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Abstract 

The analysis of the potential to improve performance of a methanol synthesis reactor through 

forced periodical operations by Nonlinear Frequency Response method is presented. The 

methanol synthesis in an isothermal and isobaric lab-scale CSTR is considered. First, the 

analysis was performed for single input modulations (in Part I), which showed that significant 

improvements can’t be achieved. Here, the study is extended to analysis of simultaneous 

modulations of two inputs. All possible input combinations (6 cases) are analysed and the 

optimal forcing parameters, maximizing the time-average methanol production, were 

determined. For all combinations the improvement is possible, but for some cases it is not 

significant. The highest improvement is predicted for simultaneous modulation of the inlet 

partial pressure of CO and the inlet volumetric flow rate. This case, for which it is possible to 

achieve up to 33.51 % of methanol production, is analysed it detail and optimized using multi-

objective optimization. 
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1 Introduction

Forced periodic operations, performed by forced periodic modulations of one or more inputs, can 

be considered as intensified processes, which, by proper choice of the modulated inputs and 

forcing parameters, could lead to significant process improvements (Van Gerven and 

Stankiewicz, 2009; Petkovska and Seidel-Morgenstern, 2013). The investigation of forced 

periodic operations in the field of chemical engineering, especially reactor engineering, became 

an attractive topic for researchers worldwide. Previous investigations showed that different 

reactor performances (e.g. conversion, selectivity, productivity…etc.) can be improved by 

implementation of forced periodic operations (Bailey 1973; Chen et al., 1994; Douglas 1972; 

Renken 1972; Schadlich et al. 1983; Silveston 1987; Silveston et al., 1995; Silveston 1998; 

Silveston and Hudgins, 2013; Sterman 1990a, 1990b, 1991). Simultaneous modulation of two 

inputs had been investigated by many research groups and the details could be found in, for 

example (Chen et al. (1994), Parulekar (2003), Sterman et al. (1990b), Silveston and Hudgins 

(2013)). Although the fact that simultaneous modulation of two inputs, which is the subject of 

the analysis in this manuscript, has a significant potential for improvement, to our knowledge, it 

has not been implemented industrially yet. Some of the reasons for the lack of industrial 

applications can be found in (Stankiewicz and Kuczynski, 1995).

Nevertheless, in some cases, forced periodic operations could lead to deterioration of time-

average process performances. Therefore, theoretical prediction and evaluation of possible 

process improvement, prior to any experimental investigation, is an important task (Petkovska 

and Seidel-Morgenstern, 2013). In our previous work we introduced the Nonlinear Frequency 

Response (NFR) method for evaluation of possible improvements owing to periodic operations, 

as well as for evaluation of optimal forcing parameters and conditions which should be satisfied 

in order to obtain the highest possible improvement (Currie et al., 2018; Marković et al. 2008; 

Nikolić-Paunić and Petkovska, 2013; Nikolić et al., 2014a, 2014b, 2015, 2016a, 2016b, 2020; 

Nikolić, 2016; Nikolić and Petkovska, 2016; Petkovska et al., 2010, 2018 Petkovska and Seidel-

Morgenstern, 2013; Živković et al. 2020a; 2020b).

In this two-part manuscript, the NFR method is used to perform a systematic search for the 

periodic process which provides the highest improvements, considering a well-mixed reactor in 

which heterogeneously catalysed methanol synthesis takes place. In Part I of this work, the NFR 

analysis was used for evaluating possible improvements in cases of single input modulations, 

with the main conclusion that this approach was not attractive. In this manuscript (Part II), it is 

shown that significant improvements are possible for some cases of simultaneous modulations of 

two inputs.  



2.  Nonlinear frequency response method for simultaneous modulation of two inputs

Frequency response of a nonlinear system is a complex periodic function (Douglas, 1972). In 

this study, the frequency response of a nonlinear system is analysed using the Nonlinear 

Frequency Response (NFR) method. This method uses the concept of higher order frequency 

response functions (FRFs), which is based on Volterra series and the generalized Fourier 

transform (Marković et al, 2006, Petkovska and Seidel-Morgenstern, 2013; Volterra, 1959; 

Winer and Spina, 1980). The NFR method can be applied to stable weakly nonlinear systems 

(Petkovska and Seidel-Morgenstern, 2013; Volterra, 1959; Winer and Spina, 1980). In Part I of 

this paper, the implementation of the NFR method for periodic operations with single input 

modulations was explained, and here we give the basic facts of its implementation for the cases 

of simultaneous modulations of two inputs. More details can be found in our previous 

publications (e.g. Nikolić and Petkovska, 2013; Petkovska et al., 2018).

If one or more inputs of a weakly nonlinear systems is/are periodically modulated around a 

previously established steady-state, the frequency response of the system output is obtained as a 

sum of the output steady-state value (ys), the basis harmonic (yI), an infinite number of higher 

harmonics (yII, yIII,…) and a non-periodic (DC) term (yDC) (Marković et al, 2006, Petkovska and 

Seidel-Morgenstern, 2013; Petkovska et al., 2018):

(1)𝑦(𝑡) = 𝑦𝑠 + 𝑦𝐷𝐶 + 𝑦𝐼 + 𝑦𝐼𝐼 + 𝑦𝐼𝐼𝐼 +…

In order to evaluate the potential of a forced periodical operation of a system, it is only necessary 
to predict the DC component of the output of interest, as it determines the time-average 
performance of the analysed system. 

The DC component of an output y, for the case when two inputs (e.g. x and z) are periodically 
modulated, can be given as a sum of the contributions of the DC component related to the single 
inputs (x and z) separately and the contribution of the DC component originating from the cross-
effect of both inputs (Nikolić and Petkovska, 2013):

(2)𝑦𝐷𝐶 = 𝑦𝐷𝐶,𝑥 + 𝑦𝐷𝐶,𝑧 + 𝑦𝐷𝐶,𝑥𝑧

For co-sinusoidal modulations of inputs x and z, with equal frequencies , input amplitudes Ax 𝜔

and Az, respectively and phase difference  between them, the separate contributions of the two 𝜑

inputs to the DC component can be approximately evaluated from the corresponding 

asymmetrical second order (ASO) FRFs, in the same way as explained in Part I: 

in=x or z (3)𝑦𝐷𝐶,𝑖𝑛 ≈ 2(𝐴𝑖𝑛

2 )2
𝐺(2)

𝑦,𝑖𝑛,𝑖𝑛(𝜔, ― 𝜔)



while the contribution of the cross-effect can be approximately evaluated in the following way 

(Nikolić and Petkovska, 2013; Petkovska et al., 2018):

(4)𝑦𝐷𝐶,𝑥𝑧 ≈ 2(𝐴𝑥

2 )(𝐴𝑧

2 )𝐺 ∗ (2)
𝑦,𝑥,𝑧 (𝜔,𝜑)

 is the so-called cross ASO term, which correlates the output y with both modulated 𝐺 ∗ (2)
𝑦,𝑥,𝑧 (𝜔,𝜑)

inputs (x and z). It is a function of both frequency and phase difference between the two 
modulated inputs, and is evaluated based on the cross asymmetrical second order FRF (𝐺(2)

𝑦,𝑥,𝑧

), in the following way:(𝜔, ― 𝜔)

𝐺 ∗ (2)
𝑦,𝑥,𝑧 (𝜔,𝜑) = cos (𝜑)𝑅𝑒(𝐺(2)

𝑦,𝑥,𝑧(𝜔, ― 𝜔))) + sin (𝜑)𝐼𝑚(𝐺(2)
𝑦,𝑥,𝑧(𝜔, ― 𝜔)))

(5)
Thus, for the case of modulation of two inputs (x and z), in order to evaluate the possible 
improvement of the output y, it is necessary to derive three ASO FRFs: two of them correlating 
the output to each of the inputs (  for input x and,   for input z) and 𝐺(2)

𝑦,𝑥,𝑥(𝜔, ― 𝜔) 𝐺(2)
𝑦,𝑧,𝑧(𝜔, ― 𝜔)

one cross ASO function ( , correlating the output to both modulated inputs) 𝐺(2)
𝑦,𝑥,𝑧(𝜔, ― 𝜔)

(Nikolić Paunić and Petkovska, 2013, Petkovska et al., 2018). The overall DC component of the 
output y, written as follows:

 𝑦𝐷𝐶 ≈ 2(𝐴𝑥

2 )2
𝐺(2)

𝑦,𝑥,𝑥(𝜔, ― 𝜔) +2(𝐴𝑧

2 )2
𝐺(2)

𝑦,𝑧,𝑧(𝜔, ― 𝜔) +2(𝐴𝑥

2 )(𝐴𝑧

2 )𝐺 ∗ (2)
𝑦,𝑥,𝑧 (𝜔,𝜑)

(6)

should be calculated for a chosen set of forcing parameters (forcing frequency, forcing  
amplitudes and phase difference) (Nikolić and Petkovska, 2013; Nikolić et al., 2015; Nikolić et 
al., 2016a; 2016b). In principle, it is possible find a set of forcing parameters resulting the 
periodic operation with highest improvement (Nikolić and Petkovska, 2013, Nikolić, 2016, 
Petkovska el al, 2016). 

The phase difference is a crucial parameter for a periodic operation with simultaneous 
modulations of two inputs, considering that its appropriate choice guaranties that the cross term 
of the DC component has the desirable sign. Furthermore, by choosing the optimal phase 
difference, the cross-effect can be maximized (Felischak 2020; Felischak et al. 2021; Nikolić, 
2016; Nikolić and Petkovska, 2013; Petkovska et al., 2018). The optimal phase difference, 
maximizing the DC component can be determined based only on the cross ASO FRF, in the 
following way (Nikolić and Petkovska, 2013): 

𝜑𝑜𝑝𝑡 = arctan(Im(𝐺(2)
𝑦,𝑥,𝑧(𝜔, ― 𝜔))

Re(𝐺(2)
𝑦,𝑥,𝑧(𝜔, ― 𝜔)))

(7)



The derivation procedure of the FRFs is standard and it can be found in our previous 
publications (Marković et al., 2008; Petkovska and Seidel-Morgenstern, 2013; Nikolić Paunić 
and Petkovska, 2013; Nikolić et al., 2014a; 2014b; 2015; 2016a; 2016b; Nikolić and Petkovska, 
2016; Petkovska et al., 2010; 2018, Petkovska and Seidel-Morgenstern 2013). The derivation 
procedure is recurrent, so the first order FRFs should be derived first and then the asymmetrical 
second order FRFs.

3 Methanol synthesis reaction

The performance of a forced periodically operated chemical reactor in which methanol is 

produced from synthesis gas (mixture of CO, CO2 and H2), through hydrogenation of CO and 

CO2, using a commercial Cu/ZnO/Al2O3 catalyst, is analysed. The hydrogenation reactions are 

(Graaf et al. (1988)):

(8)СО +2Н2⇄СН3ОН

(9)СО2 +3Н2⇄СН3ОН + Н2О

In addition, the reverse water-gas shift reaction (RWGS) is taking place according to:

(10)СО2 + Н2⇄СО + Н2О

The analysis of forced periodic operation of methanol synthesis is based on the kinetic model 

presented in (Seidel et al., 2018; 2020). This model was derived evaluating results of numerous 

steady state and dynamic experiments described in (Vollbrecht, 2007). Key features of the model 

are the quantitative incorporation of a) the rate of altering the amounts of reduced and oxidized 

surface sites upon changing the gas phase composition and b) the dynamically changing amounts 

stored in both phases. With respect to the second feature the model assumes that the time 

constants for adsorption and desorption are much faster then the time constants for the chemicals 

reactions, the imposed periodic modulation and the residence in the reactor. Based on typical 

sticking coefficients and adsorption rate constants predicted for similar systems for example in 

(Panczyk, 2006; Yhang et al., 2020) this assumptions is well fulfilled for the heteorgeneously 

catalyzed methanol synthesis studied in this work and the modulation frequencies, flow-rates and 

reactor sizes considered below. This assumptions allows simplifying the model and assuming 

permanently established adsorption equilibria. The kinetic model and parameters used in this 

study were given in Part I of this work. 

It is important to point out again that the main prerequisite for reliable predictions of possible 

improvements owing to forced periodic operation is to have a reliable mathematical model of 

both the reaction kinetics and the reactor. Hereby, a good kinetic model and accurate values of 



its parameters is of particular importance. The mathematical structure of the model, more 

precisely its nonlinearities will influence the outcome of the analysis of forced periodic 

operation. Below we will “trust” the kinetic model and postpone a quantitative analysis of the 

impact of unavoidable remaining model deficits to a forthcoming future study.

4. Evaluation of possible performance improvements of methanol synthesis reactor 

with simultaneous periodic modulations of two inputs 

In this Section, the NFR method is applied for analysis and evaluation of possible improvements 

of methanol production for forced period operations with simultaneous modulation of two inputs. 

The analysis is performed for a laboratory-scale uniformly mixed Micro-Berty reactor, which 

was used for kinetic measurements (Vollbrecht, 2007). It is planned that the results of the 

theoretical analysis, presented below, will be experimentally validated using this same reactor 

type.

4.1. Mathematical model

The starting point for application of the NFR method is the mathematical model of the analysed 

system, which has been given in Part I of this paper. We repeat here just the main facts regarding 

the model. The mathematical model is based on the following assumptions: the reaction of 

methanol synthesis occurs in an isothermal and isobaric CSTR, the gas phase is ideal in the range 

of operation parameters, the adsorption equilibrium between the solid and the fluid phase exists, 

the adsorption processes follow the Langmuir-Hinshelwood mechanism, the catalyst deactivation 

can be neglected and only the reactions defined in equations (8-10) take place. 

The mathematical model of the analysed system can be described with eight ordinary differential 

equations: the material balances for each of the six components present in the system (CH3OH, 

CO2, CO, H2, H2O and N2 (inert)), the total material balance (from which the volumetric flow 

rate of the outlet stream is evaluated) and an equation which describes the catalyst dynamics. 

It has to be pointed out that for a complex nonlinear system such as the one investigated in our 

work, the heterogeneously catalysed synthesis of methanol carried out in a well-mixed 

isothermal reactor (CSTR type), the overall effect of a periodic input modulation on the reactor 

performance is a results of a number of coupled nonlinear phenomena and their combined effects 

at different time scales, which all change with the steady-state point around which the system is 

modulated. The nonlinear effects which are included and have effect on the prediction of 

possible improvements are nonlinearities related to: rate of reaction rates, adsorption isotherms, 

interaction between flow-rate and concentration, dynamics of catalysis (conversion between the 



reduction and oxidized active centres, in detail described in Part I of this two-part manuscript), 

and coupled effects of all previous listed nonlinearities.

Considering that for the NFR analysis it is convenient to use a dimensionless mathematical 

model, the dimensionless variables are defined as relative deviations from the corresponding 

steady-state values (Appendix A) and incorporated into the starting model equations. Afterwards, 

all nonlinear terms in the mathematical model are expanded into Taylor series form around the 

steady-state point, as already presented in Part I of this paper. 

4.2. Inputs, outputs and frequency response functions (FRFs)

For the analysed system, it is possible to modulate periodically four different inputs: the partial 

pressures of all reactants in the feed stream (CO2, CO, H2) and the volumetric flow-rate of inlet 

steam. The outputs are: the partial pressures of all components in the outlet stream (of the 

reactants and products, i.e. CH3OH, CO2, CO, H2, H2O), the fraction of reduced active centres on 

the catalyst surface and the volumetric flow-rate of the outlet stream. 

The vectors of all inputs which can be modulated (designated as X and Z) and the vector of 

output variables (designated as Y), are given in the dimensionless form, as follows: 

(11)𝐗 = 𝐙 = [𝑃𝐶𝑂2,0
𝑃𝐶𝑂,0
𝑃𝐻2,0

𝜐0
] 𝐘 = [

𝑃𝐶𝐻3𝑂𝐻
𝑃𝐶𝑂2

𝑃𝐶𝑂
𝑃𝐻2

𝑃𝐻2𝑂
Φ
𝜐

]
The analysis for single input modulations, given in Part I of this paper, showed that no 

significant improvement could be achieved. Therefore, here we give the analysis for 

simultaneous modulation of all possible combinations of two inputs. Six cases are analysed in 

total, three combinations when inputs are partial pressures of two reactants: 

 partial pressures of CO2& CO in the feed stream 

 partial pressures of CO2& H2 in the feed stream 

 partial pressures of CO& H2 in the feed stream

and three combinations of the partial pressure of one reactant and the inlet volumetric flow-rate:

 partial pressure of CO2 in the feed stream and the inlet volumetric flow-rate 

 partial pressure of CO in the feed stream and the inlet volumetric flow-rate and 

 partial pressure of H2 in the feed stream and inlet the volumetric flow-rate. 



For each of the six cases, the partial pressure of inert (N2) is also periodically modulated in a way 

to maintain a constant total pressure (see Appendices B and C). The inert does not participate in 

the chemical reactions nor in the adsorption on the catalyst surface and its modulation does not 

influence the reactor outputs. It only influences the value of outlet pressure of inert (N2) which is 

not subject of our analysis. 

The FRFs, which correlate each output Yy (y=1,…,7) with each modulated input Xx (x=1,…,4), 

for single input modulations: the first order frequency response functions (FRFs),  and 𝐺(1)
𝑦,𝑥(𝜔)

the asymmetrical second order frequency response functions,  were derived and 𝐺(2)
𝑦,𝑥,𝑥(𝜔, ― 𝜔)

analysed in Part I of this paper. In this, Part II, the cross ASO FRFs , which 𝐺(2)
𝑦,𝑥,𝑧(𝜔, ― 𝜔)

correlate the output Yy to modulated inputs Xx and Zz (for all six defined combinations) are 

derived. 

The cross asymmetrical second order FRFs are derived by applying the standard derivation 

procedure (Nikolić and Petkovska, 2013; Nikolić, 2016; Petkovska et al., 2018). 

4.3. Derivation of the cross FRFs

In order to derive the cross ASO FRFs for synchronous simultaneous modulations of inputs Xx 

and Zz, it is most convenient to define them in the following way:

(12)𝑋𝑥(𝜏) = 𝐴𝑥𝑐𝑜𝑠(𝜔𝜏) = (𝐴𝑥

2 )𝑒𝑗𝜔𝜏 + (𝐴𝑥

2 )𝑒 ―𝑗𝜔𝜏

𝑍𝑧(𝜏) = 𝐴𝑧𝑐𝑜𝑠(𝜔𝜏 + 𝜑) = (𝐴𝑧

2 𝑒𝑗𝜑)𝑒𝑗𝜔𝜏 + (𝐴𝑧

2 𝑒 ―𝑗𝜑)𝑒 ―𝑗𝜔𝜏

(13)

 In that case, the output Yy, can be expressed in the form of Volterra series (Volterra, 1959):

𝑌𝑦

= (𝐴𝑥

2 )𝑒𝑗𝜔𝜏𝐺(1)
𝑦,𝑥(𝜔) + (𝐴𝑥

2 )𝑒 ―𝑗𝜔𝜏𝐺(1)
𝑦,𝑥( ―𝜔) + … + 2(𝐴𝑥

2 )
2

𝑒0𝐺(2)
𝑦,𝑥,𝑥(𝜔, ― 𝜔) + … + (𝐴𝑧

2 )𝑒𝑗𝜔𝜏𝑒𝑗𝜑𝐺(1)
𝑦,𝑧 (𝜔)

+ (𝐴𝑧

2 )𝑒 ―𝑗𝜔𝜏𝑒 ―𝑗𝜑𝐺(1)
𝑦,𝑧 ( ―𝜔) + … + 2(𝐴𝑧

2 )
2

𝑒0𝐺(2)
𝑦,𝑧,𝑧(𝜔, ― 𝜔) + … + (𝐴𝑥

2 )(𝐴𝑧

2 )(𝑒 ―𝑗𝜑𝐺(2)
𝑦,𝑥,𝑧(𝜔,

― 𝜔) + 𝑒𝑗𝜑𝐺(2)
𝑦,𝑥,𝑧( ―𝜔,𝜔)) + …

(14)

Following the standard derivation procedure the expressions for the dimensionless inputs (Eqs. 

(12 and 13)) and outputs (Eq.(14)), are incorporated in the dimensionless mathematical model 

equations (given in Part I of this paper). The cross ASO FRFs are obtained by collecting the non-

periodic terms with  and equating them with zero. ((𝐴𝑥

2 )(𝐴𝑧

2 )𝑒 ―𝑗𝜑)
It is most convenient to present the resulting sets of algebraic equations in the matrix form: 



[𝛾11 ⋯ 𝛾17
⋮ ⋱ ⋮

𝛾71 ⋯ 𝛾77
] × [

𝐺(2)
1,𝑥,𝑧(𝜔, ― 𝜔)

𝐺(2)
2,𝑥,𝑧(𝜔, ― 𝜔)

𝐺(2)
3,𝑥,𝑧(𝜔, ― 𝜔)

𝐺(2)
4,𝑥,𝑧(𝜔, ― 𝜔)

𝐺(2)
5,𝑥,𝑧(𝜔, ― 𝜔)

𝐺(2)
6,𝑥,𝑧(𝜔, ― 𝜔)

𝐺(2)
7,𝑥,𝑧(𝜔, ― 𝜔)

] = [
Λ1,𝑥,𝑧
Λ2,𝑥,𝑧
Λ3,𝑥,𝑧
Λ4,𝑥,𝑧
Λ5,𝑥,𝑧
Λ6,𝑥,𝑧
Λ7,𝑥,𝑧

], 𝑥 = 1, 2 𝑜𝑟 3, 𝑧 = 𝑥 + 1,𝑥 + 2 𝑜𝑟 𝑥 + 3,  𝑧 ≤ 4

(15)

The cross ASO FRFs are obtained as the solution of matrix equation (15):

[
𝐺(2)

1,𝑥,𝑧(𝜔, ― 𝜔)
𝐺(2)

2,𝑥,𝑧(𝜔, ― 𝜔)
𝐺(2)

3,𝑥,𝑧(𝜔, ― 𝜔)
𝐺(2)

4,𝑥,𝑧(𝜔, ― 𝜔)
𝐺(2)

5,𝑥,𝑧(𝜔, ― 𝜔)
𝐺(2)

6,𝑥,𝑧(𝜔, ― 𝜔)
𝐺(2)

7,𝑥,𝑧(𝜔, ― 𝜔)

] = [𝛾11 ⋯ 𝛾17
⋮ ⋱ ⋮

𝛾71 ⋯ 𝛾77
]

―1

× [
Λ1,x,z
Λ2,𝑥,𝑧
Λ3,𝑥,𝑧
Λ4,𝑥,𝑧
Λ5,𝑥,𝑧
Λ6,𝑥,𝑧
Λ7,𝑥,𝑧

], 𝑥 = 1, 2 𝑜𝑟 3, 𝑧 = 𝑥 + 1,𝑥 + 2 𝑜𝑟 𝑥 + 3,  𝑧 ≤ 4  

(16)

The definitions of auxiliary functions  (y=1,…,7, x=1,2,3, z=2,3,4) are given in Appendix D. Λ𝑦,𝑥,𝑧

The auxiliary coefficients  (i, j=1,…,7) were defined in Part I of this paper.𝛾𝑖,𝑗



 4.4. Evaluation of possible improvement 

As explained in Part I of this paper, the forced periodic operations are implemented in order to 

achieve the improvement of different reactor performances, e.g. increase of methanol production, 

conversion or yield. The increase of all these performances can be evaluated based on time-

average outlet molar flow-rate of methanol. 

The methanol molar flow-rate can be evaluated from the methanol partial pressure and 

volumetric flow-rate of the outlet stream:

(17)𝑛𝐶𝐻3𝑂𝐻 =
𝑝𝐶𝐻3𝑂𝐻𝑉

𝑅𝑇

or in the dimensionless form:

(18)𝑁𝐶𝐻3𝑂𝐻 =
𝑛𝐶𝐻3𝑂𝐻 ― 𝑛𝐶𝐻3𝑂𝐻,𝑠

𝑛𝐶𝐻3𝑂𝐻,𝑠
=

𝑝𝐶𝐻3𝑂𝐻𝑉 ― 𝑝𝐶𝐻3𝑂𝐻,𝑠𝑉𝑠

𝑝𝐶𝐻3𝑂𝐻,𝑠𝑉𝑠
= 𝑃𝐶𝐻3𝑂𝐻 +𝜐 + 𝑃𝐶𝐻3𝑂𝐻𝜐

Using the NFR method, the mean (time-average) value of the outlet molar flow rate of methanol, 

, for simultaneous co-sinusoidal modulations of inputs x and z can be (𝑛𝐶𝐻3𝑂𝐻)𝑚𝑒𝑎𝑛

approximately calculated using the following expression:

(𝑛𝐶𝐻3𝑂𝐻)𝑚𝑒𝑎𝑛 ≈ 𝑛𝐶𝐻3𝑂𝐻,𝑠

(1 + 2(𝐴𝑥

2 )2
𝐻(2)

1,𝑥,𝑥(𝜔, ― 𝜔) + 2(𝐴𝑧

2 )2
𝐻(2)

1,𝑧,𝑧(𝜔, ― 𝜔) + 2(𝐴𝑥

2 )(𝐴𝑧

2 )𝐻 ∗ (2)
1,𝑥,𝑧 (𝜔,𝜑))

(19)

where   and  are the ASO FRFs frequency response functions which 𝐻(2)
1,𝑥,𝑥(𝜔, ― 𝜔) 𝐻(2)

1,𝑧,𝑧(𝜔, ― 𝜔)

correlate the dimensionless outlet molar flow-rate of methanol, separately, to modulated inputs x 

and z, respectively (both derived and given in Part I of this paper), while   is the 𝐻 ∗ (2)
1,𝑥,𝑧 (𝜔,𝜑)

cross ASO term which correlates the outlet molar flow-rate of methanol to both modulated 

inputs x and z. 

(20)𝑛𝐶𝐻3𝑂𝐻,𝑠 =
(𝑝𝐶𝐻3𝑂𝐻𝑉)

𝑠

𝑅𝑇

is the steady-state value of the outlet molar flow-rate. 

This cross ASO term, which is a function of the forcing frequency  and the phase shift between 𝜔

the two inputs , is obtained from the corresponding cross ASO FRF and the phase difference in 𝜑

an analogous way as in eq. (5):

(21)𝐻 ∗ (2)
1,𝑥,𝑧 (𝜔,𝜑) = cos (𝜑)𝑅𝑒(𝐻(2)

1,𝑥,𝑧(𝜔, ― 𝜔)) + sin (𝜑)𝐼𝑚(𝐻(2)
1,𝑥,𝑧(𝜔, ― 𝜔))



In Part I of this work we derived the relation between the ASO FRF corresponding to the outlet 

molar flow rate and input x ( ) and the FRFs corresponding to the outlet methanol 𝐻(2)
1,𝑥,𝑥(𝜔, ― 𝜔)

partial pressure and the outlet volumetric flow rate: 

𝐻(2)
1,𝑥,𝑥(𝜔, ― 𝜔) = 𝐺(2)

1,𝑥,𝑥(𝜔, ― 𝜔) + 𝐺(2)
7,𝑥,𝑥(𝜔, ― 𝜔) +

1
2

(𝐺(1)
1,𝑥(𝜔)𝐺(1)

7,𝑥( ―𝜔) + 𝐺(1)
1,𝑥( ―𝜔)𝐺(1)

7,𝑥(𝜔)),

(22) 𝑥 = 1, 2, 3 𝑜𝑟 4

In an analogous way, here we derive the relation for the cross ASO FRF : 𝐻(2)
1,𝑥,𝑧(𝜔, ― 𝜔)

𝐻(2)
1,𝑥,𝑧(𝜔, ― 𝜔) = 𝐺(2)

1,𝑥,𝑧(𝜔, ― 𝜔) + 𝐺(2)
7,𝑥,𝑧(𝜔, ― 𝜔) + 𝐺(1)

1,𝑥(𝜔)𝐺(1)
7,𝑧 ( ―𝜔) + 𝐺(1)

1,𝑧 ( ―𝜔)𝐺(1)
7,𝑥(𝜔)

(23)𝑥 = 1, 2 𝑜𝑟 3, 𝑧 = 𝑥 + 1,𝑥 + 2 𝑜𝑟 𝑥 + 3,  𝑧 ≤ 4

Based on the mean value of the methanol outlet molar flow rate, several performance indicators 
were defined (same as the one used in Part I of this paper):

 normalized methanol production per unit mass of catalyst:

(24)(𝑛𝑛𝑜𝑟𝑚
𝐶𝐻3𝑂𝐻)

𝑃𝑂
=

(𝑛𝐶𝐻3𝑂𝐻)
𝑚𝑒𝑎𝑛

𝑚𝑐𝑎𝑡

 yield of methanol based of total carbon and 

(25)(𝑌𝑡𝑜𝑡𝐶
CH3𝑂𝐻)𝑃𝑂 =

(𝑛𝐶𝐻3𝑂𝐻)𝑚𝑒𝑎𝑛

(𝑛𝐶𝑂2 + 𝑛𝐶𝑂)0, 𝑚𝑒𝑎𝑛

 yield of methanol based on hydrogen: 

(26)(𝑌H2
CH3𝑂𝐻)

𝑃𝑂
= 2

(𝑛𝐶𝐻3𝑂𝐻)𝑚𝑒𝑎𝑛

(𝑛𝐻2,0)𝑚𝑒𝑎𝑛

For simultaneous modulation of partial pressures of two reactants (CO2&CO, CO2&H2, 

CO&H2), the mean values of the molar flow-rates of the reactants in the feed stream are identical 

to their steady-state values. On the other hand, for simultaneous modulation of partial pressure of 

one reactant and inlet volumetric flow rate, the mean value of the inlet molar flow-rate of the 

modulated reactant is different from the corresponding steady-state value, and can be can be 

calculated using on the following common equation:

 (27)(𝑛𝑖)0,𝑚𝑒𝑎𝑛 = (𝑛𝑖)0,𝑠 (1 +
𝐴𝑖𝐴𝑓

2 cos (𝜑)),  𝑖 = CO2, CO or H2

The definitions of the yields for these cases are given in Table 1.



Table 1 The definitions of the yield of methanol based on total carbon and based on hydrogen for 

simultaneous modulation of the partial pressure of one reactant and the inlet volumetric flow-rate

Modulated inputs x 

and z
Yield of methanol 
based on total carbon

Yield of methanol 
based on hydrogen

Inlet partial pressure 

of CO2 (x) and total 

inlet volumetric 

flow-rate (z)

(𝑌𝑡𝑜𝑡𝐶
CH3𝑂𝐻)𝑃𝑂 =

(𝑛𝐶𝐻3𝑂𝐻)𝑚𝑒𝑎𝑛

(𝑛𝐶𝑂2
)0,𝑚𝑒𝑎𝑛 + (𝑛𝐶𝑂)0,𝑠

Inlet partial pressure 

of CO (x) and total 

inlet volumetric 

flow-rate (z)

(𝑌𝑡𝑜𝑡𝐶
CH3𝑂𝐻)𝑃𝑂 =

(𝑛𝐶𝐻3𝑂𝐻)𝑚𝑒𝑎𝑛

(𝑛𝐶𝑂2
)0,𝑠 + (𝑛𝐶𝑂)0,𝑚𝑒𝑎𝑛

(𝑌H2
CH3𝑂𝐻)

𝑃𝑂
= 2

(𝑛𝐶𝐻3𝑂𝐻)𝑚𝑒𝑎𝑛

(𝑛𝐻2
)0,𝑠

Inlet partial pressure 

of H2 (x) and total 

inlet volumetric 

flow-rate (z)

(𝑌𝑡𝑜𝑡𝐶
CH3𝑂𝐻)𝑃𝑂 =

(𝑛𝐶𝐻3𝑂𝐻)𝑚𝑒𝑎𝑛

(𝑛𝐶𝑂2 + 𝑛𝐶𝑂)0,𝑠

(𝑌H2
CH3𝑂𝐻)

𝑃𝑂
= 2

(𝑛𝐶𝐻3𝑂𝐻)𝑚𝑒𝑎𝑛

(𝑛𝐻2
)0,𝑚𝑒𝑎𝑛

5. Results and discussion

5.1. Periodic operations around the chosen steady-state point  

In this subsection, periodic operations around a chosen steady-state point are analysed, for all six 

combinations of input modulations. The performance indicator used for evaluation will be the 

normalized production, defined as the outlet molar flow-rate of methanol per mass of catalyst 

(Eq. (24)). The chosen reference point was optimized, in such a way to find a compromise 

between two objective functions, namely the methanol production rate and the methanol yield 

based on total carbon. Then, the results presented in Section 5 (Table 2 and Figs. 1-4) were 

obtained by optimizing the forcing parameters (amplitudes, phase shift and frequency) around 

that steady-state point, in order to maximize one of those objective functions, namely the 

methanol production rate. 

The analysis is performed for the same isothermal, isobaric, lab-scale Micro-Berty reactor, (gas 

volume 10.3 ml, mass of catalyst 0.00395 kg and total pressure 60 bar) considered in Part I. 

Also, the same optimal steady-state point used for analysis in Part I is used (temperature 473 K, 

feed volumetric flow-rate 0.93 ml/min, feed composition: 2.1 % CO2, 18.5 %, 64.4 % H2 and 15 

% N2).  For the selected optimal steady-state, the normalized outlet molar flow-rate of methanol 



is 336.91 mmol/(min kgcat), the yield of methanol based on total carbon 61.05% and the yield of 

methanol based on hydrogen 39.09%. 

As shown in Part I, periodic operations with single input modulations, for all 4 inputs, 

dominantly lead to reduction of methanol production. As a consequence, in order to maximize 

the mean normalized outlet molar flow-rate of methanol, it is necessary to optimize, not only the 

phase difference between modulated inputs and the forcing frequency, but also the forcing 

amplitudes of the modulated inputs. The optimal phase difference maximizing the methanol 

outlet molar flow-rate can be calculated analytically, based on the corresponding cross ASO FRF

: 𝐻(2)
1,𝑥,𝑧(𝜔, ― 𝜔)

𝜑𝑜𝑝𝑡 = arctan(Im(𝐻(2)
1,𝑥,𝑧(𝜔, ― 𝜔))

Re(𝐻(2)
1,𝑥,𝑧(𝜔, ― 𝜔)))

(28)

Afterwards, the optimal forcing amplitudes are determined numerically, by using a standard 

Matlab solver (fminmax), in order to maximize the mean outlet molar flow rate of methanol (Eq. 

19). The amplitude of the volumetric flow-rate can have values up to 1 (100 %), while the 

amplitudes of the partial pressures are limited with the maximal possible amplitude of the inert 

partial pressure that needs to be adjusted in order to keep constant total pressure (see Appendices 

B and C). In principle, the optimal amplitudes and phase difference are frequency dependent.

The results of the NFR analysis for each case of simultaneous modulation of two inputs around 

the optimal steady state are summarized in Table 2. This table shows the best possible results 

which can be obtained by each of the 6 possible combinations of inputs. The maximal increase of 

the normalized methanol production, the corresponding changes of yield of methanol based on 

total carbon and based on hydrogen, as well as corresponding optimal forcing parameters 

(amplitudes of both modulated inputs, the dimensionless frequency and the phase difference 

between the modulated inputs) for which these results are obtained, are presented.

Table 2. The best results which can be obtained by simultaneous modulations of two inputs

Optimal forcing parameters

Modulated inputs x and z

Maximal 
increase of

𝑛𝑛𝑜𝑟𝑚
𝐶𝐻3𝑂𝐻

Change of

𝑌𝑡𝑜𝑡𝐶
CH3𝑂𝐻

Change of

𝑌H2
CH3𝑂𝐻 Ax (-) Az (-) ω (-) φ  (rad)

Inlet partial pressures of 
CO2 (x) and CO (z) 0.15 % +0.15% +0.15 % 1 0.59 1.47 -0.83

Inlet partial pressures of 
CO2 (x) and H2 (z) 0.22 % +0.22 % +0.22 % 0.36 0.22 1.27 -0.49

Inlet partial pressures of 
CO (x) and H2 (z) 0.45% +0.45 % +0.45 % 0.27 0.16 0.01 -0.03



Inlet partial pressure of 
CO2 (x) and total  inlet 
volumetric flow-rate (z)

4.71 % -0.39 % +4.71 % 1 1 >30 0.004

Inlet partial pressure of 
CO (x) and total inlet 
volumetric flow-rate (z)

33.51 % -2.12 % +33.51 % 0.81 1 >30 0.006

Inlet partial pressure of  
H2 (x) and total  inlet 
volumetric flow-rate (z)

5.29 % +5.29 % -5.71% 0.23 1 >30 0.01

The relative changes of different performance indicators (normalized outlet molar flow rate of 

methanol, yield of methanol based on total carbon and yield of methanol based on hydrogen), 

owing to the periodic input modulations, are calculated using the following generalized equation: 

 (%) (29)𝑅𝑒𝑙. 𝑐ℎ𝑎𝑛𝑔𝑒 =
𝑃𝐼𝑃𝑂 ― 𝑃𝐼𝑆𝑆

𝑃𝐼𝑆𝑆
∗ 100

where PI is the general notation for a performance indicator   .(𝑃𝐼 = 𝑛𝑛𝑜𝑟𝑚
𝐶𝐻3𝑂𝐻, 𝑌𝑡𝑜𝑡𝐶

CH3𝑂𝐻 𝑜𝑟 𝑌𝑡𝑜𝑡𝐶
CH3𝑂𝐻)

Based on the results presented in Table 2, it can be concluded that for all cases with 

simultaneous modulation of partial pressures of 2 reactants, although possible, the maximal 

potential improvements are negligible. On the other hand, for the cases with simultaneous 

modulation of partial pressure of one reactant and the inlet volumetric flow rate, some 

measurable improvements can be expected. The best case is obviously the one with simultaneous 

modulation of the inlet partial pressure of CO and inlet volumetric flow rate, with maximal 

predicted increase of the normalized outlet molar flow-rate of methanol of 33.51%. This case 

will be presented in detail in the next section and some details for all other cases will be given in 

Appendix E.

5.2. Detailed results for simultaneous modulations of partial pressure of CO and 

volumetric flow-rate

Based on the results presented in Table 2, the periodic operation with simultaneous modulations 

of the inlet partial pressure of CO and volumetric flow-rate of the feed stream was chosen as the 

best scenario for methanol synthesis. In this section we present this case in more details.

In Figure 1, the optimal forcing parameters, i.e. forcing amplitudes of the inlet partial pressure of 

CO and inlet volumetric flow-rate, as well as the phase difference between the two modulated 

inputs which maximize the normalized outlet molar flow rate of methanol, are presented as 

functions of dimensionless forcing frequency. 



Figure 1. The optimal forcing parameters (forcing amplitudes and phase difference) which 

maximize the outlet molar flow-rate of methanol for simultaneous modulations of the CO partial 

pressure and flow-rate of the feed stream, vs. dimensionless forcing frequency 

The results presented in Figure 1 shows that the optimal phase difference goes from 0 (for very 

low frequencies) to –2π (for high frequencies). The optimal inputs amplitudes are zero for all 

dimensionless frequencies lower than 0.62 (corresponding to period of oscillation of ~900 s), 

meaning that for lower frequencies it is not possible to find a periodic operation with 

simultaneous modulation of CO partial pressure and flow-rate that would be superior to the 

steady-state one. For dimensionless frequencies higher than 0.62 the optimal amplitudes rise 

sharply, reaching their maximal possible values (1 for the inlet volumetric flow-rate and 0.81 for 

the inlet CO partial pressure) (Figure 1, Table 2).

The ASO FRFs corresponding to the dimensionless outlet molar flow-rate of methanol, for 

single input modulations of the feed CO partial pressure and feed volumetric flow-rate, as well 

as the cross ASO term (Eq. 23) (calculated with the optimal phase difference between the two 

inputs, shown in Figure 1), vs. dimensionless forcing frequency, are presented in Figure 2.



Figure 2. The ASO FRFs corresponding to the dimensionless methanol molar flow-rate for 

single input modulations of the inlet partial pressure of CO and inlet volumetric flow-rate and the 

cross ASO term vs. dimensionless forcing frequency

The results given in Figure 2 shows that the ASO FRFs corresponding to the considered inputs 

are negative in the whole frequency-range, meaning that single input modulations of the inlet 

partial pressure of CO and inlet volumetric flow-rate would lead to decrease of the normalized 

outlet molar flow rate of methanol (as already shown in Part I of this paper). On the other hand, 

the cross effect of simultaneous modulation of these two inputs with optimal phase difference 

has a positive effect on the desired output (the cross ASO term is positive in whole frequency 

range). The overall effect of simultaneous modulation of those two inputs will depend on the 

input amplitudes and it will be desirable only if a set of input amplitudes can be found such that 

the positive effect of the cross contribution becomes predominant. According to the results 

presented in Figure 1, such set can be found only for ω>0.62.

The normalized outlet molar flow-rate of methanol obtained for simultaneous modulation of inlet 

partial pressure of CO and volumetric flow rate with the optimal forcing parameters (shown in 

Figure 1)  is presented in Figure 3, together with the corresponding optimal steady-state value. 

The corresponding yields of methanol based on total carbon and based on hydrogen, together 

with their steady-state values, are presented in Figure 4.



Figure 3. The normalized outlet molar flow-rate of methanol for optimal steady-state (ss) and 

periodic operation with simultaneous modulation of inlet partial pressure of CO and inlet 

volumetric flow-rate around the optimal steady-state with optimal forcing parameters (po) vs. 

dimensionless forcing frequency

The normalized methanol production, shown in Figure 3, is equal to the optimal steady-state 

value for ω<0.62. For all frequencies ω>0.62, the periodic operation with optimal amplitudes 

and phase difference is superior to the steady-state one. The highest increase or the normalized 

outlet molar flow rate of methanol is 33.51%. Theoretically, the maximal value is obtained for 

infinite frequency, but practically it is reached already for ω 30 (corresponding to period of ≈

18.7 s). Increase of normalized outlet molar flow-rate of methanol of around 33% can be 

obtained already for the ω 10 (correspond to period of 56 s). ≈
 



Figure 4 The yields of methanol based on total carbon and based on hydrogen for optimal 

steady-state (ss) and periodic operation with simultaneous modulation of inlet partial pressure of 

CO and inlet volumetric flow-rate (po) around the optimal steady-state with optimal forcing 

parameters (Figure 1), vs. dimensionless forcing frequency

The corresponding yield of methanol based on hydrogen (Figure 4) completely follows the 

profile of methanol production, which is logical, taking into account its definition in Table 2. On 

the other hand, for ω>0.62 the yield of methanol based on total carbon is lower than the 

corresponding optimal steady-state value. The explanation for this behaviour can be found in the 

fact that, for the that frequency range and the values of the forcing amplitudes and phase 

difference (Figure 1), the inlet molar flow-rate of CO (and total carbon) is higher than its 

corresponding steady state value (according to equation (27)). In order to find the optimal 

periodic operation which would satisfy all performance criteria, it would be best to use multi-

objective optimization. This analysis and its results are shown in the next section.

For the case of simultaneous modulations of the inlet CO partial pressure and flow-rate, both 

inputs cause oscillations of all process variables, including the surface coverages of all species 

and reaction rates, but also the residence time. It can be assumed that the change of the CO molar 

fraction most directly influences the CO surface coverage and the rates of CO hydrogenation and 

RWG reaction, while the change of the flow rate most directly influences the reactor residence 

time. By choosing the optimal phase difference, shown in Fig. 1, these changes have a synergetic 

effect which is best represented by the cross ASO term shown in Fig. 2. This figure and Figure 3 



show that the strongest synergetic effect is obtained for relative fast input modulations (for 

dimensionless frequencies higher than 10).   

5.3 Multi-objective optimization 

In this work we use a recently developed methodology (Živković et al, 2020b) which combines 

the NFR method with standard multi-objective optimization techniques. In this methodology the 

objective functions are defined based on the time-average values of the outputs of interest, which 

are directly related to their DC components. Using the NFR approach, these DC components are 

approximated by algebraic expressions which are defined based on the corresponding ASO 

FRFs, input amplitudes and the phase difference between the modulated inputs. As a 

consequence, the computing time needed for the dynamic optimization of the forced periodic 

operation is of the same order of magnitude as the computing time needed for the steady-state 

optimization (Živković et al, 2020b) (much shorter than for classical numerical dynamic 

optimization). Also, all optimization parameters, i.e., the steady-state point and the forcing 

parameters (frequency, amplitudes, and phase difference), can be determined rapidly in one step. 

This enables finding an optimal periodic operation around a sub-optimal steady-state point which 

would be superior to any periodic operation around a previously chosen steady-state point 

(Živković et al, 2020b).  

In the current study, we perform multi-objective optimization of a periodic operation with 

simultaneous modulations the CO partial pressure and volumetric flow-rate of the feed stream. 

Two objective functions are defined, the yield of methanol based on total carbon and the 

normalised methanol production:

(30)𝑂𝐹1 = (𝑌𝑡𝑜𝑡𝐶
CH3𝑂𝐻)𝑃𝑂

(31)𝑂𝐹2 = (𝑛𝑛𝑜𝑟𝑚
𝐶𝐻3𝑂𝐻)

𝑃𝑂

By combining equations (24) and (25) with equation (19) and (27), both objective functions can 

be approximated by algebraic expressions of frequency, the input amplitudes and the phase 

difference between the inputs, as well as the steady-state partial variables. 
𝑂𝐹1

≈
𝑝𝐶𝐻3𝑂𝐻,𝑠𝑉𝑠

𝑝𝐶𝑂2,0,𝑠𝑉𝑠 + 𝑝𝐶𝑂,0,𝑠𝑉𝑠 (1 +
𝐴𝐶𝑂𝐴𝑓

2 cos (𝜑))
(1 + 2(𝐴𝐶𝑂

2 )
2

𝐻(2)
1,2,2(𝜔, ― 𝜔) + 2(𝐴𝑓

2 )
2

𝐻(2)
1,4,4(𝜔, ― 𝜔) + 2(𝐴𝐶𝑂

2 )(𝐴𝑓

2 )𝐻 ∗ (2)
1,2,4 (𝜔,𝜑))
(32)



𝑂𝐹2

≈
𝑝𝐶𝐻3𝑂𝐻,𝑠𝑉𝑠

𝑅𝑇𝑚𝑐𝑎𝑡

(1 + 2(𝐴𝐶𝑂

2 )
2

𝐻(2)
1,2,2(𝜔, ― 𝜔) + 2(𝐴𝑓

2 )
2

𝐻(2)
1,4,4(𝜔, ― 𝜔) + 2(𝐴𝐶𝑂

2 )(𝐴𝑓

2 )𝐻 ∗ (2)
1,2,4 (𝜔,𝜑))
(33)

In the current multi-objective optimization of the periodic operation the following optimization 

parameters were determined: inlet partial pressures of CO2, CO, and H2 (corresponding to the 

steady-state point around which the periodic modulations should be performed), the forcing 

amplitudes of the CO partial pressure and volumetric flow-rate, the forcing frequency and the 

phase difference. The lower and upper bounds for the optimization variables, as well as defined 

constraints for the multi-objective optimization are given in Appendix F. The resulting Pareto 

front is shown. For comparison, the Pareto front obtained by multi-objective optimization of the 

steady-state operation, obtained in Part I (Appendix G) is also given in Figure 5. The data for 

each point of both Pareto fronts are given in Appendix F. 



Figure 5 Pareto fronts for multi-objective optimization of Yield of methanol based on total C and 

normalized methanol production, for steady state (crosses) and periodic operation (circles)

For illustration, four operating points (OP) are selected and marked in Figure 5. The point 

OP_SS selected on the steady-state Pareto front (point no. 8 in Table F2) is actually the optimal 

steady-state point that was previously selected for analysis in both parts of this manuscript. Three 

operating points: OP1, OP2 and OP3 are also selected on the Pareto front for the periodic 

operation (points no. 16, 17 and 18 in Table F3). 

The values of both objective functions corresponding to the four operation points chosen in 

Figure 5 (OP_OSS from the steady-state Pareto front and OP1, OP2 and OP3 from the periodic 

operation Pareto front) are given in Table 3. The relative changes of both objective functions 

between points OP1, OP2 and OP3, on one, and OP_OSS on the other hand, are also given. 

As the NFR method is essentially approximate, the values of the objective functions calculated 

using the results of numerical simulations for the same operation points are also given in Table 3.  

Although the numerical simulation predictions show somewhat lower improvement than the 

NFR approximations, the agreement between the numerical and NFR results is very good (the 

error is around or less than 1.5 %).

Table 3 The normalized outlet molar flow rate of methanol and yield of methanol based on total 

carbon for the selected points from the Pareto fronts (Figure 5), based on NFR method and based 

on numerical simulation 

Operating 

point

Normalized outlet 

molar flow-rate of 

methanol

[mmol/min/kgcat]

Yield of methanol 

based on total carbon

 [%]

Relative change of 

normalized outlet molar 

flow-rate of methanol

Relative change of 

yield of methanol 

based on total carbon

NFR Num.Sim. NFR Num.Sim. NFR Num.Sim. NFR Num.Sim. 

OP_OSS 336.9 61.06 / /

OP1 428.96 422.04 62.18 61.18 +27.33% +25.27% +1.83% +0.20%

OP2 411.20 405.34 63.04 62.15 +22.05% +20.31% +3.24% +1.79%

OP3 376.80 373.05 63.91 63.27 +11.84% +10.73% +4.67% +3.62%

  



 From the results presented in Figure 5 and Table 3 it can be concluded that multi-objective 

optimization enables finding operating points for which the increase of both objective functions 

is possible. For example, for the operation point OP2 it is possible to achieve increase of 

methanol production of 22.05 % and increase of yield of methanol based on total carbon of 

3.24%. Those results are in good agreement with numerical simulation results presented also in 

Table 3. It should be noticed that the operating points chosen for comparison lay close to the 

right lower corner of the Pareto fronts. In this region, the increase of methanol production owing 

to periodic operation is more significant than the increase of the yield. Nevertheless, if operation 

points from the left upper corner would be chosen, the situation would be the opposite. 

A rigorous numerical optimization based on the full nonlinear model is presented in (Seidel et. 

al., 2021).

6. Conclusions

In this paper, the NFR analysis was used in order to explore possible improvements of process 

performances owing to forced periodic operations of a well-mixed reactor in which 

heterogeneously catalysed methanol synthesis reactor takes, for 6 different cases of simultaneous 

modulations of two inputs. It was concluded that:

 For all six combinations of input modulations, simultaneous modulations of two inputs 

can result with improvement, even though the separate input modulations would lead to 

deterioration of process performances. The appropriate choice of the phase difference 

between the modulated inputs has a decisive role, but optimization of the input 

amplitudes is also necessary. 

 For the case when an increase of normalized outlet molar flow-rate is set as the main 

indicator of improvement, for all cases of simultaneous modulation of partial pressures of 

two reactants the highest possible increase is less than 1%. On the other hand, for 

simultaneous modulation of the partial pressures of CO2 or H2 and inlet volumetric flow-

rate, the maximal increase is around 5%. The highest increase of the normalized outlet 

molar flow rate of methanol of 33.5% is predicted for the case of simultaneous 

modulation of the inlet partial pressure of CO and inlet volumetric flow-rate, with 

optimal forcing parameters.

 The NFR analysis also enables fast and easy multi-objective optimization. Multi-

objective optimization with two objective functions: yield of methanol based on total 

carbon and normalised methanol production, which was performed for the most 

promising case of simultaneous modulations of CO partial pressure and volumetric flow 



rate, led to operating points superior to the steady-state operation regarding both 

indicators of improvement.

 The NFR method was proven as a useful and powerful theoretical tool for analysis, 

design and optimization of periodic operations, even for the complex case of methanol 

synthesis reactor. 

The theoretical results of the NFR analysis, presented in this work, were used as the basis for full 

numerical optimization of periodically operated methanol synthesis reactor (Seidel et al, 2021). 

These results will also serve for planning the experimental investigation in a lab-scale Berty type 

reactor which is planned for near future. 



Nomenclature

A forcing amplitude of input modulation 

auxiliary parameters for catalyst dynamic equation in dimensionless formЕ

nth order FRF which correlates the output y to modulated input x𝐺(𝑛)
𝑦,𝑥,𝑥,…𝑥(𝜔1,…,𝜔2)

cross ASO FRF which correlates the output y to modulated inputs x and z𝐺(2)
𝑦,𝑥,𝑧(𝜔, ― 𝜔)

 [J/mol] Gibbs free energy Δ𝐺

ASO FRF which correlates the outlet molar flow-rate of component i to 𝐻(2)
𝑖,𝑥,𝑥(𝜔, ― 𝜔)

modulated input x

cross ASO FRF which correlates the outlet molar flow-rate of component i 𝐻(2)
𝑖,𝑥,𝑧(𝜔, ― 𝜔)

to modulated inputs x and z

Jacobian matrix𝐉

reaction rate constant (  for СО hydrogenation,  for СО2 𝑘𝑗 𝑗 = 1 𝑗 = 2

hydrogenation,  for RWGS)𝑗 = 3

,  [s-1] reaction rate constant for oxidation-reduction of catalyst 𝑘 +
1 𝑘 +

2

аdsorption constant𝐾𝑖

, equilibrium constants for oxidation-reduction of catalyst𝐾1 𝐾2

 [bar-2] reaction rate constant for (i=1) CO or (i=2) СО2 hydrogenation𝐾𝑃𝑖

reaction rate constant for RWGS𝐾𝑃3 [ ― ]

[kg] mass of catalyst𝑚𝑐𝑎𝑡 

 [mol/s; mmol/min] molar flow rate𝑛

[mmol/min/kgcat] normalized molar flow rate (per unit of mass of catalyst)𝑛𝑛𝑜𝑟𝑚

dimensionless molar flow rate𝑁

 [bar] total pressure𝑝

 [bar] partial pressure of component i (i = 1,...,6)𝑝𝑖

 [bar] dimensionless partial pressure of component i (i = 1,...,6)𝑃𝑖

[mol/kg] specific amount of surface centres𝑞𝑠𝑎𝑡 

q, Q, U, s, S Taylor series coefficients for reaction rates 𝜗, 

 [J/mol/K] gas constant𝑅



 [mol/kgcat/s] rate of reaction  (  for СО hydrogenation,  for СО2 𝑟𝑗 𝑗 𝑗 = 1 𝑗 = 2

hydrogenation,  for RWGS)𝑗 = 3

t [s] time

 [K] temperature𝑇

[m3] volume of gas phase in the reactor𝑉𝐺 

[m3/s] volumetric flow rate𝑉 

x, z input (general symbol)

X, Z vector of dimensionless inputs 

y output (general symbol)

Y vector of dimensionless outputs

molar fraction of component i (i = 1,...,6 )𝑦𝑖

yield of methanol based on total carbon𝑌𝑡𝑜𝑡𝐶
𝐶𝐻3𝑂𝐻

yield of methanol based on hydrogen𝑌𝐻2
𝐶𝐻3𝑂𝐻

Greek letters

, cross ASO FRF matrix coefficients and functions𝛾 Λ,

relative amount of free active surface centre 𝜃

stoichiometric coefficient𝜈

dimensionless time𝜏

 [s] residence time based on the inlet volumetric flow rate𝜏0,𝑠

dimensionless volumetric flow rate𝜐

fraction of reduced centres on catalyst surface𝜙

maximal value of the fraction of reduced surface centres on catalyst surface𝜙𝑚𝑎𝑥

dimensionless total amount of reduced centres on catalyst surfaceΦ

dimensionless frequency𝜔

Subscripts

CO modulation of partial pressure of CO in feed stream

CO2 modulation of partial pressure of CO2 in feed stream

DC non-periodic component (direct current) 



i component (i=1 for CH3OH, i=2 for CО2, i=3 for CO, i=4 for H2, i=5 for H2O, 

i=6 for N2)

f modulation of total inlet volumetric flow rate

H2 modulation of partial pressure of H2 in feed stream

reaction (  for СО hydrogenation,  for СО2 hydrogenation,  for 𝑗 𝑗 = 1 𝑗 = 2 𝑗 = 3

RWGS)

feed stream0

PO, po periodic operation

SS,ss steady-state operation

mean mean value for periodic operation

N2 modulation of partial pressure of N2 in feed stream

ref referent value

s steady-state

tot C total carbon

Superscripts

H2 based on hydrogen

max maximal value

totC based on total carbon

* reduced surface centre

⊙ oxidized surface centre

⊗ surface centre for hydrogen

Abbreviations

AC Active centres on catalyst surface

ASO Asymmetrical Second Order 

FRF Frequency Response Functions

NFR Nonlinear Frequency Response 

OP Operating point

PI Performance Indicator

RWGS Reverse water-gas shift
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Appendix

Appendix A The definitions of dimensionless variables

Table A1 The definitions of dimensionless variables

Dimensionless variables Definitions

Partial pressure of component i , 𝑃𝑖 =
𝑝𝑖 ― 𝑝𝑖,𝑠

𝑝𝑖,𝑠
𝑖 = 1,..6

Partial pressure of component i in the inlet stream , 𝑃𝑖,0 =
𝑝𝑖,0 ― 𝑝𝑖0,𝑠

𝑝𝑖0,𝑠
𝑖 = 1,..6

Time 
𝜏 =

𝑡
𝜏0,𝑠

=
𝑡

𝑉𝐺/𝑉0,𝑠

Fraction of reduced centers on the catalyst surface 
Φ =

𝜙 ― 𝜙𝑠

𝜙𝑠

Volumetric flow-rate of the inlet stream
𝜐0 =

𝑉0 ― 𝑉0,𝑠

𝑉0,𝑠

Volumetric flow-rate of the outlet stream
υ =

𝑉 ― 𝑉𝑠

𝑉𝑠

Frequency 𝜔 = 𝜔𝑑𝜏0,𝑠

The dimensionless frequency (ω) is defined by using the residence time in steady-state 

calculated based of inlet volumetric flow-rate, defined as:

(A1)𝜏0,𝑠 =
𝑉𝐺

𝑉0,𝑠



Appendix B The forcing amplitude of inert for simultaneous modulation of partial 
pressures of two reactants in the feed stream
In order to assure that the total pressure in reactor is constant for simultaneous modulation of 

partial pressures of two reactants in the feed stream, the inlet pressure of inert (N2) has to be 

modulated as follows:

(B.1)𝑃𝑁2,0 = 𝐴(1)
𝑁2 𝑐𝑜𝑠(𝜔𝜏 ― 𝜋) + 𝐴(2)

𝑁2 𝑐𝑜𝑠(𝜔𝜏 ― 𝜋 + 𝜑)

or presented as 
(B.2)𝑃𝑁2,0 = 𝐴𝑡𝑜𝑡

𝑁2 𝑐𝑜𝑠(𝜔𝜏 ― 𝜋 + 𝜎)

where  is forcing amplitude for partial pressure of inert (N2) and  is phase difference 𝐴𝑡𝑜𝑡
𝑁2 𝜎

(B.3)𝐴𝑡𝑜𝑡
𝑁2 = (𝐴(1)

𝑁2 )2 + 2𝐴(1)
𝑁2 𝐴(2)

𝑁2 cos (𝜑) + (𝐴(2)
𝑁2 )2

(B.4)𝜎 = arctan( 𝐴(2)
𝑁2sin (𝜑)

𝐴(1)
𝑁2 + 𝐴(2)

𝑁2cos (𝜑))
The ,  and , have to satisfy two equalities and one nonequality 𝐴(1)

𝑁2 𝐴(2)
𝑁2 𝐴𝑡𝑜𝑡

𝑁2

(B.5)𝐴(1)
𝑁2 =

𝑦𝑧,0,𝑠

𝑦6,0,𝑠
𝐴𝑥          𝐴(2)

𝑁2 =
𝑦𝑧,0,𝑠

𝑦6,0,𝑠
𝐴𝑧

(B.6)𝐴𝑡𝑜𝑡
𝑁2 ≤ 1

in order to assure that total pressure is constant. 

Appendix C The forcing amplitude of inert for simultaneous modulation of partial 

pressure of one reactant and volumetric flow-rate of the feed stream
In this case, the partial pressure of inert (N2) in feed stream should be modulated out-of-phase to partial 

pressure of reactant which is modulated, as follows  

(C.1)𝑃𝑁2,0 = 𝐴𝑁2𝑐𝑜𝑠(𝜔𝜏 ― 𝜋)

where the forcing amplitude of inert can be evaluated from following 

(C.2)𝐴𝑁2 =
𝑦𝑥,0,𝑠

𝑦6,0,𝑠
∙ 𝐴𝑥

Appendix D Auxiliary functions used in matrix equations for derivation of G cross 

asymmetrical second order FRFs 

The auxiliary functions Λ are defined as follows 

Λ𝑖,𝑥,𝑧

= ―
𝑉𝑠

𝑉0,𝑠
[𝐺(1)

𝑖,𝑥 (𝜔)𝐺(1)
7,𝑧 ( ―𝜔) + 𝐺(1)

𝑖,𝑧 ( ―𝜔)𝐺(1)
7,𝑥(𝜔)] +

𝑅𝑇
𝑝𝑖,𝑠𝑉0,𝑠

𝑚𝑐𝑎𝑡

[ 6

∑
𝑙 = 1

6

∑
𝑘 = 𝑙

(𝜈𝑖,1𝑄𝑙𝑘 + 𝜈𝑖,2𝑈𝑙𝑘 + 𝜈𝑖,3𝑆𝑙𝑘)(𝐺(1)
𝑙,𝑥 (𝜔)𝐺(1)

𝑘,𝑧 ( ―𝜔) + 𝐺(1)
𝑙,𝑧 ( ―𝜔)𝐺(1)

𝑘,𝑥(𝜔))] 

(D.1) (𝑖 = 1,…,5; 𝑥 = 1,  𝑧 = 2; 𝑥 = 1,  𝑧 = 3;𝑥 = 2,  𝑧 = 3)



Λ𝑖,𝑥,𝑧

=
𝑝𝑖,0,𝑠

𝑝𝑖,𝑠
―

𝑉𝑠

𝑉0,𝑠
[𝐺(1)

𝑖,𝑥 (𝜔)𝐺(1)
7,𝑧 ( ―𝜔) + 𝐺(1)

𝑖,𝑧 ( ―𝜔)𝐺(1)
7,𝑥(𝜔)] +

𝑅𝑇
𝑝𝑖,𝑠𝑉0,𝑠

𝑚𝑐𝑎𝑡

[ 6

∑
𝑙 = 1

6

∑
𝑘 = 𝑙

(𝜈𝑖,1𝑄𝑙𝑘 + 𝜈𝑖,2𝑈𝑙𝑘 + 𝜈𝑖,3𝑆𝑙𝑘)(𝐺(1)
𝑙,𝑥 (𝜔)𝐺(1)

𝑘,𝑧 ( ―𝜔) + 𝐺(1)
𝑙,𝑧 ( ―𝜔)𝐺(1)

𝑘,𝑥(𝜔))] 

(D.2) (𝑖 = 1,…,5; 𝑥 = 1,  𝑧 = 4; 𝑥 = 2,  𝑧 = 4;𝑥 = 3,  𝑧 = 4)

  Λ6,𝑥,𝑧
= [ ― 𝐸2](𝐺(1)

2,𝑥(𝜔)𝐺(1)
6,𝑧 ( ―𝜔) + 𝐺(1)

2,𝑧 ( ―𝜔)𝐺(1)
6,𝑥(𝜔)) + [ ― 𝐸1]

(𝐺(1)
3,𝑥(𝜔)𝐺(1)

6,𝑧 ( ―𝜔) + 𝐺(1)
3,𝑧 ( ―𝜔)𝐺(1)

6,𝑥(𝜔)) + [ ― 𝐸3](𝐺(1)
4,𝑥(𝜔)𝐺(1)

6,𝑧 ( ―𝜔) + 𝐺(1)
4,𝑧 ( ―𝜔)

𝐺(1)
6,𝑥(𝜔)) + [ ― 𝐸4](𝐺(1)

5,𝑥(𝜔)𝐺(1)
6,𝑧 ( ―𝜔) + 𝐺(1)

5,𝑧 ( ―𝜔)𝐺(1)
6,𝑥(𝜔)) 

(D.3)(𝑥 = 𝑘, 𝑧 = 𝑘 +1, k + 2, k + 3 (𝑘 = 1,..,3 and 𝑧 ≤ 4))

Λ7,x,z = 𝑚𝑐𝑎𝑡

5

∑
𝑖 = 1

[ 6

∑
𝑙 = 1

6

∑
𝑘 = 𝑙

(𝜈𝑖,1𝑄𝑙𝑘 + 𝜈𝑖,2𝑈𝑙𝑘 + 𝜈𝑖,3𝑆𝑙𝑘)(𝐺(1)
𝑙,𝑥 (𝜔)𝐺(1)

𝑘,𝑧 ( ―𝜔) + 𝐺(1)
𝑙,𝑧 ( ―𝜔)𝐺(1)

𝑘,𝑥(𝜔))]
(D.4)(𝑥 = 𝑘, 𝑧 = 𝑘 +1, k + 2, k + 3 (𝑘 = 1,..,3 and 𝑧 ≤ 4))



Appendix E Results for simultaneous modulation of two inputs (partial pressures (CO2 & 

CO, CO2&H2, CO&H2) and partial pressure of one reactant (CO2 or H2) and inlet 

volumetric flow-rate)

Appendix E1 Simultaneous modulation of partial pressures of CO2 and CO in the feed stream

Figure E1.1 The optimal forcing parameters (forcing amplitudes and phase difference between 
the modulated inputs (partial pressures of CO2 and CO)) which maximize the normalized outlet 
molar flow-rate of methanol, vs. dimensionless forcing frequency



Figure E1.2 The normalized outlet molar flow-rate of methanol for steady-state and for 
simultaneous modulation of inlet partial pressures of CO2 and CO around the optimal steady-
state modulated using optimal forcing parameters (forcing amplitudes and phase difference, 
Figure E1.1) vs. dimensionless forcing frequency.



Appendix E2 Simultaneous modulation of partial pressures of CO2 and H2 in the feed stream

Figure E2.1 The optimal forcing parameters (forcing amplitudes and phase difference between 
the modulated inputs (partial pressures of CO2 and H2)) which maximize the normalized outlet 
molar flow-rate of methanol, vs. dimensionless forcing frequency 



Figure E2.2 The normalized outlet molar flow-rate of methanol for steady-state and for 
simultaneous modulation of inlet partial pressures of CO2 and H2 around the optimal steady-state 
modulated using optimal forcing parameters (forcing amplitudes and phase difference, Figure 
E2.1) vs. dimensionless forcing frequency.



Appendix E3 Simultaneous modulation of partial pressures of CO and H2 in the feed stream

Figure E3.1 The optimal forcing parameters (forcing amplitudes and phase difference between 
the modulated inputs (partial pressures of CO and H2)) which maximize the normalized outlet 
molar flow-rate of methanol, vs. dimensionless forcing frequency 



Figure E3.2 The normalized outlet molar flow-rate of methanol for steady-state and for 
simultaneous modulation of inlet partial pressures of CO and H2 around the optimal steady-state 
modulated using optimal forcing parameters (forcing amplitudes and phase difference, Figure 
E3.1) vs. dimensionless forcing frequency.



Appendix E4 Simultaneous modulation of partial pressures of CO2 in the feed stream and 
inlet volumetric flow-rate

Figure E4.1 The optimal forcing parameters (forcing amplitudes and phase difference between 
the modulated inputs (partial pressure of CO2 and inlet volumetric flow-rate)) which maximize 
the normalized outlet molar flow-rate of methanol, vs. dimensionless forcing frequency 

Figure E4.2 The normalized outlet molar flow-rate of methanol for steady-state and for 
simultaneous modulation of inlet partial pressure of CO2 and inlet volumetric flow-rate around 
the optimal steady-state modulated using optimal forcing parameters (forcing amplitudes and 
phase difference, Figure E4.1) vs. dimensionless forcing frequency.



Appendix E5 Simultaneous modulation of partial pressures of H2 in the feed stream and inlet 
volumetric flow-rate

Figure E5.1 The optimal forcing parameters (forcing amplitudes and phase difference between 
the modulated inputs (partial pressure of H2 and inlet volumetric flow-rate)) which maximize the 
normalized outlet molar flow-rate of methanol, vs. dimensionless forcing frequency 

Figure E5.2 The normalized outlet molar flow-rate of methanol for steady-state and for 
simultaneous modulation of inlet partial pressure of H2 and inlet volumetric flow-rate around the 
optimal steady-state modulated using optimal forcing parameters (forcing amplitudes and phase 
difference, Figure E5.1) vs. dimensionless forcing frequency.



Appendix F Multi-objective optimization 
The inlet molar flow-rates of the reactants are defined as

 𝑦𝑅, 0 =
𝑝𝑅,0

𝑝

where R represents the reactant (CO2, CO or H2 )

Table F.1 Optimization variables with upper and lower boundary values (for operating in steady 
state regimeNo.1-3. and for periodic operation No. 1.-7.) 

No. Optimization variable Boundary values

1. Inlet molar fraction of CO2 0-1

2. Inlet molar fraction of CO 0-1

3. Inlet molar fraction of H2 0.5-0.85

4. Forcing amplitude for CO inlet partial pressure  modulation 0- 1

5. Forcing amplitude for flow-rate modulation 0- 1

6. Forcing frequency 0.01-100

7. Phase difference between two modulated inputs (-π)- π

Defined constraints used for Multi-Objective Optimization are:

1. Constraint which assures that carbon exists in feed steam
𝑦𝐶𝑂2, 0 + 𝑦𝐶𝑂,0 ≥ 0.01

2. Constraint which assures constant total pressure
𝑦𝐶𝑂2, 0 + 𝑦𝐶𝑂,0 + 𝑦𝐻2,0 = 1 ― 0.15

3. Constraints which bound the maximal possible forcing amplitudes (which assure the 
constant total pressure (for this case given in Appendix C)

Results of Multi-objective optimization are given in Tables F.2 and F.3.

Table F.2 Results of Multi-objective optimization for steady-state regime (values of objective 
functions and corresponding optimized variables) 

Objective functions Optimization variables

No.
𝑛𝑛𝑜𝑟𝑚

𝐶𝐻3𝑂𝐻

[mmol/min/kg(cat)cat]

Yield of methanol 
based on tot C

[-]

Mole fraction of 
CO2 in feed stream

[-]

Mole fraction of 
CO in feed stream

[-]

Mole fraction of 
H2 in feed stream

[-]

1 417.29 0.4750 0.0351 0.2931 0.5218

2 416.37 0.4943 0.0333 0.2814 0.5353

3 413.39 0.5137 0.0315 0.2691 0.5494

4 407.87 0.5331 0.0296 0.2562 0.5642

5 399.1 0.5524 0.0277 0.2421 0.5801

6 385.97 0.5718 0.0257 0.2264 0.5978

7 366.52 0.5912 0.0236 0.2080 0.6184
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(OP_OSS)
336.91 0.6106 0.0211 0.1850 0.6439

9 287.37 0.6300 0.0179 0.1525 0.6796

Table F.3 Results of Multi-objective optimization for forced periodic operation regime i.e. for 
the case of simultaneous modulation of CO and flow-rate optimization (values of objective 
functions and corresponding optimized variables) 

Objective functions Optimization variables

Inlet variables

(Mole fractions in feed 
stream of )

Forcing parameters

Forcing amplitude of Frequency Phase 
differenceNo.

𝑛𝑛𝑜𝑟𝑚
𝐶𝐻3𝑂𝐻

[mmol/min/kg(cat)]

Yield of 
methanol 
based on 

tot C

[-]
CO2

[-]

CO

[-]

H2

[-]
flow-
rate

[-]

CO

[-]

N2

[-]
ω [-] φ [rad]

1 487.16 0.5157 0.0359 0.2419 0.5722 1 0.6201 -1 100 0.0067

2 487.16 0.5157 0.0359 0.2419 0.5722 1 0.6201 -1 100 0.0067

3 487.16 0.5157 0.0359 0.2419 0.5722 1 0.6201 -1 100 0.0067

4 487.14 0.5182 0.0357 0.2405 0.5739 1 0.6238 -1 100 0.0068

5 486.79 0.5268 0.0347 0.2354 0.5799 1 0.6372 -1 100 0.0072

6 485.95 0.5355 0.0338 0.2302 0.5860 1 0.6516 -1 99.97 0.0076

7 484.57 0.5441 0.0328 0.2248 0.5923 1 0.6672 -1 99.99 0.0080

8 482.59 0.5527 0.0319 0.2192 0.5989 1 0.6842 -1 100 0.0086

9 479.91 0.5614 0.0309 0.2134 0.6057 1 0.7030 -1 100 0.0091

10 476.44 0.5670 0.0300 0.2072 0.6128 1 0.7238 -1 100 0.0098

11 472.06 0.5786 0.0290 0.2007 0.6203 1 0.7473 -1 99.99 0.0105

12 466.62 0.5873 0.0280 0.1938 0.6282 1 0.7741 -1 99.97 0.0115

13 459.9 0.5959 0.0270 0.1863 0.6367 1 0.8052 -1 99.88 0.0125

14 451.64 0.6045 0.0260 0.1781 0.6459 1 0.8421 -1 99.97 0.0138

15 441.5 0.6132 0.0248 0.1691 0.6561 1 0.8870 -1 99.98 0.0153

16

(OP1)
428.96 0.6218 0.0237 0.1590 0.6673 1 0.9432 -1 99.98 0.0173

17

(OP2)
411.22 0.6304 0.0218 0.1479 0.6803 1 1 -

0.9860 99.97 0.0294

18

(OP3)
376.82 0.6391 0.0201 0.1335 0.6964 1 1 -

0.8897 99.96 0.0369

19 328.4 0.6477 0.0186 0.1303 0.7011 1 1 -
0.8684 5.01 0.9000
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Highlights

 Forced periodic operation as a potential for reactor improving performance 
 Nonlinear frequency response method for evaluation of possible improvement
 Methanol synthesis in isothermal and isobaric lab-scale CSTR
 Simultaneous modulation of two inputs with optimal  forcing parameters
 Significant improvement could be obtained

Figure captions

Figure 1. The optimal forcing parameters (forcing amplitudes and phase difference) which 

maximize the outlet molar flow-rate of methanol for simultaneous modulations of the CO partial 

pressure and flow-rate of the feed stream, vs. dimensionless forcing frequency 

Figure 2. The ASO FRFs corresponding to the dimensionless methanol molar flow-rate for 

single input modulations of the inlet partial pressure of CO and inlet volumetric flow-rate and the 

cross ASO term vs. dimensionless forcing frequency

Figure 3. The normalized outlet molar flow-rate of methanol for optimal steady-state (ss) and 

periodic operation with simultaneous modulation of inlet partial pressure of CO and inlet 

volumetric flow-rate around the optimal steady-state with optimal forcing parameters (po) vs. 

dimensionless forcing frequency

Figure 4 The yields of methanol based on total carbon and based on hydrogen for optimal 

steady-state (ss) and periodic operation with simultaneous modulation of inlet partial pressure of 

CO and inlet volumetric flow-rate (po) around the optimal steady-state with optimal forcing 

parameters (Figure 1), vs. dimensionless forcing frequency

Figure 5 Pareto fronts for multi-objective optimization of Yield of methanol based on total C and 

normalized methanol production, for steady state (crosses) and periodic operation (circles)

Figure E1.1 The optimal forcing parameters (forcing amplitudes and phase difference between 

the modulated inputs (partial pressures of CO2 and CO)) which maximize the normalized outlet 

molar flow-rate of methanol, vs. dimensionless forcing frequency

Figure E1.2 The normalized outlet molar flow-rate of methanol for steady-state and for 

simultaneous modulation of inlet partial pressures of CO2 and CO around the optimal steady-

state modulated using optimal forcing parameters (forcing amplitudes and phase difference, 

Figure E1.1) vs. dimensionless forcing frequency.



Figure E2.1 The optimal forcing parameters (forcing amplitudes and phase difference between 

the modulated inputs (partial pressures of CO2 and H2)) which maximize the normalized outlet 

molar flow-rate of methanol, vs. dimensionless forcing frequency 

Figure E2.2 The normalized outlet molar flow-rate of methanol for steady-state and for 

simultaneous modulation of inlet partial pressures of CO2 and H2 around the optimal steady-state 

modulated using optimal forcing parameters (forcing amplitudes and phase difference, Figure 

E2.1) vs. dimensionless forcing frequency.

Figure E3.1 The optimal forcing parameters (forcing amplitudes and phase difference between 

the modulated inputs (partial pressures of CO and H2)) which maximize the normalized outlet 

molar flow-rate of methanol, vs. dimensionless forcing frequency

Figure E3.2 The normalized outlet molar flow-rate of methanol for steady-state and for 

simultaneous modulation of inlet partial pressures of CO and H2 around the optimal steady-state 

modulated using optimal forcing parameters (forcing amplitudes and phase difference, Figure 

E3.1) vs. dimensionless forcing frequency.

Figure E4.1 The optimal forcing parameters (forcing amplitudes and phase difference between 

the modulated inputs (partial pressure of CO2 and inlet volumetric flow-rate)) which maximize 

the normalized outlet molar flow-rate of methanol, vs. dimensionless forcing frequency 

Figure E4.2 The normalized outlet molar flow-rate of methanol for steady-state and for 

simultaneous modulation of inlet partial pressure of CO2 and inlet volumetric flow-rate around 

the optimal steady-state modulated using optimal forcing parameters (forcing amplitudes and 

phase difference, Figure E4.1) vs. dimensionless forcing frequency.

Figure E5.1 The optimal forcing parameters (forcing amplitudes and phase difference between 

the modulated inputs (partial pressure of H2 and inlet volumetric flow-rate)) which maximize the 

normalized outlet molar flow-rate of methanol, vs. dimensionless forcing frequency 

Figure E5.2 The normalized outlet molar flow-rate of methanol for steady-state and for 

simultaneous modulation of inlet partial pressure of H2 and inlet volumetric flow-rate around the 

optimal steady-state modulated using optimal forcing parameters (forcing amplitudes and phase 

difference, Figure E5.1) vs. dimensionless forcing frequency.

Tables

Table 1 The definitions of the yield of methanol based on total carbon and based on hydrogen for 

simultaneous modulation of the partial pressure of one reactant and the inlet volumetric flow-rate



Modulated inputs x 

and z
Yield of methanol 
based on total carbon

Yield of methanol 
based on hydrogen

Inlet partial pressure 

of CO2 (x) and total 

inlet volumetric 

flow-rate (z)

(𝑌𝑡𝑜𝑡𝐶
CH3𝑂𝐻)𝑃𝑂 =

(𝑛𝐶𝐻3𝑂𝐻)𝑚𝑒𝑎𝑛

(𝑛𝐶𝑂2
)0,𝑚𝑒𝑎𝑛 + (𝑛𝐶𝑂)0,𝑠

Inlet partial pressure 

of CO (x) and total 

inlet volumetric 

flow-rate (z)

(𝑌𝑡𝑜𝑡𝐶
CH3𝑂𝐻)𝑃𝑂 =

(𝑛𝐶𝐻3𝑂𝐻)𝑚𝑒𝑎𝑛

(𝑛𝐶𝑂2
)0,𝑠 + (𝑛𝐶𝑂)0,𝑚𝑒𝑎𝑛

(𝑌H2
CH3𝑂𝐻)

𝑃𝑂
= 2

(𝑛𝐶𝐻3𝑂𝐻)𝑚𝑒𝑎𝑛

(𝑛𝐻2
)0,𝑠

Inlet partial pressure 

of H2 (x) and total 

inlet volumetric 

flow-rate (z)

(𝑌𝑡𝑜𝑡𝐶
CH3𝑂𝐻)𝑃𝑂 =

(𝑛𝐶𝐻3𝑂𝐻)𝑚𝑒𝑎𝑛

(𝑛𝐶𝑂2 + 𝑛𝐶𝑂)0,𝑠

(𝑌H2
CH3𝑂𝐻)

𝑃𝑂
= 2

(𝑛𝐶𝐻3𝑂𝐻)𝑚𝑒𝑎𝑛

(𝑛𝐻2
)0,𝑚𝑒𝑎𝑛



Table 2. The best results which can be obtained by simultaneous modulations of two inputs

Optimal forcing parameters

Modulated inputs x and z

Maximal 
increase of

𝑛𝑛𝑜𝑟𝑚
𝐶𝐻3𝑂𝐻

Change of

𝑌𝑡𝑜𝑡𝐶
CH3𝑂𝐻

Change of

𝑌H2
CH3𝑂𝐻 Ax (-) Az (-) ω (-) φ  (rad)

Inlet partial pressures of 
CO2 (x) and CO (z) 0.15 % +0.15% +0.15 % 1 0.59 1.47 -0.83

Inlet partial pressures of 
CO2 (x) and H2 (z) 0.22 % +0.22 % +0.22 % 0.36 0.22 1.27 -0.49

Inlet partial pressures of 
CO (x) and H2 (z) 0.45% +0.45 % +0.45 % 0.27 0.16 0.01 -0.03

Inlet partial pressure of 
CO2 (x) and total  inlet 
volumetric flow-rate (z)

4.71 % -0.39 % +4.71 % 1 1 >30 0.004

Inlet partial pressure of 
CO (x) and total inlet 
volumetric flow-rate (z)

33.51 % -2.12 % +33.51 % 0.81 1 >30 0.006

Inlet partial pressure of  
H2 (x) and total  inlet 
volumetric flow-rate (z)

5.29 % +5.29 % -5.71% 0.23 1 >30 0.01

Table 3 The normalized outlet molar flow rate of methanol and yield of methanol based on total 

carbon for the selected points from the Pareto fronts (Figure 5), based on NFR method and based 

on numerical simulation 

Operating 

point

Normalized outlet 

molar flow-rate of 

methanol

[mmol/min/kgcat]

Yield of methanol 

based on total carbon

 [%]

Relative change of 

normalized outlet molar 

flow-rate of methanol

Relative change of 

yield of methanol 

based on total carbon

NFR Num.Sim. NFR Num.Sim. NFR Num.Sim. NFR Num.Sim. 

OP_OSS 336.9 61.06 / /

OP1 428.96 422.04 62.18 61.18 +27.33% +25.27% +1.83% +0.20%

OP2 411.20 405.34 63.04 62.15 +22.05% +20.31% +3.24% +1.79%

OP3 376.80 373.05 63.91 63.27 +11.84% +10.73% +4.67% +3.62%

  



Table A1 The definitions of dimensionless variables

Dimensionless variables Definitions

Partial pressure of component i , 𝑃𝑖 =
𝑝𝑖 ― 𝑝𝑖,𝑠

𝑝𝑖,𝑠
𝑖 = 1,..6

Partial pressure of component i in the inlet stream , 𝑃𝑖,0 =
𝑝𝑖,0 ― 𝑝𝑖0,𝑠

𝑝𝑖0,𝑠
𝑖 = 1,..6

Time 
𝜏 =

𝑡
𝜏0,𝑠

=
𝑡

𝑉𝐺/𝑉0,𝑠

Fraction of reduced centers on the catalyst surface 
Φ =

𝜙 ― 𝜙𝑠

𝜙𝑠

Volumetric flow-rate of the inlet stream
𝜐0 =

𝑉0 ― 𝑉0,𝑠

𝑉0,𝑠

Volumetric flow-rate of the outlet stream
υ =

𝑉 ― 𝑉𝑠

𝑉𝑠

Frequency 𝜔 = 𝜔𝑑𝜏0,𝑠

Table F.1 Optimization variables with upper and lower boundary values (for operating in steady 
state regimeNo.1-3. and for periodic operation No. 1.-7.) 

No. Optimization variable Boundary values

1. Inlet molar fraction of CO2 0-1

2. Inlet molar fraction of CO 0-1

3. Inlet molar fraction of H2 0.5-0.85

4. Forcing amplitude for CO inlet partial pressure  modulation 0- 1

5. Forcing amplitude for flow-rate modulation 0- 1

6. Forcing frequency 0.01-100

7. Phase difference between two modulated inputs (-π)- π



Table F.2 Results of Multi-objective optimization for steady-state regime (values of objective 
functions and corresponding optimized variables) 

Objective functions Optimization variables

No.
𝑛𝑛𝑜𝑟𝑚

𝐶𝐻3𝑂𝐻

[mmol/min/kg(cat)cat]

Yield of methanol 
based on tot C

[-]

Mole fraction of 
CO2 in feed stream

[-]

Mole fraction of 
CO in feed stream

[-]

Mole fraction of 
H2 in feed stream

[-]

1 417.29 0.4750 0.0351 0.2931 0.5218

2 416.37 0.4943 0.0333 0.2814 0.5353

3 413.39 0.5137 0.0315 0.2691 0.5494

4 407.87 0.5331 0.0296 0.2562 0.5642

5 399.1 0.5524 0.0277 0.2421 0.5801

6 385.97 0.5718 0.0257 0.2264 0.5978

7 366.52 0.5912 0.0236 0.2080 0.6184

8

(OP_OSS)
336.91 0.6106 0.0211 0.1850 0.6439

9 287.37 0.6300 0.0179 0.1525 0.6796



Table F.3 Results of Multi-objective optimization for forced periodic operation regime i.e. for 
the case of simultaneous modulation of CO and flow-rate optimization (values of objective 
functions and corresponding optimized variables) 

Objective functions Optimization variables

Inlet variables

(Mole fractions in feed 
stream of )

Forcing parameters

Forcing amplitude of Frequency Phase 
differenceNo.

𝑛𝑛𝑜𝑟𝑚
𝐶𝐻3𝑂𝐻

[mmol/min/kg(cat)]

Yield of 
methanol 
based on 

tot C

[-]
CO2

[-]

CO

[-]

H2

[-]
flow-
rate

[-]

CO

[-]

N2

[-]
ω [-] φ [rad]

1 487.16 0.5157 0.0359 0.2419 0.5722 1 0.6201 -1 100 0.0067

2 487.16 0.5157 0.0359 0.2419 0.5722 1 0.6201 -1 100 0.0067

3 487.16 0.5157 0.0359 0.2419 0.5722 1 0.6201 -1 100 0.0067

4 487.14 0.5182 0.0357 0.2405 0.5739 1 0.6238 -1 100 0.0068

5 486.79 0.5268 0.0347 0.2354 0.5799 1 0.6372 -1 100 0.0072

6 485.95 0.5355 0.0338 0.2302 0.5860 1 0.6516 -1 99.97 0.0076

7 484.57 0.5441 0.0328 0.2248 0.5923 1 0.6672 -1 99.99 0.0080

8 482.59 0.5527 0.0319 0.2192 0.5989 1 0.6842 -1 100 0.0086

9 479.91 0.5614 0.0309 0.2134 0.6057 1 0.7030 -1 100 0.0091

10 476.44 0.5670 0.0300 0.2072 0.6128 1 0.7238 -1 100 0.0098

11 472.06 0.5786 0.0290 0.2007 0.6203 1 0.7473 -1 99.99 0.0105

12 466.62 0.5873 0.0280 0.1938 0.6282 1 0.7741 -1 99.97 0.0115

13 459.9 0.5959 0.0270 0.1863 0.6367 1 0.8052 -1 99.88 0.0125

14 451.64 0.6045 0.0260 0.1781 0.6459 1 0.8421 -1 99.97 0.0138

15 441.5 0.6132 0.0248 0.1691 0.6561 1 0.8870 -1 99.98 0.0153

16

(OP1)
428.96 0.6218 0.0237 0.1590 0.6673 1 0.9432 -1 99.98 0.0173

17

(OP2)
411.22 0.6304 0.0218 0.1479 0.6803 1 1 -

0.9860 99.97 0.0294

18

(OP3)
376.82 0.6391 0.0201 0.1335 0.6964 1 1 -

0.8897 99.96 0.0369

19 328.4 0.6477 0.0186 0.1303 0.7011 1 1 -
0.8684 5.01 0.9000
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