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Abstract: This article deals with the implementation of the P-Class PMU compliant with IEC/IEEE
Standard 60255-118-1:2018 by usage of a multiple-resonator (MR)-based approach for harmonic
analysis having been proposed recently. In previously published articles, it has been shown that a
trade-off between opposite requirements is possible by shifting a measurement time stamp along the
filter window. Positioning the time stamp in a proximity of the time window center assures flat-top
frequency responses. In this article, through simulation tests carried out under various conditions, it
is shown that requirements of the IEC/IEEE Standard 60255-118-1:2018 can be satisfied by the second
and third order MR structure for particular conditions of the time stamp location.

Keywords: DFT; harmonic analysis; IEC/IEEE Standard 60255-118-1:2018; multiple-resonator; PMU;
recursive algorithm; rate of change of frequency (ROCOF); total vector error (TVE)

1. Introduction

Phasor measurement units (PMUs) are time-synchronized measurement devices de-
signed to estimate both the amplitude and phase angle of the harmonic phasors, together
with frequency and rate of change of frequency (ROCOF) of electrical sinusoids in power
networks [1]. New intelligent electronic devices (IEDs) and multipurpose platforms (MPP)
are also being enabled to work as PMU devices [2–4]. In addition to that, open platforms
units for the PMU development have been also proposed [5].

The IEC/IEEE Standard 60255-118-1:2018 Part 118-1 [6] prescribes the PMUs require-
ments. This standard is an update of the IEEE Standard C37.118.1TM-2011 for synchropha-
sor measurements for power systems [7] and its addendum IEEE Standard C37.118.1aTM-
2014 [8]. The standard [6] prescribes accuracy limits for estimation algorithms for the total
vector error (TVE), the frequency error (FE) and the rate of change of frequency error (RFE),
under different test conditions (steady state and dynamic). It has introduced two PMU
performance classes—P and M. P-class requires a quick response, such as the case with the
power system protection, whereas M-class is aimed for applications demanding greater
precision and do not require a fast response time [9].

A huge number of various algorithms for synchrophasor, frequency, and ROCOF
estimation have been proposed. These algorithms use different estimation techniques,
including discrete Fourier transform (DFT) [10–15], interpolated DFT (IpDFT) [16–21],
Kalman filtering [22], sine-fit algorithms (SF) [23], sinc interpolation functions [24,25],
Taylor Fourier transformation (TFT) [26–28], adaptive Taylor-based bandpass filters [29],
Taylor-Kalman filters [30–32], phase-locked loop (PLL) [33–36], techniques based on
least-squares method [37–39], weighted least squares [40], non-recursive linear and non-
linear least squares fitting [41,42], wavelet transform (WT) [43], demodulation-based
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techniques [44], the iterative-loop approaching algorithm (ILA) [45], the recursive-least-
squares (RLS) techniques [46–48] and its numerically more efficient modification—a decou-
pled RLS (DRLS) [49], the least-mean-squares (LMS)-based algorithm [50], adaptive filter
banks [51–53], Prony’s method [54], compressive sensing for frequency resolution enhance-
ment [55], and interharmonic frequencies identification and removal [56], a space vector
transformation [57]. A good survey of related articles is presented in [58].

In [59], a new estimation technique convenient for applications in dynamic conditions
and based on the multiple-resonator (MR) structure was proposed. This technique has
an advantage that, according to the actual resonator multiplicity, allows estimation of the
first, second, etc. derivatives of the harmonic phasors. In addition. in [60], the algorithms
were modified by usage of the quasi- instead of the true MR-based estimation technique, in
order to ease design significantly.

While more and more PMUs can provide harmonic phasor values together with fun-
damental one, the standard 60255-118-1:2018 deals with the fundamental phasor only. To
provide PMUs capable to accurately estimate harmonic phasors, extension of the estimation
algorithms has been recently carried out [22,25,29,53,55]. Techniques proposed in [59,60]
provide also the estimation of harmonic phasors simultaneously with the fundamental one.

In [61], it was proposed an extended recursive MR-based estimation technique by
shifting reference point (measurement time stamp) along the filter window which provides
maximally flat (MF) frequency responses. A shifting of the time stamp reshapes the fre-
quency responses of the filter, allowing an optimal trade-off between estimator parameters.
In this article, it is shown that the second-order (K = 1 type) estimator is with capability
to simultaneously meets IEC/IEEE Standard 60255-118-1:2018 test conditions for P class
as long as the time stamp is placed up to one quarter of the window around the window
center. Even more, for the third-order (K = 2 type) estimator, the standard requirements
can be satisfied when the time stamp is placed in the center of the time window.

2. MR-Filter Structure

The estimation structure is decoupled to two modules. The first part is the basic
one and it is already described in [59–61]. The order of the overall system is (K + 1)N,
N = 2M + 1 where MΩ0 < π; Ω0 = 2π f0/ fS, ω0 = 2π f0 is a fundamental component
angular frequency. T = 1/ fS is sampling period and M is the highest harmonic order m
being analyzed.

The block diagrams of the second-order and the third-order MR-based harmonic
analyzers are shown in Figures 1 and 2, respectively.

The cascade in the m-th channel consists of two (for K = 1) or three (for K = 2)
resonators which poles are distributed closely on the unit circle around the pole of the
mth harmonic frequency. In case of the true MR-based harmonic analyzer, all poles in the
cascade are identical, i.e.:

zm,0 = zm,1 = · · · = zm,K = zm = exp(jmΩ0) (1)

where m = −M, . . . , 0, . . . , M, fS is a sampling rate, and Ω0 = 2π f0/ fS is a normalized
angular frequency of the basic component.

To the resonators in the cascade are assigned corresponding complex gains gm,k,
m = −M, . . . , 0, . . . , M, k = 0, · · · , K.
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Input signal is represented as follows:

v(n) =
M

∑
m=−M

vm(n) =
M

∑
m=−M

Vm(n) exp(jnmΩ1) (2)

Outputs of the resonators are:

vm,k(n) = cm,k(n) exp(jnmΩ1) (3)

m = −M, . . . , 0 , . . . , M, k = 0, · · · , K. The output signal vm,k(n) consists of the harmonic
phasor complex envelope cm,k(n) and constantly rotating vector exp(jnmΩ1). Further,
we suppose:

cm,k(n) = am,k(n) exp(jϕm,k(n)) (4)

and:

vR
m(n) = vm,0(n) + ∑K

k=1 rm,kvm,k(n)cR
m(n) = cm,0(n) + ∑K

k=1 rm,kcm,k(n) (5)

The overall system orders are (K + 1)N, N = 2M + 1 where MΩ0 < π.

2.1. K = 1. Type (The Second-Order) Harmonic Analyzer

In case of the dead-beat (all zero) observer, the transfer function assigned to the
differentiators of the harmonic component m, for K = 1, is as follows:

Tm,0(z) =
Vm,0(z)

V(z)
=

g′m,0zPm(z)
z2N (6)

Tm,1(z) =
Vm,1(z)

V(z)
=

g′m,1(z− zm,0)Pm(z)
z2N (7)

where:
Pm(z) = ∏M

i = −M
i 6= m

(z− zi,0)(z− zi,1), (8)

zi = exp(jΩi), Ωi = iΩ0, and:

g′m,0 = gm,0gm,1, g′m,1 = gm,1 (9)

In [59,60], closed-form solutions for gains
.
gm,k, k = 0 . . . K, for true and quasi MRs,

respectively, are given (see Appendix A).
In order to modify the dynamic properties, instead of Tm,0(z) the linear combination

of the differentiators can be used [61]:

TR
m,0(z) = Tm,0(z) + rm,1Tm,1(z) (10)

In case of the dead-beat (all zero) observer, the transfer function Tm,0(z) can be written
as follows:

Tm,0(z) = z−D T́m,0(z) = z−D[T́m,0(z) + rm,1T́m,1(z)
]

(11)

where:

T́m,0(z) =
g′m,0zPm(z)

z2N−D (12)

T́m,1(z) =
g′m,1(z− zm,0)Pm(z)

z2N−D (13)

It follows:

TR
m,0(z) = z−D T́R

m,0(z) = z−D Qm(z)Pm(z)
z2N−D (14)
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where:
Qm(z) = g′m,0z + rm,1g′m,1(z− zm) (15)

is a first-order compensation filter:

T́R
m,0(z) =

Qm(z)Pm(z)
z2N−D (16)

From the condition dT́R
m,0(z)/dz

∣∣∣
z=zm

= 0, it follows that [61]:

rm,1 = −gm,0

[
1 +

zmΨm(zm)

Pm(zm)

]
(17)

See Appendix B. T́R
m,0(z) is noncausal and cannot be implemented real-time. A real-

time implementation would require calculation D samples cycle before the latest allowed
sampling point. However, it can be implemented postpone at least D samples delayed.
Thus, measurement time stamp is defined by D. These D samples are part of the latency.
Another part of the latency is processing and communication time.

2.2. K = 2. Type (The Third-Order) Harmonic Analyzer

In case of the dead-beat (all zero) observer, the transfer function assigned to the
differentiator of the harmonic component m, for K = 2, is as follows:

Tm,0(z) =
Vm,0(z)

V(z)
=

g′m,0z2Pm(z)
z3N (18)

Tm,1(z) =
Vm,1(z)

V(z)
=

g′m,1z(z− zm,0)Pm(z)
z3N (19)

Tm,2(z) =
Vm,2(z)

V(z)
=

g′m,2(z− zm,0)(z− zm,1)Pm(z)
z3N (20)

where Pm(z) = ∏M
i = −M

i 6= m

(z− zi,0)(z− zi,1)(z− zi,2), zi = exp(jΩi), Ωi = iΩ0 and:

g′m,0 = gm,0gm,1gm,2, g′m,1 = gm,1gm,2, g′m,2 = gm,2 (21)

In [59,60], closed-form solutions for gains
.
gm,k, k = 0 . . . K, for true and quasi MRs,

respectively, are given (see Appendix C).
The linear combination of the differentiators has the following form:

TR
m,0(z) = Tm,0(z) + rm,1Tm,1(z) + rm,2Tm,2(z) (22)

Further, it is:

TR
m,0(z) = z−D T́R

m,0(z) = z−D Qm(z)Pm(z)
z3N−D (23)

Qm(z) = g′m,0z2 + rm,1g′m,1z(z− zm,0) + rm,2g′m,2(z− zm,0)(z− zm,1) (24)

From dT́R
m,0(z)/dz

∣∣∣
z=zm

= 0, it follows that [61]:

rm,1 = −gm,0

[
2 +

zmΨm(zm)

Pm(zm)

]
(25)
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Further, from the condition d2T́R
m,0(z)/dz2

∣∣∣
z=zm

= 0, it follows that [61]:

rm,2 = −gm,1

[
zm

2(2gm,0 + rm,1)Ψm(zm) + gm,0zmΦm(zm)

2Pm(zm)
+ gm,0 + rm,1

]
(26)

See Appendix D.

2.3. Frequency Responses of the Selected Characteristic Cases

Tables 1 and 2 summarize values of the coefficients applied for the second-order
(K = 1) estimator for D1,1 = 16, and D1,2 = 20, and the third-order (K = 2) estimator, for
D2,1 = 24, with f1 = 50 Hz and fS = 800 Hz (N = 16). It should be mentioned that for the
coherent sampling conditions, parameters determined by Equations (17), (25) and (26) are
equal for all harmonics [61].

Table 1. Coefficients for Considered Values of D for K = 1.

Estimator type D rm,1

D1,1 16 0.0000

D1,2 20 −0.2500

Table 2. Coefficients for Considered Values of D for K = 2.

Estimator type D rm,1 rm,2

D2,1 24 −0.0213 −0.1250

Figure 3 shows the frequency responses of the transfer function of DC component
TR

m,0(z) in K = 1 and K = 2 cases, for the values of D selected in the Tables 1 and 2. The
frequency responses for DC component (m = 0) are depicted only. Frequency responses
for other harmonics show the same performances.
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Figure 3. Frequency responses of the zeroth differentiators (transfer functions Tm,0(z)) obtained by
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(m = 0) for f1 = 50 Hz and fS = 800 Hz (N = 16): (a) amplitude, and (b) phase.

The flatness of the amplitude frequency responses around the harmonic frequency is
wider for K = 2. In addition to that, multiple zeros ensure zero-flat gains at the harmonics
but at cost of the increase of sidelobe levels with the decrease of the delay D. At the same
time, the group delay rises with the increase of K.
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For K = 1 and D1,1 = 16 the amplitude frequency response shows narrow flatness in
the passband. The frequency responses in this case corresponds to the frequency response
of a two-cycle triangular weighted FIR reference filter [6] (Appendix D) suggested by the
IEC/IEEE Standard. The wider flatness exists for D1,2 = 20.

3. Postprocessing

The second part of the structure deals with the postprocessing and includes demodu-
lation of the resonators output signals. Note that the postprocessing can be carried out for
selected harmonics, e.g., the fundamental component and significant harmonics.

3.1. Harmonic Phasor Estimation

A harmonic signal is present as an output of the resonators cascade as:

vR
m(n) = vm,0(n) + ∑K

k=1 rm,kvm,k(n) = cR
m(n) exp(jnmΩ1) (27)

From this signal, an estimation of the phasor cm(n) it can be obtained by demodulation
with:

ĉm(n) = cR
m(n) exp(jnmΩ1) exp(−jnmΩ0) = cR

m(n)e
iϕm(n) (28)

where ϕm(n) = nm∆Ω1, ∆Ω1 = Ω1 −Ω0.
Frequency deviation from the nominal one creates errors in magnitude and phase

spectrum responses and have drooping passband gains. It changes the magnitude and
phase of the components of the signal. To eliminate the side effect of the proposed filter,
multiplication (division) with correction factors is necessary. In addition to that, the time
stamp of the measurement allocation for D steps is implemented by time-shifting operation:

ĉm(n− D) = cR
m(n)/

∣∣∣TR
m,0

(
zjm∆Ω1

)∣∣∣ (29)

The correction factors can be calculated offline and conveniently retrieved online. This
way, the computational burden can be reduced.

3.2. Frequency and ROCOF Estimation

Estimation of the frequency and ROCOF is convenient to consider separately since it
depends on the chosen algorithm. It can be considered as a whole together with the phasor
measurement, can be a separate postprocessing step following the phasor estimation or,
more generally, it can be a completely different estimation unit [1].

The frequency and ROCOF are given by the first- and second-order time-derivative of
the estimated phase angle, respectively, as follows:

f̂ = f0 +
1

2π

dϕ

dt
(30)

ˆROCOF =
d f̂
dt

=
1

2π

d2 ϕ

d2t
(31)

The MR-based filter structure has an advantage that the fundamental and harmonic
phasors derivatives involve the fundamental and harmonic frequencies and their ROCOFs
and, thus, they can be estimated simultaneously. The first phasor derivative c1,1(n) and the
second phasor derivative c1,2(n) can be used for frequency and ROCOF estimation. For
both K = 1 and K = 2, the frequency deviation can be calculated as follows:

f̂ − f0 ∼=
Im
{

c1,1(n)c∗1,0(n)
}

2π|c1,0(n)|2
f0 =

Im
{

v1,1(n)v∗1,0(n)
}

2π|v1,0(n)|2
f0 (32)

where * denotes the conjugate operation, andˆestimation.
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The ROCOF can also be estimated using the estimates of the phasor derivatives.
In this case, the presence of the wideband noise decreases the accuracy of the method
significantly [25]. In this article the FIR differentiators of order seven is used. Output of the
differentiators are further filtered by the following recursive averaging algorithm (RAA):

HRAA(NRAA, z) =
1

NRAA

(
1− z−NRAA

)
1− z−1 (33)

The window length NRAA has to be selected in compliance with the expected variation
range and bandwidth of ROCOF. Figure 4 shows block diagram of the frequency and the
ROCOF estimator. NRAA for RAA after differentiators for ROCOF estimation are chosen
to be equal 16. RAA with NRAA = 8 after the block for frequency estimation is used only
for K = 1.
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Figure 4. Block diagram of the frequency and ROCOF estimator.

The performances of the frequency and ROCOF estimators strongly depends on the
filters (both inherent in the basic resonator structure and the filters for the postprocessing).
Consequently, for low ROCOF errors, longer latencies are needed. For low latency, larger
ROCOF ripple and errors are expected.

4. Simulation Results

The frequency response approach presented in the previous section is useful to clarify
the harmonic phasor estimates behavior, particularly when the input signal contains distur-
bances which are not involved into the signal model such as noise and/or interharmonic
components. In this section, extensive simulation tests are performed to evaluate and
compare the performance of the selected cases in accordance with the IEC/IEEE Standard
specifications. The IEC/IEEE Standard specifies the compliance requirements for steady
state and dynamic conditions. The estimates for the second-order (K = 1) estimator for
D1,1 = 16, D1,2 = 20, and the third-order (K = 2) estimator, for D2,1 = 24, and with
f1 = 50 Hz and fS = 800 Hz (N = 16), are shown in Figures 5–10.
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4.3. Amplitude and Phase Step Signals 

In these tests, signals with the phase angle shift equal 10° and the step change from 
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Figure 6. Simulation results obtained for the amplitude modulated signal with fm = 2 Hz, for K = 1 for D1,1 = 16 and
D1,2 = 20, and K = 2 for D2,1 = 24, with f1 = 50 Hz and fS = 800 Hz (N = 16): (a) amplitude, phase and TVE, and (b) FE
and RFE.
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0.9 to 1 p.u. of the amplitude in the fundamental component, respectively, are fed to the 

estimator. The test signal defined by the standard is as follows: 
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Figure 8. Simulation results obtained for the amplitude step signal, for K = 1 for D1,1 = 16 and D1,2 = 20, and K = 2 for
D2,1 = 24, with f1 = 50 Hz and fS = 800 Hz (N = 16): (a) amplitude, phase and TVE, and (b) FE and RFE.
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Figure 9. Simulation results obtained for the phase angle step signal, for K = 1 for D1,1 = 16 and D1,2 = 20, and K = 2 for
D2,1 = 24, with f1 = 50 Hz and fS = 800 Hz (N = 16): (a) amplitude, phase and TVE, and (b) FE and RFE.
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4.1. Steady-State Characteristic

The compliance of the MR algorithm has been proofed through reproducing test
conditions in different Class P testing conditions specified in the IEC/IEEE Standard 60255-
118-1:2018 [6] in case the waveform is affected by both off-nominal frequency deviations
within ± 2 Hz and steady-state harmonics (up to seventh), taken simultaneously at a time,
each of amplitude equal to 1%. The estimates for the fundamental component are depicted
only since the waveforms of estimates for harmonic phasors have similar shapes. Figure 5
shows estimates of the TVE, FE and ROCOF for the fundamental component for K = 1 (for
D1,1 and D1,2) and K = 2 (for D2,1) type estimators with f1 = 52 Hz and fS = 800 Hz. The
estimation results comply with the frequency responses shown in Figure 4. TR

m,0(z) for D1,2
and D2,1 provides larger TVE due to higher sidelobes. Errors obtained by D1,1 are smaller,
due to the lower level of sidelobes and narrower passband.
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4.2. Amplitude and Phase Modulated Signals

Tests with the amplitude and phase modulated signals are applied to determine PMU
measurement bandwidth. The test signal defined by the standard is as follows:

s(t) = Xm[1 + kx cos(2π fmt)] cos[2π f1t + ka cos(2π fmt− π)] (34)

where Xm is the fundamental component amplitude, the amplitude and phase modulation
depths are denoted as kx and ka, respectively, and fm is the modulating signal frequency.
Values of modulated signals are chosen in line with the suggestion of the PMU IEC/IEEE
Standard 60255-118-1:2018-2011 [6]. The amplitude and phase angle modulation depths of
kx = 0.1 p.u. and ka = 0.1 rad are considered. For P class test, the maximum modulation
frequency is fm = 2 Hz. The fundamental frequency is constant during time and equals
50 Hz. Xm = 1 (p.u.).

The influence of a modulation of the sinusoidal amplitude of magnitude amounting
10% of the fundamental one and the modulation frequency equal to 2 Hz is shown in
Figure 6. In Figure 6, it is notable that the TVE obtained by D2,1 = 24 is very low (smaller
than 0.002%) and negligible in relation to the standards limit of 3%. The FE and RFE are
similar in all cases and their maxima are 0.1 mHz and 1.5 mHz/s, respectively. It is notable
that the limits of 30 mHz for FE and 600 mHz/s allowed by the standard are much higher.

Secondly, the influence of a sinusoidal phase modulation of amplitude equal to 0.1 rad
and the modulation frequency amounting fm = 2 Hz is illustrated in Figure 7. Figure 7
shows that all of three cases satisfy the standards requirements. The algorithm satisfies the
measurement bandwidth TVE compliance up to modulation frequency of 2 Hz since the
maximum value of the determined TVE is much less than 3%, but again the case K = 2
for D2,1 = 24 outperforms both K = 1 cases. From Figure 7b it is noticeable that K = 2 for
D2,1 = 24 and K = 1 for D1,2 = 20 provide smaller FEs than K = 1 for D1,1 = 16, thanks
to the wider passband. It should be noted that the performances of the frequency and
ROCOF estimators strongly depends on the postprocessing filters. A higher order of RAA
influences larger FE and RFE and vice versa.

4.3. Amplitude and Phase Step Signals

In these tests, signals with the phase angle shift equal 10◦ and the step change from
0.9 to 1 p.u. of the amplitude in the fundamental component, respectively, are fed to the
estimator. The test signal defined by the standard is as follows:

s(t) = Xm[1 + kx cos(2π fmt)] cos[2π f1t + ka cos(2π fmt− π)] (35)

where u(t) is the unit step function and tS is an instant time of the step. The amplitude
step is given with kx = 0.1 and phase step with ka = π/18 (10◦ phase angle step). The
fundamental frequency is constant during time and equals 50 Hz. Figure 8 illustrates
a convergence in the amplitude shift (with kx = 0.1 and ka = 0). It is possible to note
overshoots of about 5% in case of K = 1, for D1,2 = 20, and K = 2 for D2,1 = 24. This
overshoot is maximally allowed overshoots by the standard for P-Class PMUs.

Figure 9 shows the time responses corresponding to the phase shift (with kx = 0
and ka = π/18). Again, overshoots are about 5% in case of K = 1, for D1,2 = 20, and
K = 2 for D2,1 = 24. This overshoot is maximally allowed overshoots by the standard for
P-Class PMUs.

A maximum allowed frequency response time for both amplitude and phase steps
according the standard is 90 ms. It is notable that actual frequency response times are a half
of that. Obtained ROCOF response times are about 80 ms, while maximum allowed ones
per standard are 120 ms. It is important to note that the phase steps are a major challenge
for ROCOF measurements.
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4.4. Frequency Ramp

In the following frequency ramp test, the frequency of a voltage signal is ramped up
keeping the amplitude of the signal constant. For simulation purposes, v(t) = cos(2π f0t+
πR f t2) is used, where R f = 1 Hz/s is the rate of change of the fundamental frequency.
The range of the fundamental frequency variation is from 50 to 52 Hz. In Figure 10,
the corresponding obtained results are given. For the amplitude and TVE calculation, a
correction of the amplitude of the signal is applied according an actual frequency estimation.
Since the gains of the frequency responses are previously calculated with a resolution of
1/3 Hz, small discontinuities are present. Again, the maximum TVEs, FEs, and RFEs
obtained with the proposed algorithm are smaller for D2,1.

The standard prescribes the TVE, FE, and RFE limits for the P-class PMUs as 1%,
0.01 Hz, and 0.4 Hz/s, respectively. The maximum achieved FE and RFE are smaller than
the limits of the standard. It should be noted that for low ROCOF errors, higher orders of
RAA filters are needed causing longer latencies. For low latency, large ROCOF ripple and
errors are expected.

5. Conclusions

In this article, it is shown that recursive MR-based estimation technique exhibiting
MF frequency responses can be efficiently used for implementation of P-Class Compliant
PMUs in accordance with IEC/IEEE Standard 60255-118-1:2018. The proposed algorithm
is very convenient for a real-time digital implementation due to its parallel structure
and the recursive computation. Computer simulation tests have been performed under
different conditions, considering the presence of up to 64 harmonics, presenting algorithms
performances and compatibility with 60255-118-1:2018. The proposed method for K = 1
and K = 2 confirmed to be compliant with IEC/IEEE Standard 60255-118-1:2018 test
specification for P-class, for both the fundamental component together with significant
low-order harmonic phasors.

Due to its wider passband, K = 2 case provides better dynamics performances, while
K = 1 for D1,1 shown better accuracy in steady state conditions. For K = 1 for D1,2 obtained
performances are between these two.
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Appendix A

Closed-form expressions for the derivation of the resonators gains for K = 1 are
as follows.

True MR K = 1 Type (The Second-Order) Estimator [59]

g′m,0 =
z2N−1

Pm(z)

∣∣∣∣
z=zm

g′m,1 =
2Nz2N−1 − g′m,0z dPm(z)

dz
Pm(z)

∣∣∣∣∣∣
z=zm

− g′m,0 (A1)
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Quasi MR K = 1 Type (The Second-Order) Estimator Estimator [60]

g′m,0 =
z2N−1

Pm(z)

∣∣∣∣
z=zm,0

g′m,1 =
z2N − g′m,0zPm(z)
(z− zm,0)Pm(z)

∣∣∣∣∣
z=zm,1

m = −M, . . . , 0, . . . , M (A2)

Appendix B

The transfer function T́R
m,0(z) of the zero-order differentiator, for the the second-order

(K = 1) estimator, is [61]:

T́R
m,0(z) =

[
g′m,0z + rm,1g′m,1(z− zm)

]
Pm(z)

z2N−D (A3)

From dT́R
m,0(z)/dz

∣∣∣
z=zm

= 0, it follows that:

rm,1 = −gm,0

[
1 +

zmΨm(zm)

Pm(zm)

]
(A4)

where:
Ψm(z) =

dPm(z)
dz − (2N − D)

Pm(z)
z ,

dPm(z)
dz = 2Pm(z)

M

∑
i = −M

i 6= m

1
z−zi

,

m = −M, . . . , 0, . . . , M

(A5)

Appendix C

Closed-form expressions for the derivation of the resonators gains for K = 2 are
as follows.

True MR K = 2 Type (The Third-Order) Estimator [59]

g′m,0 = z3N−2

Pm(z)

∣∣∣
z=zm

g′m,1 =
3Nz3N−2−g′m,0z dPm(z)

dz
Pm(z)

∣∣∣∣
z=zm

− 2g′m,0

g′m,2 =
3N(3N−1)z3N−2−2(g′m,1+2g′m,0)z dPm(z)

dz −g′m,0z2 d2Pm(z)
dz2

2Pm(z)

∣∣∣∣∣
z=zm

− g′m,1 − g′m,0

(A6)

Quasi MR K = 2 Type (The Third-Order) Estimator [60]

g′m,0 = z3N−2

Pm(z)

∣∣∣
z=zm,0

g′m,1 =
z3N−1−g′m,0zPm(z)

(z−zm,0)Pm(z)

∣∣∣∣
z=zm,1

g′m,2 =
z3N−[g′m,0z+g′m,1(z−zm,0)]zPm(z)

(z−zm,0)(z−zm,1)Pm(z)

∣∣∣∣
z=zm,2

m = −M, . . . , 0, . . . , M.
(A7)

Appendix D

The transfer function T́R
m,0(z) of the zero-order differentiator, for the third-order (K = 2)

estimator, is [61]:

T́R
m,0(z) =

[
g′m,0z2 + rm,1g′m,1z(z− zm,0) + rm,2g′m,2(z− zm,0)(z− zm,1)

]
Pm(z)

z3N−D (A8)
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From dT́R
m,0(z)/dz

∣∣∣
z=zm

= 0, it follows that:

rm,1 = −gm,0

[
2 +

zmΨm(zm)

Pm(zm)

]
(A9)

where:
Ψm(z) =

dPm(z)
dz − (3N − D)

Pm(z)
z

dPm(z)
dz = 3Pm(z)

M
∑

i = −M
i 6= m

1
z−zi

. (A10)

Finally, from d2T́R
m,0(z)/dz2

∣∣∣
z=zm

= 0, it follows:

rm,2 = −gm,1

[
zm

[2(2gm,0 + rm,1)Ψm(zm) + gm,0zmΦm(zm)]

2Pm(zm)
+ gm,0 + rm,1

]
(A11)

where:
Φm(z) =

dΨm(z)
dz − (3N − D)

Ψm(z)
z ,

dΨm(z)
dz = d2Pm(z)

dz2 − (3N − D)
zdPm(z)/dz−Pm(z)

z2 ,

d2Pm(z)
dz2 = 3Pm(z)

3


M
∑

i = −M
i 6= m

1
z−zi


2

−
M
∑

i = −M
i 6= m

1
(z−zi)

2


m = −M, . . . , 0, . . . , M

(A12)
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