with (1), the equation is modified into the following:

ID = ISe
VG−Vtho

ηVT

[
e
−VS
VT − e

−VD
VT

]
. (5)

Figure 1. Modified recycling folded cascode amplifier.

Now, by considering

IDO = ISe
−Vtho
ηVT (6)
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in Equation (5), we have the following:

ID = IDOe
VG
ηVT

[
e
−VS
VT − e

−VD
VT

]
. (7)

In subthreshold region, VDS > 4VT , then VDS ∼= 104 mV. Thus, we have the following:

e
−VDS

VT = e−4 ∼= 0.018 < 1.

Equation (7) can be rewritten as follows:

ID = IDOe
VGS
ηVT ,

ID = ISe
−Vtho
ηVT e

VGS
ηVT , (8)

ID = 2ηµCox

(
W
L

)
VT

2e
VGS−Vtho

ηVT .

The VDS required to do so is independent on VGS; hence, it is easy to keep the MOSFETs
in saturation [44]. Therefore, the drain current equations for MOSFETs operating in weak
inversion is given as follows:

For PMOS : ID = 2ηµpCox

(
W
L

)
VT

2e
|Vthp |−VSG

ηVT . (9)

For NMOS : ID = 2ηµnCox

(
W
L

)
VT

2e
VGS−Vthn

ηVT . (10)

The slew rate is given by the following:

SR =
Biascurrent

Loadcapacitor
= 2GBWηVT , (11)

and
gm1 = 2πGBWCL. (12)

2.2. Adaptive Biasing Technique

The structure used an adaptive-biasing circuit in the modified recycling folded cascode
to attain high gain, high bandwidth, and high slew rate conditions [45]. The currents
flowing through input transistors M1–M4 are as follows:

Ib1 = 2Ibe
Vid
ηVT , (13)

Ib2 = 2Ibe
−Vid
ηVT . (14)

Citing the works reported in References [39,40,45], the slew rate is given as follows:

SR =
2Ib(2k− 1)

CL
, (15)

where k = 3, and CL is the load capacitance.

2.3. Design Procedure

Step 1: Determining the bias current, Ib, from the slew rate and load capacitance.

Ib =
SR ∗ CL

2(2k− 1)
. (16)
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Step 2: The cascode bias currents in the transistors are divided in the ratio of k:1, and
the current through M5 and M8 is kept greater than the bias current to avoid no current
through them.

Step 3: The widths of the cascode transistors can be calculated from the minimum
output voltage of the circuit and the current flowing through M5 and M8. The widths of M6

and M7 can be calculated from W7 = W8
k and W6 = W5

k . The current flowing through M10 is
(2k − 1) times the current in M8, and the widths W9 and W10 can be estimated accordingly.
The widths for transistors M11 and M12 are half those of M9 and M10 [46].

Step 4: Likewise, by taking into consideration the maximum output voltage of the
circuit and the drain current equations for the PMOS transistors, the aspect ratios of
transistors M14–M16 can be calculated. The transistors M17–M20 are 1

k times that of W15 and
W16 [47,48].

Step 5: The aspect ratios for the input transistors M1–M4 can be assessed with
the design parameters: gain bandwidth product and load capacitance, as illustrated in
Equation (17).

gm1 = 2πGBWCL, (17)

where gm1 is the transconductance of the input transistor, which can be expressed as shown
in Equation (18):

gm1 =
ID

ηVT
. (18)

Step 6: The minimum and maximum input common mode range voltages, Vin(max)
and Vin(min), determine the aspect ratios of the biasing and cascode transistors. The overall
area occupied by the transistors can be computed from Expression (19), where n is the
maximum number of transistors involved, and Ln is the length of the nth transistor [41].

Area = ∑n WnLn. (19)

3. Meta-Heuristic Optimization Algorithms

In analog circuits, several kinds of variables, objectives, constraint functions, and
variables are exercised. Their effectiveness is substantially reliant on the number of vari-
ables, defined parameters of algorithms, the size, and convexity of solution. The heuristic
algorithms, such as local search (LS), simulated annealing (SA), and many more, provide
deterministic and inexact approximate solutions [49]. However, they mostly fail to deliver
generalized solutions involving objectives and constraints. Hence, these optimization
methods may prove themselves inadequate. Thus nature-inspired heuristic optimization
algorithms, better known as metaheuristic algorithms, are employed instead [50]. These
techniques are versatile, efficient, and easy to use. They are Swarm Intelligence algorithms,
and they emphasize the behavior of an animal or insect to cultivate a few metaheuristics
that are capable of imitating their problem-solving skills [51].

Among others, the static and dynamic swarming activities of the dragonflies in natural
surroundings were mimicked. The analytical design for exploration and exploitation
of the Dragonfly Optimization Algorithm (DOA) was modeled by studying the social
communication of these species which includes piloting, food searching, and avoiding
foes [52]. The exploration phase is the imaging of static swarms, where they form sub-
swarms and hover over diverse areas; meanwhile, in the exploitation phase, the movement
of bigger swarms along one direction is mimicked [53]. In the Grasshopper Optimization
Algorithm (GOA), a swarm of grasshoppers mimics the behavior of the nymph and the
adult, where the former jumps and moves similar to a rolling cylinder, and later they
form a swarm in the atmosphere and wander over huge distances. Food-source seeking
is another important characteristic of the swarming of grasshoppers [54]. In the grey
wolf optimization (GWO), the leadership hierarchy and hunting mechanism of the grey
wolves are mimicked [55]. In the hybrid GWO, the GWO algorithm was hybridized
with particle swarm optimization to increase the performance of GWO. Particle swarm
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optimization (PSO) is a swarm-based method where the optimum solution of the problem
is established by observing the motion of particles in search space. The advantages of the
hybrid GWO–PSO algorithm are its simplicity and faster convergence in finding solutions
to global optimization problems [56]. The Mayfly Optimization Algorithm (MOA) is
designed by mimicking the mating process in mayflies. It unites the prime benefits of
existing algorithms and is inspired by the behavior of adult mayflies, including the practices
of the swarm [57]. Crossover, mutation, and gathering establish the exploitation phase,
while nuptial dance and random walk enhance exploration. The motivation of the Marine
Predator Optimization (MPO) algorithm is the foraging strategy exhibiting the Lévy and
Brownian activities of ocean predators. It includes the optimal encounter rate strategy in
biotic practices between predator and prey [58]. These rules inherently encompass the
optimal foraging style and encounter rate policy-relating predator and prey in marine
ecosystems. The whale optimization algorithm (WOA) is inspired by the hunting behavior
of humpback whales. It imitates the three mechanisms, the search for prey, encircling prey,
and bubble-net foraging behavior of humpback whales [59]. A general process flowchart
for the metaheuristic approach is shown in Figure 2.

Figure 2. Process flow for the metaheuristics considering circuit optimization.

4. ANN-Assisted Goal Attainment Method

The protocol that was used for the estimation of optimal circuit parameters by the use
of neural network fitting and goal attainment method is shown in the flowchart in Figure 3.
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Figure 3. Flow diagram summarizing the protocol for determining the optimal set of circuit parame-
ters that ensures minimal area.

The process of supervised training of an artificial neural network starts with the cre-
ation of the dataset of examples for feeding the ANN. The dataset that was used for training
the ANN was created by conditioning the data from 150 numerical simulations performed
in the Cadence 180 nm SCL environment. For every example intended to be fed to the
ANN, a fixed point in the parameter space is chosen. The parameter space is formed by the
following circuit parameters: slew rate, load capacitor, gain–bandwidth product, maximal
input voltage, minimal input voltage, input voltage, reference voltage, and dissipation
power. These values are first used for the area calculations as per Equations (1)–(19) and
then, additionally, for simulations in Cadence environment, which generates the values for
gain, phase, noise, power, bandwidth, and area and ensures that the design is in accord
with the technology. The area is then stored as a target output value for the chosen example.
Then the discriminative neural network, which is capable of predicting the overall circuit
area based on the eight numbered inputs (circuit design variables), is created in order to
provide the fitting function that replaces numerical simulations and that can be integrated
in the optimization algorithm, which is, here, contrary to metaheuristic ones, a deterministic
one, a goal attainment method, based on the sequential quadratic programming.

The approach shown by the flowchart in Figure 2, where the ANN serves as an
approximate replacement for analytical equations or circuit simulations used to calculate
the cost function formula, is also suitable for combinations of ANN fitting functions and
metaheuristic algorithms. The main advantage of using an ANN in that case is in its
speed, and it is, thus, most practical for higher complexity circuits and circuit models.
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Fitting functions are simple and suitable for calculations scaled for a greater or more dense
parameter space. It is possible that the parameter set delivered by using metaheuristic
algorithms, after the final simulation, can lead to a circuit with a greater area than that
obtained by parameter sets delivered by the goal attainment method (or any other method
based on the deterministic search).

4.1. ANN Fitting of the Overall Circuit Area

The artificial neural network that we used for fitting the relation between the overall
circuit area and the eight related parameters was a shallow forward-feed backward prop-
agation network whose structure is shown in Figure 4. Since the dataset has overall 150
examples, the proposed ANN is shallow, having a single hidden layer. In the case of a
greater number of available datasets, a deep structure, one with several hidden layers, may
be used [60]. The way to seek for the best ANN configuration, for a predefined list of device
variables, inputs, and outputs, is by adding more hidden layers (and applying the deep
learning techniques [61]), by changing the number of neurons in hidden and output layers,
or by changing the activation function. Among various possible activation functions, the
Sigmoid Symmetric Transfer Function was used in this work:

y =
2

1 + e−2x − 1. (20)

Figure 4. Structure of the ANN used for fitting the circuit area.

For solving the problem described in this paper, two ANN structures were used, one
with 10 nodes in a hidden layer, and the other with 20 nodes in a hidden layer. Both ANNs
had the same eight inputs corresponding to slew rate, load capacitor, gain bandwidth
product, maximal input voltage, minimal input voltage, input voltage, reference voltage,
and dissipation power. The same iterative training process for both of them was performed
in the same way.

Before feeding the data to the ANN, the initial dataset is divided stochastically into
three groups: the training set of examples that “teaches” the ANN and “shows” proper
answers to ANN in every iteration; the validation set of examples that serves for the
comparisons between the values predicted by the ANN and the values that corresponded
to true values given in examples in the validation set, also in every iteration; and the testing
dataset of examples. The testing dataset is used only after the iterative process of ANN
adaptation ends.

In the process of creating the ANN structure, various ratios for the data division are
explored. There is no rule for an ideal ratio. In general, the importance of the division is
greater for small datasets. Larger training sets will be better for smaller example datasets.
It is also important to observe if there are any favorable data intervals and to ensure that
there are sufficient examples in relevant training and validation subsets related to them.

In every iteration, the sigmoid function of the biased and weighted sum of inputs is
computed in all nodes in the hidden layer. The linear function of the biased and weighted
sum of the outputs of the hidden layer is computed in the output layer. Weights and biases
iteratively change until the desired similarity between the output generated by the ANN
and the original output, as per examples (provided by Cadence simulations), is met.

The quality of the ANN fitting is evaluated through MSE (Mean Squared Error) and
regression values. The MSE is calculated as follows:



Micromachines 2022, 13, 1104 10 of 23

MSE =
1
N ∑N

i=1(ei)
2 =

1
N ∑N

i=1(ti − ai)
2. (21)

where N is the number of examples (input–output pairs) used for training the network; t is
the target value, and here it is the circuit area as per Cadence simulations; a is the value
predicted by the ANN; and e is the error, i.e., the difference between the target value and
the value predicted by the ANN.

The regression, R, is related to the coefficient of the determination, R2, an indicator of
the correlation between the target values and the values predicted by the ANN, and it is
calculated as follows:

R2 = 1− ∑N
i=1(ti − ai)

2

∑N
i=1

(
ti − ti

−

)2 , (22)

with the same notation as for the MSE calculation, and ti
−

is the arithmetic mean of the

target values. The closer R is to 1, the better the prediction of the ANN is.
In every iteration, the ANN adapts itself by altering biases and weights so that their

combination ensures better prediction of target values, and the iterative process terminates
successfully in the case of six consecutive validation checks. Behind each of the different
learning algorithms lies different reasoning for finding the optimal values of the ANN
parameters, its biases, and its weights.

The Levenberg–Marquardt learning algorithm has been developed to solve the least
squares curve-fitting problems, as first reported by Levenberg [62] and then rediscovered
by Marquardt [63]. The reasoning behind it is as follows: performance function has the
form of a sum of squares—Equation (21). Then the Hessian matrix, H; the gradient, g; and
the update for the solution, X, can be approximated as follows:

H = JT·J; g = JT·e (23)

Xk+1 = Xk − [H + µI]−1·JT·e (24)

where J is Jacobian, I is the unit matrix, and µ is scalar. When µ is zero, (24) retards to
Newton’s method, which uses an approximate Hessian matrix. For a large µ, this becomes
gradient descent with a small step size.

The validation data are used to stop training when any of the following conditions
are met: the maximum number of epochs (repetitions) is reached; the performance is
minimized to the predefined goal; the performance gradient drops below the predefined
value; µ exceeds the predefined value; and the number of failed validation checks exceeded
the predefined value.

When ANN parameters are far from their optimal value, the sum of the squared errors
is reduced by updating the parameters in the steepest-descent direction, and when ANN
parameters are close to their optimal value, the sum of the squared errors is reduced by
assuming that the least squares function is locally quadratic in the parameters. After finding
the ANN fitting function that reliably replaces the numerical simulations and calculates
with sufficient accuracy the circuit area for input vectors made of design variables (circuit
parameters), the next step is to locate the minimum of that function in parameter space.

4.2. Goal Attainment Method

The goal attainment method is a method developed for solving the nonlinear pro-
gramming problems, such as the multi-objective optimization and sequential quadratic
programming (SQP). For a set of objectives, Fi(x), and a set of their respective design goals,
Fg

i , the unscaled goal attainment problem is to minimize the maximum of Fi(x)− Fg
i . In

a generalized form, after introducing the set of weights, wi, the goal attainment problem
aims for to find x while trying to minimize the maximum of the following:
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Fi(x)− Fg
i

wi
, (25)

simultaneously satisfying various constraints that can be defined by equations such as
the following:

c(x) ≤ 0; ceq(x) = 0; A·x ≤ b; Aeq·x = beq or l ≤ x ≤ u (26)

The figure of merit of this optimization, as provided in the MathWorks MATLAB envi-
ronment, is the attain factor, a, which is a value related to the percentage of the objectives
that may be overachieved (in which case, the attain factor is negative) or underachieved (in
which case, the attain factor is positive). The closer this figure of merit is to zero, the better
the optimization results will be.

Applied to one objective, this method finds its minimum with respect to constraints.

5. Results and Discussion
5.1. Results of Metaheuristic Algorithms

In this work, the aforementioned algorithms were executed to minimize the die area
for the optimized circuit design. The algorithm parameters that were used for minimizing
the mono-objective function are described below:

1. In the Dragonfly Optimization Algorithm (DOA), the explorative and exploitative
activities can be accomplished through the parameters: separation (s), alignment
weight (a), cohesion weight (c), food factor (f), and enemy factor (e). These are
dependent on the maximum number of iterations, which is considered to be 100 for a
variable dimension of 8 and a search agent number of 80.

2. In Grasshopper Optimization Algorithm (GOA), the exploration and exploitation
phase are controlled by the coefficient “c” and are dependent on the number of
iterations, 100 and with search agents of 50; cmax and cmin are the maximum and
minimum values that are selected as 1 and 0.00004.

3. In both the grey wolf optimization (GWO) and hybrid particle swarm optimization–
grey wolf optimization (PSO–GWO), the number of search agents is 30 for a dimension
of 8, while A and C are the coefficient vectors. However, in PSO–GWO the particle
swarm algorithm parameters are also employed. Both the social learning and cognitive
learning coefficients are kept as 0.5.

4. In the Mayfly Optimization Algorithm (MOA), the male, female, and offspring pop-
ulation size for mayfly swarm agents is 20 each, and the inertia weight and weight
damping ratio are taken as 0.8 and 1. The personal learning, global learning, and dis-
tance sight coefficients are selected as 1, 1.5, and 2. Moreover, nuptial dance, random
flight, damping ratio, and mutation rates are 5, 1, 0.8, 0.99, and 0.01.

5. In the Marine Predators Optimization Algorithm (MPOA), the value of the drifting
Fish Aggregating Device (FAD) is kept as 0.2. P is a constant number and is equal to
0.5; the size of the search agents is 25, and the dimension is 8.

6. In the whale optimization algorithm (WOA), the parameters a, l, and p are random
numbers in the ranges [0, 2], [–1, 1], and [0, 1]. A and C are coefficient factors. The
number of search agents is considered to be 200 for a dimension of 8 and iteration
value of 100.

The convergence plots for the algorithms, namely DOA, GOA, PSOGWO, GWO, MOA,
MPOA, and WOA, are shown in Figure 5. The MPOA algorithm converges at a fastest
rate, close to about an iteration number of 3. A majority of the algorithms used have been
developed recently to assure a better convergence speed.

The MATLAB simulations were carried out by taking the parameters in Table 1 as
variables. Table 1 also defines the ranges for each of them. Table 2 shows the values for
the design constants for the circuit design problem in weak inversion region, Table 3 lists
the values of the design variables for each optimization algorithm, and Table 4 shows the
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error percentage of the design parameters for the algorithms. It can be observed from
the convergence graph and the comparison table that the Marine Predator Optimization
Algorithm gives the lowest value for area and converges fastest. The grey wolf optimization
(GWO) shows the worst convergence and settles at a higher value for the die area. The
error percentage is greater compared to the rest of the algorithms. Moreover, Table 5 draws
comparisons with some recent works on minimizing the area of the designed circuits.

Figure 5. Convergence plots for the implemented metaheuristic algorithms.

Table 1. Ranges for the design variables.

Parameters Ranges

Slew rate (V/µs) 1 to 10
Load capacitance (pF) 5 to 10

Gain bandwidth product (MHz) 1 to 10
Maximum input voltage (V) 0.2 to 0.4
Minimum input Voltage (V) −0.4 to −0.2

Power (µW) 1 to 5
Input voltage (µV) 500 to 600

Reference voltage (mV) 1 to 2

Table 2. Specifications for the circuit design.

Parameters Value

Subthreshold slope, η 1.3
Supply voltage 0.6 V

Threshold voltage, Vt −0.42 V, 0.42 V
Thermal voltage, VT 26 mV

For NMOS λn 0.04 V−1

For PMOS λp 0.05 V−1

Maximum output voltage 0.3 V
Minimum output voltage −0.3 V
For NMOS, Kn (µn Cox) 355 × 10−6 mA/V2

For PMOS Kp (µp Cox) 75 V × 10−6 mA/V2
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Table 3. Comparison of design variables for the implemented algorithms.

Parameters DOA GOA PSO
GWO GWO MOA MPOA WOA

Slew rate (V/µs) 1 1 1 1 1 1 1
Load capacitance (pF) 10 10 10 10 10 10 10

Gain bandwidth (MHz) 2 2 2 2 2 2 2
Maximum input voltage (V) 0.24023 0.28355 0.4 0.4 −0.20774 0.25181 0.2
Minimum input voltage (V) −0.39493 −0.22107 −0.2 −0.4 −0.3163 −0.3163 −0.30419

Power (µW) 1 1 1 3 1 1 1
Input voltage (V) 538.1976 500 500 600 500 566.127 500

Reference voltage (V) 1011.664 1000 1000 1100 1000 1065 1000
Area (µm2) 773.71 773.70 773.71 793.22 773.695 773.695 773.71

Table 4. Validation with cadence simulations.

Parameters GWO % Error MPOA % Error DOA % Error GOA % Error Cadence Simulation

Gain 43.16 4.13 41.255 0.47 41.022 1.03 41.135 0.76 41.45
Phase 53.64 13.82 61.96 0.45 62.597 0.57 60.13 3.39 62.24
Noise 20.63 0.34 20.558 0.01 20.616 0.27 20.617 0.28 20.56
Power 2.83 0.60 2.884 1.37 2.834 0.39 2.865 0.70 2.845

Bandwidth 6.13 15.66 5.308 0.15 5.148 2.87 5.274 0.49 5.3
Area 793.18 3.32 773.6955 5.7 773.6991 5.69 773.6956 5.69 820.38

Parameters WOA % Error PSOGWO % Error MOA % Error Cadence Simulation

Gain 41.258 0.46 41.24 0.51 41.231 0.53 41.45
Phase 61.4 1.35 61.23 1.623 60.7 2.47 62.24
Noise 20.62 0.29 20.562 0.01 20.6 0.19 20.56
Power 2.87 0.88 2.839 0.21 2.834 0.39 2.845

Bandwidth 5.3088 0.17 5.3 0 5.3088 0.17 5.3
Area 773.697 5.69 773.6964 5.69 773.6988 5.69 820.38

Table 5. Comparison with other relevant works.

References Gain (dB) Phase
(degrees)

Power
(µW)

Noise
(nV2/Hz)

Bandwidth
(kHz)

Area
(µm2) Technology

Wattanapanitch et al. (2007) [64] 40.85 - 7.56 41.95 5.32 3687.84 180 nm
Chaturvedi et al. (2011) [65] 37 - 1.5 65.73 7 1044 130 nm

Ruiz-Amaya et al. (2015) [66] 46 - 1.92 44.17 7.4 1077.46 130 nm
Kim et al. (2018) [67] 39.2 49 2.4 67 28 2689.3 180 nm

Gupta et al. (2021) [68] 45.88 - 2.39 16.13 340 770.4 180 nm
This work 41.26 61.96 2.884 20.558 5.308 773.6955 180 nm

The gain, phase, and noise vs. frequency plots are shown in Figures 6–8. The gain
curve for the GWO algorithm is estimated to be around 43.46 dB, which is higher than
what was obtained by the rest of the algorithms; however, it costs a higher die area. The
phase and noise plots are mostly similar for all the cases illustrated in the diagrams.

5.2. Results of ANN-Assisted Goal Attainment Method

The results that are described in this section were obtained by scripts and functions
written in Octave, release 6.2.0, and MathWorks MATLAB, release R2015a. In addition,
the MATLAB neural network fitting application was used. The parameters used for the
training were 1000 for the maximum number of epochs, 0 for the performance goal, 10−7

for the min performance gradient, and µ starts from 0.001, with a decrease factor of 0.1,
increase factor of 10, and a maximum of 1010. The maximum number of failed validation
checks is six.
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Figure 6. Gain vs. frequency plot for metaheuristic algorithms.

Figure 7. Phase vs. frequency plot for metaheuristic algorithms.

Figure 8. Noise vs. frequency plot for metaheuristic algorithms.
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The goal of the ANN-assisted goal attainment method was the same as the goal of
metaheuristic algorithms to find optimal numerical values in a set of design variables
ranged as per Table 1. However, in numerical simulations performed for the generation
of examples aimed at the creation of ANN fitting functions, some ranges were broader in
order to find a better fit for such a nonlinear change of the overall circuit area in a high-
dimensional parameter space and ensure good generalization capabilities of the network
fitting function. The slew rate was varied from 0.5 to 10 µV/s, the load capacitor was varied
from 0.5 to 20 pF, the maximal input voltage was varied from 0.1 to 0.6, the minimal input
voltage was varied from −0.6 to −0.1, and the input voltage was varied from 400 to 600.

Based on the extensive dataset gathered from numerical simulations, two ANN fitting
functions were created. One was created by the shallow forward-feed backward propaga-
tion network with a hidden layer of 10 neurons, and the other was created by the shallow
forward-feed backward propagation network with 20 neurons in a hidden layer. Both
ANN fitting functions were obtained by the Levenberg–Marquardt learning algorithm for
nonlinear least-squares curve-fitting problems with random data division, such as 70:15:15,
meaning that, out of 150 examples in a dataset, 70% (104) were used for training, 15% (23)
for validation, and 15% (23) for testing. Moreover, both ANN fitting functions are available
for download from the open online repository Mendeley Data [69], along with the script
for generating other ANN fitting functions (by varying the proportions for data division,
the number of neurons, and the learning algorithm). The input vector is a 1 × 8 vector of
numbers that correspond to slew rate, load capacitor, gain bandwidth product, maximal
input voltage, minimal input voltage, dissipation power, input voltage, and reference
voltage, in that respective order. Hence, the set of 150 examples aimed for feeding the ANN
in the training process had a 150 × 8 matrix as an input and a column of 150 numerical
values as an output.

The process of training the ANN fitting function with 20 neurons took one second
to meet the training criteria by reaching six successful validation checks and the gradient
drop from 2.26 × 106 to 396.1957

The regression of predicted values with respect to targets in the undivided dataset is
shown in Figure 9.

Figure 9. Regression of data of the whole dataset for the ANN fitting function with 20 neurons.

The results obtained after applying the goal attainment method are presented in
Tables 6 and 7.
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Table 6. Analysis from ANN-assisted goal attainment method.

Set 1 Set 2 Set 3 Set 4 Set 5

Slew Rate (µV/s) 1 0.9824 2.9 1.2 4.1
Load capacitor (pF) 10 10.0181 5 5 5

GBW (MHz) 2 1.8586 1 1 1.4
Vin_m ax(V) 0.2077 1.0787 0.4 0.4 0.4
Vin_m in (V) −0.3163 −0.9466 −0.2 −0.2 −0.2
Pdiss (µW) 1 1.1667 1.4 1 1

Input Voltage (µV) 500 500.0023 500.2 500 500
Reference Voltage (µV) 1000 999.9999 1000 1000 1000

Area (µm2) 781.49 746.15 425.73 369.98 513.38

Set 6 Set 7 Set 8 Set 9 Set 10

Slew Rate (µV/s) 4.3 4.8 0.8 3.5 8.266
Load capacitor (pF) 5 5 5 5.4 5

GBW (MHz) 1.2 1.2 1 1.1 1
Vin_m ax(V) 0.4 0.4 0.4 0.4 0.4
Vin_m in (V) −0.2 −0.2 −0.2 −0.2 −0.2
Pdiss (µW) 1 1 1 1 1

Input Voltage (µV) 500 500 500 500 500
Reference Voltage (µV) 1000 1000 1000 1000 1000

Area (µm2) 494.26 510.89 357.55 287.24 640.042

Table 7. Cadence simulation results for designs resulting from the use of the ANN-assisted goal
attainment method.

Set 1 Set 2 Set 3 Set 4 Set 5

Gain (dB) 41.187 42.273 46.7917 47.7046 47.7658
Phase (degrees) 63.119 63.02 59.33 46.321 43.146
Noise (µV2/Hz) 20.619 20.643 20.7773 20.797 20.525

Power (µW) 2.86 2.682 2.23 0.81562 4.7027
Bandwidth (kHz) 5.3297 5.2387 6.036 3.849 4.463

Area (µm2) 781.49 746.15 425.73 369.98 513.38

Set 6 Set 7 Set 8 Set 9 Set 10

Gain (dB) 47.884 47.8685 47.867 46.66 47.07
Phase (degrees) 43.938 42.285 41.763 44.643 37.552
Noise (µV2/Hz) 20.567 20.557 20.55 20.472 20.413

Power (µW) 5.20835 6.73429 6.763 3.7032 22.984
Bandwidth (kHz) 4.0079 3.849 4.00793 4.667 4.2886

Area (µm2) 494.26 510.89 357.55 287.24 640.042

Different parameter sets were obtained by using different settings. For all of them, the
starting point was Set 1. The constraints were the same, as defined in Table 1. For Sets 2 and
3, the goal was to minimize the ANN fitting function trained on a structure with 10 nodes
in a hidden layer, and for all other sets, the goal was to minimize the ANN fitting function
trained on a structure with 10 nodes in a hidden layer. For some of them, the goal was set
to be close to the realistic one, such as, for instance, 170 (set 9) or 189 (set 8). Setting the goal
to an unrealistically low circuit area resulted in the obtainment of Sets 2–7. The fact that
the search for the minimum of the objective function was successful even in the case of an
unrealistic goal revealed and confirmed the complex interplay of the relations between the
circuit parameters. In spite of the good quality of the ANN fitting functions (in terms of the
coefficient of the determination), due to strong nonlinearities in such a high-dimensional
parameter space, wrong predictions of the circuit area were made. Thus, ANN fitting is
used just as a function that can be incorporated into the procedure of the goal attainment
method, and not as a tool that can replace the simulations or fabrications themselves. After
the exploratory analysis of the parameter sets obtained by the goal attainment method, one
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final round of the simulations was performed for the circuit area comparison (last row in
Table 6).

The results for the different parameter values are represented under each set in the
table. It could be observed that, for the ANN-assisted goal attainment method, Set 4 showed
the best values for gain and phase, around 47.7046 dB and 46.321 degrees, respectively. The
area for the design, proved by Cadence simulations, is 369.98 µm2. Set 8 and Set 9 deduce
lower value for area in comparison to Set 4; they are 357.55 and 287.24 µm2, respectively.
Set 8, however, has a power of 6.763 µW, which exceeds the circuit design limit of 5 µW. Set
9 consumes a power of 3.7032 µW, but the power consumed by Set 4 is lowest (815.62 nW).
Therefore, considering all the parameters, Set 4 shows the best value with minimized area.
Figures 10–12 show a comparative representation of gain, phase, and noise plot for various
sets by the ANN-assisted goal attainment method.

Figure 10. Gain vs. frequency plot for circuits designed after results from ANN-assisted goal
attainment method.

Figure 11. Phase vs. frequency plot after results from ANN-assisted goal attainment method.
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Figure 12. Noise vs. frequency plot after results from ANN-assisted goal attainment method.

5.3. Comparative Analysis of Optimization Results

In this work, it could be observed from the results that the ANN-assisted goal attain-
ment method has outperformed the metaheuristic algorithms. The MPOA algorithm has
shown the best value for area, which comes around 773.6955 µm2, and provides a gain
and phase of 41.255 dB and 61.96 degrees. In contrast to the metaheuristic optimization
methods, the ANN-assisted goal attainment method provided better results. Based on the
comparative analysis among the presented methods, it can be observed that the results
in Set 4 show an improvement in terms of gain, power, and area. The goal to minimize
the objective function (area) is achieved with better outcomes by the ANN-assisted goal
attainment. A comparison of the results is shown in Table 8.

Table 8. Metaheuristic algorithm results vs. ANN-assisted goal attainment method.

Metaheuristic Algorithm ANN-Assisted Goal Attainment Method

Gain (dB) 41.255 47.7046
Phase (degrees) 61.96 46.321
Noise (µV2/Hz) 20.558 20.797

Power (µW) 2.884 0.81562
Bandwidth (kHz) 5.308 3.849

Area (µm2) 773.6955 369.98

In the course of our research, besides the above-described algorithms, we have actually
developed optimization programs for a number of other algorithms. However, we have
not obtained adequate results from those algorithms. Only the best results were compared
in the paper. It is noticeable that the results we chose to present do not include a genetic
algorithm (GA), although a well-designed GA may be able to reach excellent optimization
results (see Reference [70], for example). However, considering the No-Free-Lunch Theorem
for search (NFL) [71], it is also evident that if a search algorithm performs particularly
well on one set of objective functions, it can simultaneously perform poorly on objective
functions for other defined problems. For the specified objective in this work, we were
unable to attain the desired specification by GA, and the obtained areas were around
1271 µm2, which was unacceptably high.

During our research, we also incorporated several obtained ANN fitting functions into
the GA; however, the global minimum was missed, and the obtained parameter set led to a
circuit with an unacceptably large area. Thus, instead of insisting on finding new settings
for the genetic algorithm, we decided to present this result with an aim to assist researchers



Micromachines 2022, 13, 1104 19 of 23

with a tool that is fast and reliable. We did not challenge the superiority of metaheuristic
algorithms over the deterministic ones in finding the global minima.

5.4. PENG Supply

Regarding autonomous power supply of the implantable neurostimulation circuitry
using piezoelectric nanogenerators (PENGs), we considered a number of the existing
solutions. Among those, we chose as a specific example the use of PENG harvesters
in deep brain stimulation as described in Reference [72]. The dimensions of the PENG
were 1.7 cm × 1.7 cm, and the obtained current was 283 µA at a voltage of 11 V. The
PENG application in vagus nerve stimulation has been presented by Zhang et al. in
Reference [73], with a power of 23.94 µW/cm2. Generally speaking, however, while
PENG appears to ensure sufficient power for some specific functionalities of implantable
seizure control devices, it leaves much to be desired in regard to enabling more complex
multifunctionalities. A solution to consider is a combination of a rechargeable battery and
a PENG.

To better illustrate our approach, here we present a schematic diagram of our proposed
application (Figure 13), outlining our method for supplying the neurostimulation circuits.
It can be seen how the PENG is connected into the overall scheme, supplying the complete
analog front end and signal processing block circuitry.

Figure 13. Schematic diagram of PENG supply for the analog front end (AFE) and signal processing
block in a neurostimulator.

6. Conclusions

The work implements PSO, GWO, Hybrid PSOGWO, WOA, and DA metaheuristic
algorithms to find the optimum values of circuit parameters. The aspect ratios and the
biasing currents for the circuit are determined. The whale optimization algorithm (WOA)
shows optimized values at an early iteration step and hence converges fastest among the
implemented metaheuristic algorithms. Thus, it proved itself to be a favorable solution in
optimizing the complex analog circuit sizing by metaheuristics. Furthermore, it computes
at high-speed with high reliability and consumes less time than the traditional design
technique. Moreover, optimization methods confirm convergence to global optimum, while
the traditional methods sometimes fail to the same. Area optimization is essential for
the implantable devices. Metaheuristic algorithms are an efficient approach to design the
circuit with optimum values.



Micromachines 2022, 13, 1104 20 of 23

In comparison to metaheuristic algorithms, the protocol based on the machine-learning-
assisted circuit optimization by the goal attainment method supports previous results on
successful automated machine-learning-assisted electronic circuit design. The obtained
circuit parameters ensure a smaller overall circuit area than the area calculated by using
metaheuristic algorithms by more than 50%. In this approach, ANN serves as an approxi-
mate replacement for analytical equations or circuit simulations used to calculate the cost
function formula. Further improvements might be possible by exploring different learning
techniques for the creation of the neural network fitting function (apart from Levenberg–
Marquardt technique used here). The minimization of the ANN fitting function, performed
here by the deterministic Goal Attainment Method, can also be performed by metaheuristic
algorithms. The main advantage of using an ANN to approximate the background circuit
model is its speed; thus, it is most practical for higher complexity circuits. Independent of
the optimization described here, ANN fitting functions can also be used in hyper-physics
system models and in multiscale modeling.

All techniques described in this work are applicable to the design and optimization of
preamplifiers in implantable circuits for seizure detection. The solutions presented here
aim to assist researchers with a fast and reliable tool rather than to challenge the superiority
of metaheuristic algorithms over the deterministic ones in finding the global minima.

Supplying power to implanted seizure control devices at the current stage of develop-
ment is achievable by a combination of a rechargeable battery and a flexible piezoelectric
generator. However, PENG devices are being developed at a rapid pace, thus pointing to
a very realistic possibility of fully autonomous implanted systems with complex multi-
functionalities, simultaneously enabling seizure detection, neural stimulation to prevent
seizure, and contact between the seizure control device and a cloud via a cellphone.
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