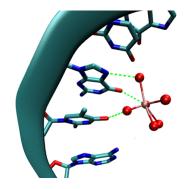


Binding of metal ions and water molecules to nucleic bases

Jelena M. Andrić ¹, <u>Ivana M. Stanković</u> ², and Snežana D. Zarić *3,4

¹ Innovation center, Department of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia

² Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia ³ Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia


⁴ Science Program, Texas A&M University at Qatar, Texas A&M Engineering Building, Education City, Doha, Qatar E-mail: szaric@chem.bg.ac.rs

Introduction

Hydrogen bonds of coordinated water are much stronger than those between noncoordinated water molecules [1,2]. The nucleic base – coordinated water interactions are applied in heavy metal ion detection [3] as artificial short single-stranded DNA or RNA sequences can fold into specific secondary and tertiary structures on binding to certain heavy metal targets with extremely high specificity.

Results

- » Both PDB search and calculations revealed shorter hydrogen bonds with coordinated water, with the acceptor-donor distance in the range of 2.7–2.8 Å independently of metal type, in contrast to the noncoordinated water in the range of 2.9–3.1 Å.
- A number of interactions found in PDB are of type nucleic base - hydrated metal – protein, which points out that hydrated metal ions can intermediate protein-DNA contacts
- The results of the calculations show that the hydrogen bond interactions for doubly charged [Mg(H₂O)₆]²⁺ complex (-12.94 to -49.96 kcal/mol) and for singly charged [Na(H₂O)₆]+ complex (-6.66 kcal/mol to -19.63 kcal/mol) are stronger than for noncoordinated water (from -4.63 to -8.93 kcal/mol)

VS.

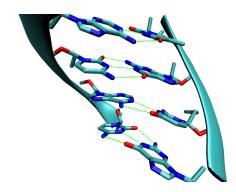


Figure 1. Interactions of nucleic bases with water coordinated to Mg²⁺ (up) and with other nucleic bases in DNA structure (down). Hydrogen bonds represented in green dashed lines. PDB id: 5E36.

Methodology

- The hydrogen bond interactions of nucleic bases with noncoordinated and coordinated water molecule were studied by analysing geometry of 2402 Protein Data Bank [4] crystallographic structures. Python homemade script was used for the PDB search
- MP2/def2-QZVP quantum chemical calculations implemented in the ORCA software [5]

Conclusion

- The calculated values for hydrogen bond interactions are comparable to the strength of hydrogen bonds between nucleic bases which span from -5 to -47 kcal/mol [6] (Figure 1)
- These results may be relevant to understand the role of water molecules and metal ions in the process of replication and stabilization of nucleic acids as well as possible toxicity

References

- 1) J. M. Andrić, G. V. Janjić, D. B. Ninković, S. D. Zarić, Phys. Chem. Chem. Phys. 2012, 14, 10896 10898
- 2) J. M. Andrić, M. Z. Misini-Ignjatović, J. S. Murray, P. Politzer, S. D. Zarić, ChemPhysChem 2016, 17, 2035 2042
- 3) Y. Wu, S. Zhan, H. Xing, L. He, L. Xu, P. Zhou, 2012. Nanoscale 4, 6841-6849
- 4) http://www.rcsb.org/pdb/home/home.do
- 5) F. Neese, ORCA 2.8, University of Bonn, Bonn, Germany, http://www.thch.uni-bonn.de/tc/orca/
- 6) J. Šponer, P. Jurečka and P. Hobza, J. Am. Chem. Soc. 2004, 126, 10142-10151 riggers *et al.*, Protein Functional Dynamics, 2005, 80, 736-746