
����������
�������

Citation: Alkan, G.; Košević, M.;
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Abstract: Polygonal Pt nanoparticles were synthesized using ultrasonic spray pyrolysis (USP) at
different precursor concentrations. Physicochemical analysis of the synthesized Pt particles involved
thermogravimetric, microscopic, electron diffractive, and light absorptive/refractive characteristics.
Electrochemical properties and activity in the oxygen reduction reaction (ORR) of the prepared
material were compared to commercial Pt black. Registered electrochemical behavior is correlated to
the structural properties of synthesized powders by impedance characteristics in ORR. The reported
results confirmed that Pt nanoparticles of a characteristic and uniform size and shape, suitable for
incorporation on the surfaces of interactive hosts as catalyst supports, were synthesized. It is found
that USP-synthesized Pt involves larger particles than Pt black, with the size being slightly dependent
on precursor concentration. Among ORR-active planes, the least active (111) structurally defined
the synthesized particles. These two morphological and structural characteristics caused the USP-Pt
to be made of lower Pt-intrinsic capacitive and redox currents, as well as of lower ORR activity.
Although being of lower activity, USP-Pt is less sensitive to the rate of ORR current perturbations
at higher overpotentials. This issue is assigned to less-compact catalyst layers and uniform particle
size distribution, and consequently, of activity throughout the catalyst layer with respect to Pt black.
These features are considered to positively affect catalyst stability and thus promote USP synthesis
for improved properties of host-supported Pt catalysts.

Keywords: electrocatalysis; nanocatalyst; noble metal nanoparticles

1. Introduction

There are numerous contemporary studies dealing with the catalytic improvements of
energetics-important electrochemical processes such as hydrogen evolution (HER) and the
reduction and oxidation of oxygen or small organic molecules [1]. Particularly, investiga-
tions into oxygen reduction reaction (ORR) kinetics are of the highest interest due to the
ORR rate-determining characteristics for energy conversion in fuel cells (FCs) and metal–air
batteries (M-O2) [2–5]. The meeting point of FCs and M-O2 (involving alkaline metal–air
batteries, such as Li-O2 and Na-O2) clearly exists on the cathode side – in both FC and
M–O2, the electrons for anodic oxidations are provided by ORR at the cathode [6]. Green
technology progress not just in energy storage but in the water-splitting domain urges
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for controllable catalysts for both HER and OER [7,8]. New modifications of morphology
and/or electronic structures of transition metal-based catalysts have offered multifunc-
tional solutions in energy storage and conversion as well as in demanded water electrolysis
applications [9]. Among various electrode materials and catalysts, such as nanostructured
metals, metal oxides, hydroxides, phosphides, and chalcogenides, Pt-based catalysts are
still at the forefront owing to their high activity with acceptable stability and slow chemical
degradation [10,11].

Besides material selection, surface properties, such as the structure, size, and shape of
the nanoparticles, also have a great impact, especially on rather sluggish ORR activity, due
to the intrinsic sensitivity of this complex heterogeneous reaction regarding the catalyst
surface. Therefore, the synthesis method considerably affects the catalyst ORR activity.
The examination of various synthesis methods for Pt nanoparticles (Pt NPs) themselves as
well as various Pt-based composites has also been the focus of much research. Chemical
precipitation, ion implantation, laser ablation, and chemical reduction have been the most
investigated methods so far [12]. In most of the studies, additives were used to control the
shape of the fine Pt NPs, such as etchants, adsorbates, surfactants, polymers, or foreign
metal ions [4,13,14]. However, the simple synthesis of fine spherical Pt NPs without any
additive is rare, especially in bottom-up approaches. Recently, the pulsed laser ablation
method in liquids (PLAL) has been utilized by Lau et al. [15]. The successful synthesis of
ligand-free pure Pt NPs was achieved and it was reported that possible toxic cross-effects
and additional nanoparticle purification steps such as filtration, dialysis, and centrifugation
were avoided.

Among various bottom-up approaches, ultrasonic spray pyrolysis (USP) was reported
as the one that easily enables the generation of ultrafine, uniform or complex structures
with controlled stoichiometry as well as chemical and phase content [16–19], which could
be very promising for the synthesis of Pt nanocatalyst with good ORR activity [20,21]. There
are a few studies dealing with Pt-based catalyst synthesis by USP, especially in hybrid
form with metal oxides such as SiO2, CeO2, Al2O3, and FeAl2O4 [22,23], and also with
Pt/TiO2, as carried out by Košević et al. [24], which is of great concern as an interactive Pt
support. In these studies, the catalysts synthesized through USP were reported to exhibit
superior catalytic activity with respect to wet chemical, colloidal, and dry impregnation
methods [25–28]. However, there is a lack of systematic studies dealing with the synthesis
of pure nanoparticles through controlled USP.

Therefore, we aimed to synthesize Pt NPs by a precursor solution concentration-
dependent USP process and analyze its influence on morphological, structural, and elec-
trochemical properties of Pt NPs. The ORR activity of Pt NPs synthesized exclusively
by USP was elucidated and compared to commercial Pt powder to reveal the potential
of the further use of USP in the synthesis of complex Pt-based electrocatalysts. In this
way, USP was introduced as a novel approach for the simple synthesis of Pt NPs, whose
structural and morphological characteristics can be finely tuned via easily-controllable
pyrolytic parameters such as precursor concentration and temperature.

2. Materials and Methods
2.1. Material Synthesis

H2PtCl6 H2O (Sigma Aldrich) was used as Pt precursor. In total, 2 g or 4 g of H2PtCl6
6H2O was dissolved in 1 L of de-ionized water to obtain the USP-feeding solutions. Two-
zones ultrasonic spray pyrolysis was utilized for the formation of Pt nanoparticles, whose
details can be found elsewhere [10,17]. In the first heating zone, droplets experience
evaporation, while in the second heating zone and with the addition of hydrogen, the
material reduction into Pt NPs takes place. The precursor solution was atomized by an
ultrasonic generator (1.7 MHz) with fine droplets subsequently transported into the heating
zones to experience evaporation, thermal reduction, and precipitation into Pt metallic
nanoparticles. As carrier and reaction gases, 1.5 L/min N2 in the first heating zone and
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1.5 L/min N2 + 0.5 L/min H2 in the second heating zone were utilized. The residence time
was estimated as tresidence = Vr·Troom

rF ·Tr
, which provides the value of 3.01 s.

2.2. Material Characterization
2.2.1. Composition, Morphology, and Structural Characterization

To reveal the effect of precursor solution concentration on morphology, size, and purity
of Pt nanoparticles, two different concentrations were examined. UV-Vis (Agilent, Santa
Clara, CA 95051, USA) and DLS measurements (Malvern Panalytical Ltd, Kassel, Germany),
scanning transmission electron microscopy (STEM), and thermal gravimetric analysis (TGA,
NETZSCH, Selb, Germany) analyses were performed with typical instrumentations and
conditions. The morphology and elemental compositions of the synthesized powders were
analyzed by STEM Tecnai F20 (FEI Company, Eindhoven, The Netherlands), and a system
(EDAX Inc., Mahwah, NJ, USA) equipped with energy dispersive spectroscopy (EDX)
operated at 200KV for the analysis of characteristic X-ray emissions.

2.2.2. Electrochemical Characterization

Electrochemical characterization of the prepared Pt NPs was performed by linear
sweep polarization measurements (LSV) and galvanostatic electrochemical impedance
spectroscopy (GEIS) during the oxygen reduction reaction (ORR) as well as by cyclic
voltammetry (CV). LSV and CV were conducted at sweep rates of 1 and 50 mV s−1,
respectively; LSV and GEIS measurements were performed at a working electrode (WE)
rotation speed of 1500 rpm. In total, 0.5 M H2SO4 purged with N2 (CV) or O2 (ORR and
GEIS) was used as an electrolyte.

It is known that HSO4
− and SO4

2− are interfering anions in ORR due to their compet-
ing adsorption onto Pt active sites that are required to be occupied by oxygen adatoms [29].
If one needs to step deep into an analysis of ORR kinetics, synthetic solutions of hardly
adsorbing anions, e.g., HclO4, are to be applied. However, the working environment of
FC Pt-based catalysts is prone to anion adsorption from cheap and abundant solutions.
Therefore, some studies deal with ORR in H2SO4 solution [30–32] as well. Our goal was to
examine USP-Pt in such “competing adsorption” conditions and to compare the registered
behavior to Pt black in the same environment.

All electrochemical measurements were performed in a three-electrode cell with an
SCE reference electrode (all potentials in the paper are provided on an SCE scale) and a
platinum plate as a counter electrode on potentiostat/galvanostat Bio-Logic SP200 (Bio-
Logic SAS, Grenoble, France). WE was prepared from a powdered sample as follows: 3 mg
of the synthesized USP powder was dispersed in 1 mL of distilled water and ultrasonically
homogenized for 1 h (40 kHz, 70 W). The obtained suspension was pipetted onto WE to
form a 0.31 mg cm−2 Pt layer onto a glassy carbon disk electrode (0.196 cm2) that served as a
current connector and was room-dried. Bearing in mind that the literature data [2] showed
that Pt oxide formation could influence the structure of the Pt and hence its activity, CV
measurements prior to LSV and GEIS measurements were conducted in the two different
potential regions. Particularly, the cathodic potential was fixed at −0.2 V while the anodic
limit was set to 0.55 or 1.25 V. Upon recording the stable CV curve in both applied potential
regions, i.e.,−0.2–0.55 without Pt oxide formation and−0.2–1.25 V with Pt oxide formation,
LSV measurement was performed that started from 0.55 V and from open circuit potential,
Eoc, respectively. GEIS was recorded down the polarization curve with a sinusoidal current
of 30 µA amplitude, in a single sine mode, within a frequency range of 300 kHz–20 mHz,
and with 20 points per decade.

Results of the electrochemical characterization were compared to those of commercial
Pt black (Alfa Aesar, 25.0–29.8 m2/g, d: 4.68–5.58 nm).
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3. Results
3.1. DLS, STEM, and TGA Characterization of Pt Samples

In order to reveal the thermal breakdown behavior of the Pt precursor, H2PtCl6 6H2O,
for determining the USP reaction temperature, TGA analysis was performed in an inert
atmosphere. The results are presented in Figure 1.
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Figure 1. TGA curve of H2PtCl6 6H2O precursor in N2.

It was previously reported by Rowston and Ottaway [16] and Schweizer and Kerr [18]
that the thermal decomposition of H2PtCl6 takes place through stepwise reactions, as follows:

H2PtCl6 → PtCl4 + 2HCl (1)

PtCl4 → PtCl2 + Cl2 (2)

PtCl2 → Pt + Cl2 (3)

As revealed by Figure 1, mass loss began at early temperatures due to the loss of
chemically bound water (the two peaks at around 170 and 190 ◦C). The mass loss related to
the peak at 170 ◦C was below 20 %, which corresponds to the stoichiometric loss of five
water molecules (17.4%). The two peaks at 190 and 221 ◦C can be associated with the joint
loss of the remaining 6th crystalline water molecule and two HCl molecules, according
to Reaction (1), as the corresponding sum of mass losses of 17% was quite close to the
stoichiometric 17.6%. It follows that the last water molecule was lost at the temperature of
190 ◦C by overlapping with the start of the precursor decomposition to PtCl4, which ends
up at 300 ◦C. The loss of the remaining chlorine and the generation of metallic Pt through
Reactions (2) and (3) is represented by the two well-separated peaks at 351 and 523 ◦C with
an overall mass loss of 27.5%, which is negligibly different from the stoichiometric 27.4%.
Hence, complete transformation into Pt took place at around 550 ◦C.

In order to facilitate the reduction for shorter residence times at a slightly lower
temperature of 500 ◦C with respect to TGA while simultaneously having a defined structure
and size of Pt particles, H2 was utilized in USP synthesis.

TEM micrographs along with corresponding selected area (electron) diffraction (SAED)
analysis of USP-synthesized Pt nanoparticles with different USP precursor concentrations
are represented in Figure 2.
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Figure 2. TEM micrographs of Pt nanoparticles synthesized by precursor concentrations of: (a) 2;
(b) 4 g /L; and corresponding selected area (electron) diffraction analysis (c) and (d), respectively.

Both samples consisted of fine crystals (5–15 nm) with polygonal soft-edge morphol-
ogy. Slightly larger and more agglomerated particles were obtained with a higher precursor
concentration (Figure 2a,b). A string-like 1D agglomeration of the smallest particles ap-
peared a more pronounced at a lower concentration. The additional effect of precursor
concentration can be observed when Figure 2a,b is analyzed. A lower concentration (2 g/L),
which can be considered as a lower driving force for particle growth, resulted in higher nu-
cleation rates and growth of the crystals to a smaller extent, as we previously reported [17].
Consequently, the particles from the lower concentration appeared smaller and less defined
and hence tended to form a string-like 1D agglomeration.

The SAED images in Figure 2c,d represent the characteristic diffraction of a ring pattern
with some brighter and more distinct spots in the rings, which indicates the presence of
some larger crystallites. However, the rings were still relatively continuous, which means
that the crystallites were small, in the nm range, and in a random orientation. The electron
diffraction spots could be described by a cubic crystal structure of Pt FCC, space group Fm
3 ¯ m, with indices as shown in the pattern.

The optical properties of nanoparticles were also examined in a comparative manner
by UV-Vis spectroscopy, as provided in Figure 3.

As shown in Figure 3, both observed maximum absorbance peaks appeared at 272 nm,
which is slightly higher than the absorbance values reported in the literature (~262 nm)
where Pt nanoparticles exhibited a prevailing size of 5–6 nm [20,21]. A slight red shift could
be due to an aggregation effect, as revealed in the TEM micrographs shown in Figure 2.
When the surface plasmon-induced absorbances of two samples are compared, it can be
seen that peak position did not change and the higher concentration sample resulted in
slightly higher absorbance. A slight increase in absorbance may be due to more pronounced
roundness of the particles.
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Although consisting of slightly larger and more agglomerated particles, 4 g/L was
determined as a more suitable precursor solution due to the well-defined particles, and
this sample was analyzed in terms of electrochemical properties and compared with the
commercial Pt powder.
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Figure 3. Absorbance vs. wavelength spectra of the synthesized samples.

3.2. Electrochemical Properties of Obtained Pt Particles
3.2.1. Cyclic Voltammetry

Stable cyclic voltammograms of USP-synthesized Pt (USP-Pt) and Pt black are shown
in Figure 4. Both curves had a shape that was characteristic of platinum. Well-resolved Pt ox-
ide formation/reduction peaks were observed for both samples in a wider potential range,
with higher CV currents for Pt black. This also holds for hydrogen adsorption/desorption
peaks. However, in the double-layer region (around 0.15 V), the currents for USP-Pt were
smaller, which indicates the formation of slightly smaller Pt particles. Similar findings are
valid if CVs in the narrower potential region are considered. With respect to the wider
potential range, hydrogen adsorption/desorption peaks were less pronounced because
the surface had not been continuously renewed and reconstructed by reversible oxide
formation/reduction. The ratio between CV currents of USP-Pt and Pt black appeared to
not be affected by cycling limits. These basic electrochemical properties show that clean Pt
particles of typical characteristics can be synthesized by a simple USP synthesis approach.

3.2.2. Linear Sweep Voltammetry

LSV curves for the ORR of USP-Pt and Pt black obtained after CV measurements in
shorter and wider potential ranges (Figure 5) represent typical polarization curves for ORR
on Pt. The formation of Pt oxide (the case of CV in wider potential range) had a beneficial
influence on the ORR activity of both USP-Pt and Pt black samples. Namely, the samples
showed better ORR activity after CV measurements in a wider potential range as ORR
takes place at more anodic potentials, except in the region of a limiting diffusion current
(potentials negative to 0.3 V). The reversible oxide formation can cause the growth of Pt
particles and hence reduce the real surface area, which consequently decreases the apparent
limiting diffusion current. This effect is more pronounced for USP-Pt due to initially larger
Pt particles.
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Figure 5. Quasi-steady-state polarization curves of USP-Pt and Pt black obtained after CV mea-
surements in shorter and wider potential ranges. Electrolyte: 0.5 M H2SO4 purged with O2, room
temperature, 1500 rpm, sweep rate: 1 mV/s.

ORR required the application of more negative potential for USP-Pt, i.e., apparent
currents were higher for Pt black within all the applied potential range. This indicates
that Pt black was mainly more active for ORR due to geometric issues, i.e., the Pt black
layer on the GC working electrode had a slightly larger real surface area. In addition,
the sole low-index Pt (111) plane was found by electron dispersion (Figure 2) for USP-Pt,
which is the least active plane in comparison to the Pt (100) and Pt (101) facets [32]. This
finding can additionally affect the lower ORR activity of USP-Pt, and can particularly
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cause the registered higher ORR overpotentials of USP-Pt in comparison to Pt black. The
limiting current of around 4.6 mA cm−2 that was found for USP-Pt is in accordance with
the limiting currents ranging 4–6 mA cm−2 reported for various materials [4,5,8]. Namely,
platinum-based hybrid materials Pt-Er@PC-900 and Pt-ErPCN-900, i.e., Pt/Er nanoparticles
decorated on Cd-MOF derived hierarchical carbon, showed excellent ORR activity with
a limiting current of 5.5 mA cm−2 while the limiting current of commercial Pt/C was
4.7 mA cm−2 [8]. A new class of non-platinum electrocatalysts with high stability and
activity in ORR was developed by Ibraheem et al. [4,5]. The ORR activity of these new
hybrid non-platinum materials was comparable to the activity of commercial Pt/C catalysts
and even better when in comparison to IrO2. Namely, strongly coupled Fe2NiSe4@Fe-
NC hybrid material showed excellent stability in ORR with a limiting current of around
5.5 mA cm−2 [4]. High activity and stability in ORR were preserved when this hybrid
material was comprised of P instead of Se, i.e., a limiting current of NiFeP supported on
three-dimensional, interconnected Fe,N-decorated carbon (NiFeP@3D-FeNC) was around
5.5 mA cm−2 [5]. Even unsupported NiFeP material showed good ORR activity (limiting
current of 4.2 mA cm−2), while unsupported Fe2NiSe4 exhibited a lower limiting current of
1.5 mA cm−2.

3.2.3. Galvanostatic Electrochemical Impedance Spectroscopy (GEIS)

The GEIS measurements of the samples were conducted at different steady-state
currents depending on whether they were performed after a narrower or wider range of
potential had been applied in preceding CV measurements. From Figure 5, the currents
analogue to the potential of Pt oxide formation (around 0.6 V from CV in Figure 4) were
−250 µA for Pt black and −150 µA for USP-Pt. Therefore, to avoid the formation of Pt
oxide, applied currents in GEIS performed after CV in a shorter potential range were in a
range from the diffusion-limited current to −250, i.e., −150 µA. Currents applied in GEIS
performed after CV in a wider potential range (Figure 3) included current values within
the ORR region from Figure 5. Given that GEIS results did not differ by much whether
they were obtained after CV in narrower or wider potential regions, only the GEIS results
gained after CV in the wider region are shown in this paper (Figures 6 and 7). This is in
accordance with the CV findings that reversible oxide formation does not really affect the
activity of investigated Pt samples.
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A similar trend in ORR activity was observed for both samples (Figure 3). A charge
transfer loop is registered as the main GEIS feature in the investigated frequency range at
all applied steady-state currents. The increase in currents in the mixed activation/diffusion
region (below −350 µA) induces the decrease in a loop diameter due to the decrease in
charge transfer resistance. For the cathodic currents higher than−350 µA, the loop diameter
increased with the current due to the intensification of the diffusion limitation of ORR. All
loops were of similar shape, except for the loop that registered at the lowest current of
−30 µA, which was clearly followed in the low-frequency region by an additional small
loop. For the USP-Pt sample, this small loop appeared better developed and at somewhat
higher frequencies with respect to the data for Pt black. This indicates that the associated
ORR kinetics issues are sensitive to the structure of the catalyst layer, which appears to be
more compact in the case of Pt black due to smaller particles and larger real surface area.
This seems to also affect the difference in loop features at the highest applied current of
−800 µA. The low-frequency loop was uniquely preserved under pronounced diffusion
control for USP-Pt. This apparently caused the loop diameter for USP-Pt at −800 µA to be
almost three times larger than that for Pt black. However, the loops for USP-Pt and Pt black
at other applied currents appeared quite similar in diameter. This difference with respect
to polarization measurements (Figure 5), which indicated the higher activity of Pt black,
deserves further analysis, according to Figure 7.

Figure 7 presents a comparison of some GEIS results at specific currents, taken from
Figure 6 (the values of the currents are shown within).

Although the LSV measurement (Figure 2) showed better ORR activity of the Pt black
within the whole current range, GEIS results indicated almost the same activity at lower
currents, i.e., up to −500 µA (the loops were of quite similar diameters). However, with
the increase in the applied current in GEIS, starting from I = −600 µA (Figure 4), better
activity of the Pt black appeared. Finally, at the highest applied current (−800 µA), the
Pt black activity was doubled in comparison to the USP-Pt activity. It then follows that
the differences in activity are strictly connected to the onset of pure diffusion limitations;
therefore, they are not connected to the chemical structure of the investigated samples but
to the morphology of the electrode layers, as already discussed.
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In order to comment on the differences between polarization and GEIS data, a compar-
ison of ORR activity registered in GEIS and LSV measurements for Pt black and USP-Pt is
presented in Figure 8. For this comparison, the square root of the potentials was collected
from GEIS data at chosen frequencies (indicated in the figure) from low- and high-frequency
regions and plotted against the steady-state GEIS current. Both USP-Pt and Pt black are
more active if the sinusoidal perturbation of the current is of higher frequency, and they
are even of higher activity, especially in a mixed reaction control, with respect to the quasi-
steady-state data. This indicates the distribution of the activity throughout the catalyst
layer, with more active sites situated in the outer regions because these sites respond to fast
current perturbations. The main difference between the two samples is that this distribution
of the active sites is more pronounced for Pt black. USP-Pt does not lack activity at low-
frequency perturbations with respect to standard polarization. This means that all active
sites would be available during the ORR operation, which is to be expected as being more
stable with respect to Pt black. Apparently, these valuable features of USP-Pt in comparison
to Pt black are due to a less-compact layer structure caused by larger Pt particles.
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4. Conclusions

Ultrasonic spray pyrolysis (USP) was used for the synthesis of Pt particles, which
started from using H2PtCl6 × 6H2O water solution as a precursor without using any
synthesis additives to tune structural and morphological properties. The USP synthesis
temperature for low residence time was chosen according to thermogravimetric measure-
ments. Results showed that polygonal round-edge and phase-pure Pt nanoparticles with
face cubic centered structures were successfully synthesized. The particle size, defined
shape, and agglomeration were found to be sensitive to precursor concentration, and higher
concentrations were found to be beneficial due to the synthesis of more defined particles.

Electrochemical characterization revealed good electrocatalytic activity of the synthe-
sized material, which was comparable to commercial Pt black. It is found that USP-Pt is
of a lower real surface area due to the larger particle size with respect to Pt black. As a
consequence, USP-Pt appears less active in quasi-steady-state polarizations in the oxygen
reduction reaction (ORR). However, upon dynamic perturbations performed by galvanos-
tatic impedance measurements (GEIS), the difference in ORR activities between the two
investigated powdered Pt was found negligible. Only the diffusion-limited currents were
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found to be higher for Pt black due to the larger real surface area, i.e., the somewhat
smaller particles.

The beneficial features of USP-synthesized Pt were found upon the comparison of
steady-state and dynamic (GEIS) electrocatalytic data in ORR. USP-Pt is less sensitive to
the rate of current perturbations due to larger particles and, consequently, a less-compact
catalyst layer. A more defined response of USP-Pt in ORR polarization could be considered
as an indication of its higher stability with respect to Pt black.
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project administration, M.M. and S.S. All authors have read and agreed to the published version of
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