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Highlights 

 Voltammetric characterization of erythromycin ethylsuccinate  (EES) on Hg(Ag)FE 

 Trace level determination of EES by electroreduction based SWV and SW-AdSV 

methods 

 Protonation of the tertiary amino group supports the adsorption of EES on Hg(Ag)FE 

 1H NMR confirms chemical shifting of tertiary amine methyl proton signals with pH 

 Comparative HPLC-DAD measurements were performed for the validation of the 

methods 
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Abstract 

Erythromycin, a macrolide antibiotic, has similar antimicrobial spectrum to penicillin 

and it is widely used, especially in the treatment of patients who are allergic to penicillin. 

In this work, the application of a renewable silver-amalgam film electrode (Hg(Ag)FE) 

for the characterization and determination of erythromycin ethylsuccinate (EES), a widely 

used esterified form of this antibiotic, by means of cyclic voltammetry (CV) and square wave 

voltammetry (SWV) is presented. In the aqueous Britton-Robinson buffer (pH 5.0-9.0) that 

served as the supporting electrolyte, one reduction peak of EES was observed in the 

investigated potential range between -0.75 V and -1.80 V vs SCE, with peak potential maxima 

ranging from -1.59 V to -1.70 V, which strongly depended on the applied pH, as did the peak 

shape. For the analytical purposes the pH of 7.0 was selected, since in this electrolyte the EES 

peak was well-shaped and separated from the background current of the supporting electrolyte 

in both cases; in the direct cathodic SWV and in the case of square wave adsorptive stripping 

voltammetry (SW-AdSV). It was established, by the Ep-pH correlation, that protons strongly 

influenced the electrochemical reduction of EES. The CVs recorded between 0.025 - 0.50 V s-

1 at pH 7.0 confirmed that the electrode reaction is adsorption-controlled. Based on the series 

of 1H NMR measurements it is proved that the tertiary amino group of EES is mainly in its 

protonated form at pH 7.0 which may lead, at appropriate accumulation potential and time, to 

the favored adsorption of the target ionic form of the analyte improving on such way the 

sensitivity of the SW-AdSV method.  

The optimized procedures resulted in stable SWV responses with good linear 

correlation in the EES concentration range from 4.53 to 29.8 µg mL-1 (LOD = 1.36 µg mL-1), 

and from 0.69 µg  mL-1 to 2.44 µg  mL-1 (LOD 0.21 µg mL-1) in the case of optimized SW-

AdSV. The relative standard deviation is below 1.5%. The reliability of the elaborated 

procedures and thus the accuracy of the obtained results were validated by comparing them 

with those obtained by means of HPLC-DAD measurements. The direct cathodic SWV 

method was successfully applied for the determination of EES in the pharmaceutical 

preparation Eritromicin®, while SW-AdSV was applied in the case of the spiked urine sample. 

In both cases, the standard addition method was used.  

 

Keywords: erythromycin ethylsuccinate, square wave adsorptive stripping voltammetry, 

renewable silver amalgam-film electrode, urine sample, pharmaceutical preparation  
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1. Introduction 
 

Erythromycin, the first macrolide antibiotic discovered, has successfully been used 

since the early 1950s [1]. Macrolide antibiotics belong to the class of polyketide organic 

compounds with a lipophilic character, which feature a basic structure containing a large 

lactone ring and one or more deoxy sugars, most commonly cladinose or desosamine [2, 3]. 

Macrolides are used globally to treat a wide range of infections in human and veterinary 

medicine. Erythromycin is a 14-membered macrolide antibiotic produced by Streptomyces 

erythreus during fermentation and is considered the most widespread antibiotic from this 

group [4]. In addition, it is a precursor in the synthesis of other macrolides such as 

azithromycin, clarithromycin, and roxithromycin [5]. The major component of erythromycin 

is erythromycin A (Fig. 1A), but it also contains trace levels of erythromycin B, C and D. 

There are certain differences between the structure of erythromycin A and the other types; 

erythromycin B (12-deoxyerythromycin A) does not contain a hydroxyl group in position 12, 

erythromycin C lacks a methyl group in position 3", and erythromycin D (3"-O-

demethylerythromycin A) contains neither a hydroxyl group in position 12 nor a methyl group 

in position 3". This antibiotic has a similar antimicrobial spectrum to penicillin and exhibits 

high activity against nearly all Gram-positive and a few Gram-negative bacteria [2, 5, 6]. It is 

effective for the treatment of infections induced by some intracellular pathogens, such as 

species of Legionella, Mycoplasma and Chlamydia, and is often an integral component in the 

treatment of upper respiratory tract as well as skin and soft tissue infections caused by 

different microorganisms.  Erythromycin is commonly used in the treatment of patients 

allergic to penicillin because of its similar activity [1]. In addition, many farmers have applied 

erythromycin for the protection of animals and farm crops from bacterial diseases [6].  

In acidic medium – which is presented in the stomach – erythromycin is unstable, 

forming degradation products which exhibit lower antimicrobial activity [2, 7]. Erythromycin 

A is relatively stable in the pH range between 4 and 10 (with degradation of less than 5% in 

the incubation period of 48 hours), while at pH ≤ 3.0 degradation is rapid with pseudo-first 

order rate constants of 2.36 x 10-1 and 1.30 x 10-2 min-1 for pH 2.0 and pH 3.0, respectively 

[8]. In order to prevent the degradation of erythromycin in acidic media, derivatization 

(esterification or addition of salts) is necessary. Two esterified forms of erythromycin – 

erythromycin ethylsuccinate (EES, Fig. 1B) and erythromycin estolate – are generally used. In 

the case of oral administration, stearate salt or esterified pro-drug forms of erythromycin are 
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also used, while for intravenous application erythromycin gluceptate and erythromycin 

lactobionate are available [9].  

The incorrect use of antibiotics may leave residues in food products, thus causing 

undesirable effects on consumer health, e.g. allergic reactions and occurrence of resistance to 

certain antibiotics used in human medicine. Consequently, it is necessary to develop sensitive 

and reliable analytical methods for the monitoring of the concentration of antibiotics such as 

erythromycin in raw materials, biological samples and pharmaceutical dosage forms [10]. 

So far, the most frequently applied technique for the determination of erythromycin in 

different types of real samples (e.g. animal products, wastewater, river water, etc.) has been 

high performance liquid chromatography (HPLC) with tandem mass spectrometric detector 

[11-19]. Aside from the mentioned highly sophisticated detector, diode-array (DAD) [20, 21], 

chemiluminescence [22], fluorescence [23] and electrochemical [3] detectors have also been 

used. Additionally, spectrophotometric and conductometric methods for the estimation of 

erythromycin thiocyanate in both pure and pharmaceutical dosage forms were developed [24]. 

According to Europena Pharmacopeia 8 [25], the method of the determination of 

erythromycin and EES as well is based on liquid chromatography with UV detection at 215 

nm. To outline this method briefly, the column is filled with a styrene-divinylbenzene 

copolymer, the mobile phase consists of a mixture of 450.0 mL phosphate buffer, pH 8.0 for 

EES and 9.0 for erythromycin, 165.0 mL 2-methyl-2-propanol, 30.0 mL acetonitrile and 

355.0 mL of water, the injector volume is 100.0 µL for erythromycin/200.0 µL for EES, and 

the recommended column temperature is 70°C. 

As a possible alternative to the above mentioned procedures for the 

detectiondetermination of erythromycin, voltammetric techniques can also be used. Different 

types of voltammetric techniques are especially suitable for the monitoring of a wide range of 

electrochemically active organic compounds of biological importance, due to their fast rate of 

determination, sensitivity, low cost and simply sample pretreatment procedures [26, 27]. 

Based on the available literature data, the basic erythromycin compound showed oxidation 

and reduction signal(s) as well, and therefore different types of working electrodes have been 

applied till now for its determination: mercury electrodes in the case of reduction [28, 29, 30]; 

and carbon based materials as screen-printed graphite electrode [10], bare pretreated glassy 

carbon electrode [31], glassy carbon electrode modified with acetylene black nanoparticles 

[32] and gold electrode [33] all in the case of its oxidation.  

As for details concerning the reduction of erythromycin, a reduction peak at -1.43 V 

was observed using square wave adsorptive stripping voltammetry (SW-AdSV) and the 
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slowly dropping mercury electrode, in 0.1 mol L-1 ammonium acetate, pH 8.0, as the 

supporting electrolyte [28]. Adsorptive stripping voltammetry with linear scan mode (LS-

AdSV) is also applicable for the determination of erythromycin at a hanging mercury drop 

electrode, while one reduction peak was obtained at -1.20 V in 0.025 mol L-1 borate buffer, 

pH 11.6, with an LOQ of 2 x 10-7 mol L-1 [30]. It has recently been reported that, when using 

linear scanning polarographic method, the EES showed a remarkable signal at -1.64 V on the 

hanging mercury drop electrode in a phosphate buffer supporting electrolyte with a pH of 7.46 

[34]. The developed procedure has the following analytical parameters: LOD 7.5 µg mL-1
, 

linear range of measurements: 10-800 µg mL-1, and a relative standard deviation (RSD) of 

0.53%, The elaborated method found application in the determination of EES in Lijunsha 

tablets.   

It is well-known that mercury is one of the best electrode materials, but because of its 

toxicity there is a tendency to substitute mercury with other non-toxic or less toxic electrode 

materials.  One of the promising alternatives to the mercury electrodes is the group of 

amalgam based electrodes [35-57]. The main advantages of these electrodes are simple 

preparation and regeneration [26], the ability of this material to form amalgams with many 

metals/target ions, and the wide potential window in the negative potential range. A relatively 

new type of amalgam electrode is the renewable silver-amalgam film electrode (Hg(Ag)FE) 

with characteristics similar to the HMDE. The construction of the electrode provides the 

means to renew the amalgam film before each measurement and allows this process to be 

automated. Moreover, the renewal of the amalgam-film-based sensor surface usually provides 

good reproducibility and repeatability of the analytical signal [40]. It has successfully been 

used in the determination of trace levels of some metals, such as zinc [35, 43], copper [35], 

vanadium (V) [37], manganese (II) [38], molybdenum (VI) [39], uranium (VI) [40], 

chromium (VI) [41, 42], cobalt, nickel [45], lead, cadmium [43], gallium [36] and palladium 

(II) [44]. In addition, this electrode is suitable for the determination of different organic 

compounds [46-52, 56, 57] with characteristic electroactive groups in their structures, such as 

nitro compounds [46-48], guanidine [49, 50], quinone [57], some vitamins [56], 

pharmaceuticals like moroxydine [49] and doxorubicin [57], pesticides, e.g. neonicotinoid 

insecticides [46-48] and the fungicide blasticidin S [50] via direct voltammetric or adsorptive 

stripping voltammetric procedures.  

The aim of this work was to characterize EES, a real dosage form of erythromycin, 

and to optimize the SWV and SW-AdSV analytical methods for its determination at the 

Hg(Ag)FE. The applicability of the developed direct cathodic SWV and SW-AdSV methods 
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were tested for determination of EES in Eritromicin® tablets and in a spiked urine sample. 

The obtained voltammetric results were compared with the corresponding HPLC-DAD 

measurements. Additionally, 1H NMR measurements were performed to investigate the 

possible protonation of the tertiary amino group of the EES at different pH values, via the 

chemical shifts changes of the methyl protons of the mentioned amino group, which could 

have significant influence concerning the SW-AdSV measurements. 

 

2. Experimental 
 
2.1. Reagents and solutions 

All chemicals used were of analytical reagent grade. The stock solution of EES (the 

standard contained of 79.82% of erythromycin in form of EES) of 117.6 µg mL-1 was 

prepared by dissolving appropriate amounts of EES, kindly provided by Hemofarm a.d., 

Pharmaceutical - Chemical Industry (Vršac, Serbia) in the mixture of double distilled water 

and methanol (80% : 20%, V/V). Solution of pharmaceutical product of EES, Eritromicin® 

tablets (based on the declaration one tablet contained 250 mg of erythromycin in the form of  

EES, Hemofarm, Pharmaceutical-Chemical Industry  a.d., Vršac), concentration of 294.1 µg 

mL-1, was prepared dissolving the appropriate amount of tablet form in the mixture of double 

distilled water and methanol (65%: 35%, V/V).  

For voltammetric measurements Britton-Robinson buffer solutions were prepared 

from a stock solution containing 0.04 mol L-1 phosphoric acid (Merck, Darmstadt, Germany), 

boric acid (Merck) and acetic acid (Merck), respectively, by adding 0.2 mol L-1 sodium 

hydroxide (Merck) to obtain the required pH values, covering the pH range of 4.0-9.0. 

For the HPLC-DAD measurements phosphate buffer pH 8.0 was prepared from 0.02 

mol L-1 dipotassium hydrogen phosphate (Merck) and cc. phosphoric acid (Zorka Pharma, 

Šabac). 

The samples for the 1H NMR measurements were prepared in the presence of the 

Britton-Robinson buffers (pH: 6.4; 6.8; 7.0; 7.5 and 8.0) with an appropriate volume of D2O 

(Merck) 50% : 50%, V/V. In such solution 2 volume % of methanol (Merck) was added and 

the NMR reference standard DSS (4,4-Dimethyl-4-silapentane-1-sulfonic acid) too.  
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2.2. Apparatus 

Voltammetric experiments were performed on an AUTOLAB PGSTAT12 

electrochemical analyzer operated via GPES 4.9 software (Metrohm). The cell/vessel stand 

included a three-electrode system with a renewable Hg(Ag)FE (MTM Anko Instruments, 

Cracow, Poland [41]) of a 12-mm2 surface area as working, a saturated calomel electrode as 

reference, and a platinum auxiliary electrode. All potentials are quoted vs. SCE reference 

electrode. 

Comparative HPLC measurements were performed on an Agilent 1290 Infinity liquid 

chromatograph (Agilent Technologies Inc.), Zorbax Eclipse Plus C18 (2.1 mm x 50 mm, 1.8 

μm) column (Agilent) and DA-detector (Agilent 1290). 

The 1H NMR spectra were recorded on a Bruker AVANCE III HD 400 MHz 

spectrometer (Bruker), equipped with Prodigy cold probe.  

The pH measurements were made by using a combined glass electrode (Jenway), on a 

previously calibrated pH-meter (Radiometer). 

 

2.3. Procedures 

2.3.1. Voltammetry 

2.3.1.1. Characterization and determination of erythromycin ethylsuccinate in model 

solutions 

The SWV and cyclic voltammetric (CV) studies of the behavior of EES were carried 

out in the Britton-Robinson buffer supporting electrolytes pH 4.0-9.0. In case of the model 

system, the appropriate volume of EES stock solution was added by micropipette into the 

voltammetric vessel with double distilled water (5.0 mL) and corresponding Britton-Robinson 

buffer solution (5.0 mL). The surface of the Hg(Ag)FE required pretreatment before use [46, 

48, 57]. It was cleaned with 2% HNO3 for about 5 min and then covered again with amalgam 

by dipping it into the attached amalgam pool before each set of measurements. Furthermore, 

before starting measurements, the Hg(Ag)FE was electrochemically activated in the chosen 

supporting electrolyte by cycling its potential in the range from -0.20 to -1.60 V [46, 57] 

during 20 cycles. Between consecutive measurements, the sensor surface was renewed by 

covering it with amalgam from the pool. In the case of cyclic voltammetric experiments the 

scan rate was between 0.025 and 0.50 V s-1 in potential span from -0.75 V to -1.80 V with 

negative ongoing polarization, and the supporting electrolyte was Britton-Robinson buffer pH 
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7.0. As for SW-AdSV, the  Eacc values between -0.50 V and -1.50 V were investigated and for 

another key parameter the  tacc values from 0 s to 60 s were tested. In the case of the both 

voltammetric methods the LODs and LOQs were evaluated as the EES signal-to-baseline 

noise ratio of three and ten, respectively. 

2.3.1.2. Determination of erythromycin ethylsuccinate in spiked urine sample 

A fresh urine sample collected daily from healthy young female volunteer was 

analyzed without any conservation or other sample preparation steps. Determination of EES 

in spiked urine sample was performed by standard addition method. 100.0 µL of urine sample 

was added into the voltammetric vessel which contained 5.0 mL of Britton-Robinson buffer 

pH 7.0 and 5.0 mL of double distilled water. Spiked volume of EES with final concentration 

in the voltammetric vessel was 1.37 µg mL-1. After recording the voltammogram for such 

prepared model system, three consecutive standard additions were performed with following 

final concentrations of EES: 0.195; 0.389 and 0.583 µg mL-1. The measurement parameters in 

SW-AdSV were as follows: adsorption potential -1.05 V, adsorption time 5 s, quite time 5 s 

pulse amplitude 20 mV, step potential 5 mV, and step frequency 50 Hz. 

 

2.3.1.3. Determination of erythromycin ethylsuccinate in pharmaceutical preparation 

Standard addition method was also used for determination of EES content in 

Eritromicin ® tablets.  Appropriate volume of the solution of tablet form was injected into the 

voltammetric vessel contained 5.0 mL of Britton-Robinson buffer pH 7.0 and 5.0 mL of 

double distilled water. In the next steps four standard additions of EES were performed with 

following final concentrations in the voltammetric vessel: 2.85; 5.43; 7.81 and 9.99 µg mL-1. 

The measurement parameters in SWV were as follows: pulse amplitude 20 mV, step potential 

5 mV, and step frequency 50 Hz. 

 

2.3.2. Liquid Chromatography 

The conditions of reversed phase HPLC-DAD measurements were: mobile phase-

mixture of phosphate buffer pH 8.0 and acetonitrile (45% : 55%, V/V), flow rate 0.2 mL min-

1, injected volume of sample 20 μL, column temperature 25 °C and working wavelength of 

the detector 205 nm with reference wavelength at 500 nm. Samples were filtered before 

measurements through the syringe micro filter Millipore 0.22 µm (Millex). The LOD and 
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LOQ values were evaluated as the EES signal-to-baseline noise ratio of three and ten, 

respectively. 

 

2.3.3. 1H NMR measurements  

The 1H NMR measurements were performed in water suppressed working mode. The 

samples were prepared from the Britton-Robinson buffers (pH: 6.4; 6.8; 7.0; 7.5 and 8.0) with 

appropriate volume of D2O and methanol. In any case the concentration of EES was 24 mg 

mL-1. The EES solutions for analysis were prepared from commercial form of Eritromicin® 

tablets and were filtered with hydrophilic syringe filters (Millex, 0.22 µm). DSS was used as 

the internal standard for calibration. The 1H NMR measurement parameters were as follows: 

the standard Bruker pulse program (zgpr) was used for the water suppression, spectral 

window = 4800 Hz, 90○ pulse length 11.75 µs, 128 scans, sample temperature 298 K. 

 

3. Results and discussion 

 

The experiments encompassed the SWV and CV characterization of EES in the 

Britton-Robinson supporting electrolyte (pH 4.0-9.0) at the Hg(Ag)FE, the optimization of the 

analytical procedures for its determination by means of direct cathodic SWV and by SW-

AdSV in model solutions, and finally the utilization of the developed methods for the 

determination of the target analyte in a tablet form (Eritromicin®) and in a spiked urine 

sample.  

 

3.1. Voltammetric characterization of EES at the Hg(Ag)FE 

Since EES has remarkable signal at pH 7.46 with maxima at -1.64 V on Hg electrode 

[34] this macrolide derivative was investigated via basic SWV and CV methods at the widely 

used contemporary form of mercury-based electrodes, the Hg(Ag)FE. In the investigated 

fairly negative potential range from -0.75 V to -1.80 V, one reduction peak was obtained in 

the pH range of 5.0-9.0, while at around 4.0 no reduction peak was observed probably 

because of signal overlapping with hydrogen evaluation in such acidic media. Considering the 

fact that the investigated erythromycin was formulated in its esterified form as ethylsuccinate, 

the SWV characterization of succinic acid was also performed in the first step, under the same 
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experimental conditions as for EES, and the results for pH=7.0 were presented in Fig. 2. This 

Figure depicts the comparison of SW voltammograms of the EES and succinate solutions with 

the voltammogram of the blank containing the Britton-Robinson supporting electrolyte (pH 

7.0). As can be seen the addition of 30 µg mL-1 of succinic acid (curve 2) to the supporting 

electrolyte did not change the voltammogram of the blank (curve 1).  On both voltammetric 

curves one broad reduction peak was observed between -0.90  and -1.40  V, with the 

maximum at ca. -1.2 V. A similar peak was also observed earlier in the acetate buffer with a 

pH of 4.5 and phosphate buffer with a pH of 7.5, and this peak is the characteristic of the 

Hg(Ag)FE in such supporting electrolytes [47]. After the addition of EES to the Britton-

Robinson supporting electrolyte (pH=7.0), a new, well-developed reduction peak was 

observed with Ep = -1.67 V; this peak was separated from the signal of the blank.  

The pH of the supporting electrolyte strongly affects the shape and value of the peak 

current of the SWV reduction signal of EES. It is most likely that at pH < 5 (not showed), the 

peak of the target compound is completely overlapped by the current of the reduction of 

hydrogen ions. As it is depicted on Fig. 3 in the pH range from 5.0 to 6.0 the EES peak (Ep ≈ -

1.7 V) is poorly distinguished as a result of strong overlapping with the signal of hydrogen 

evolution. Higher pH values of the supporting electrolyte – between 6.8 and 9.0 – ensure a 

wider potential window till -1.75 V at the Hg(Ag)FE (see Fig. 3A), which allows well-

developed SWV signals of the target analyte in this fairly negative potential range (see Fig. 

3B). Increasing the pH of the investigated solution beyond this value diminishes the peak 

current of EES; for example, in a slightly alkaline media with a pH of 7.5 the EES peak 

current value is only half of that obtained at a pH of 7.0. Concerning the peak shape and 

intensity at pH 6.8 and 7.0, the signal in the neutral media is shifted with 20 mV positively vs. 

the signal at 6.8, and the potential window is wider in this supporting electrolyte with around 

additional 20 mV. This resulted in the best-shaped reduction peak of EES at pH=7.0.  

The peak potential of EES at the Hg(Ag)FE shifts to more positive potential values 

from -1.70 to -1.59 V with increasing pH of the supporting electrolyte (Fig. 4), which is in 

accordance with earlier reported phenomena of EES on Hg electrode [34]. For pH values that 

are close to 7, the slope of the Ep of EES vs pH plot changes, and therefore the pH 

dependence at the Hg(Ag)FE can be expressed by two equations: Ep = -1.735 V + 0.0066 

V/pH x pH (r = 0.987) and Ep = -1.981 V + 0.043 V/pH x pH (r = 0.998) between pH 5.0 and 

6.8 and 6.8 and 9.0, respectively. It can be underline that very similar results were obtained 

for EES on the hanging mercury drop electrode in the phosphate buffer supporting electrolyte 

between pH 6.83 and 9.34 [34], wherein the positive shift of the peak potential was also 
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observed with the increasing of the pH. In this paper reported slope of the peak potential and 

pH chart was 0.04246, which is in full agreement with the slope of the analogues correlation 

curve between 6.8 and 9.0 in the case of Hg(Ag)FE. As the possible reason of the positive 

shift of the peak potential on Hg electrode with increasing pH, the double layer capacitance 

change was considered, because in a neutral salt it increases [34], and in the case of 

Hg(Ag)FE, the reason for the described phenomena may be very similar. As it can be seen 

from the inset in Fig. 4, the reduction signal decreases significantly when the pH of the 

supporting electrolyte increases in the range between 7.0 and 9.0. Additionally, it should be 

emphasized that because of the overlapping character of the reduction signal caused by the 

target analyte with hydrogen evolution in acidic media, which results in the asymmetrical 

reduction signal between pH 5.0 and 6.0, it is not simple to determine the peak current 

maximum. Based on the above it can be concluded that protons are involved in the reduction 

mechanism. In any case, the most reliable reduction signal of EES was obtained at pH = 7.0 – 

taking into consideration the symmetry of voltammetric curve and the sensitivity – which can 

be thus considered the optimal value. For the basic electrochemical mechanism of the 

reduction of the target analyte at pH 7.0 the general scheme of keto group reduction can be 

considered in accordance with literature data concerning the reduction of carbonyl groups 

[58], and considering the fact that the number of the exchanged protons and electrons in the 

pH range between 6.8 and 9.0, based the slope of the Ep-pH plot which is close to the 

expected theoretical value of 59 mV/pH [59], is the same and thus the reduction pathway can 

be proposed as it is presented on Fig. 5. 

Cyclic voltammetric experiments were performed to investigate the possible 

adsorption effect of the EES molecules at Hg(Ag)FE. The CV curves were recorded in the 

potential span between -0.75 V and -1.80 V with scan rate from 0.025 to 0.50 V s-1, while the 

concentration of the EES was 25.9 µg mL-1 in the supporting electrolyte at pH 7.0. As in the 

case of the SWV results, only one reduction peak was observed, and this signal is without any 

counterpart during the potential scan in positive direction, which confirms, that in the 

investigated potential range at all the investigated scan rates the EES showed irreversible 

reduction process. This feature can be described as an adsorption controlled process because 

the obtained Ip values showed linear dependence from the investigated scan rates as follows: 

Ip = -0.0558 μA - 0.00278 μA/(mV s-1) x v while the coefficient of correlation was -0.995. 

The appropriate correlation was presented on the Fig. 6 together with the consideration of the 

results of Ip-v1/2 correlation. 
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Considering all of the above, it can be proposed that the EES molecules adsorb on the 

Hg(Ag)FE surface. Closely to pH 7 the EES is probably mainly in its protonated form via its 

tertiary amino group (with pKa 7.1 [60]), and the adsorption of the target analyte can be 

supported by positively charged EES and by the appropriate negative polarization of the 

electrode. In slightly alkaline media as pH 7.5  and at higher pH values the EES molecules are 

mainly in their neutral form, thus they have significantly lower affinity to the negatively 

polarized Hg(Ag)FE surface in comparison to the positively charged form of EES. To get 

deeper insight into the influence of the pH of the supporting electrolyte on the adsorption 

measurements the water suppressed 1H NMR experiments were performed to investigate the 

possible protonation of the tertiary amino group of the EES at applied pH values, via the  

chemical shifts changes of the methyl protons of the mentioned tertiary amino group. The full 
1H NMR spectrum of EES from its pharmaceutical preparation at pH 7.0 is illustrated at Fig. 

7A, and the signals of the mentioned methyl groups at different pH values ranging from pH 

6.4 to 8.0 are presented as Fig. 7B. In the case of tertiary amino group the protons from the 

two methyl groups have a complex and in some cases almost overlapped peak form, and have 

significantly different chemical shifts in the protonatedpositively charged and 

deprotonateduncharged form of the nitrogen atom. In the case of pH 6.4, 6.8 and 7.0 the 

chemical shifts for the most pronounced peak maxima are as follows: 2.84, 2.83, 2.83 ppm 

(Fig. 7B). Significantly different values were obtained in the case of pH 7.5 and 8.0 (2.80 and 

2.76 ppm, respectively), which can be explained by the fact that under such circumstances the 

amine nitrogen is mainly in its deprotonated form. Because in such cases the negative 

inductive effect of the nitrogen is not so expressed as it is in the case of protonated and 

positively charged form of the EES, the target protons on the methyl groups are more shielded 

by the electrons which is in accordance with the upfield shifts of the methyl signals (shifted to 

lower ppm values).  

Beside of the appropriate pH of the supporting electrolyte, which probably cause the 

protonation of the target molecules, as it is illustrated on Fig. 8, the adsorption/accumulation 

potential, Eacc, and adsorption/accumulation time, tacc, are the parameters which significantly 

influences the analytical signal intensity in the case of SW-AdSV experiments. It can be 

assumed, that at an appropriate potential value, probably the ketonic carbonyl group from the 

large lactone ring could be the first electroactive centre in the proton-driven reduction 

process.   

 The adsorption behavior of the target analyte was investigated at Eacc values between -

0.50 V and -1.50 V, and at tacc values from 0 s to 60 s. It was found that when Eacc was 
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between -0.50 V and -1.00 V the signal intensity was in general unchanged, but at potentials 

lower than -1.00 V the reduction signal intensity was changed, especially when appropriate 

accumulation time was selected (see on Fig. 8A). Namely, in the case of all investigated tacc 

depending on the applied potentials the 5 or 10 s is the appropriate measurement condition. In 

the cases from -1.00 V to -1.10 V the shorter tacc is the favorite. Although the positively 

charged EES can have higher affinity to the electrode surface with more negative polarization, 

the obtained signals suggested that at such potentials, among other possible effects, the 

competitive hydrogen evaluation can be expected which caused the Ip decrease. With 

increasing tacc the same effect can result the reduction signal decrease just in the case of the 

favored Eacc. The selected voltammetric curves, obtained at SWV (curves marked as 0 s) and 

SW-AdSV (curves marked as 5; 10 and 60 s) working modes at different Eacc are presented on 

Fig. 8B-D, the red curve (Fig. 8B) presents the signal obtained under optimized conditions. 

The presented curves served as illustration of qualitative behavior of the system, especially in 

the case of the direct SWV signals because under such investigated conditions the EES 

concentration is between the LOD and LOQ of the direct SWV method.    

These findings are in agreement with the earlier reported results of electrocapillary 

curve experiments, and the cationic, neutral and anionic surfactants influence on the reduction 

signal of EES, both sets of experiments reported by Zhang and Tuo at Hg electrode [34], 

where it was elaborated that the EES significantly reduce the surface tension of the drop, 

which indicating its adsorption, and the positive surfactant influence on the reduction peak 

decrease suggest that the EES molecule is adsorbed in its positive form.     

 

3.2. Development of direct cathodic SWV and SW-AdSV methods at Hg(Ag)FE for 
determination of erythromycin ethylsuccinate  

After the selection of the appropriate pH of the supporting electrolyte as pH 7.0, which 

is one of the key parameters regarding to the method’s sensitivity, and basic optimization of 

SWV parameters (not shown) the here presented direct cathodic SWV analytical method was 

developed. Under the optimized conditions, the SWV determination of EES was based on the 

linear relationship between the Ip of EES and the target analyte concentration from 4.53 to 

29.8 μg mL-1 (Fig. 9A, the inset showed the linear range of the calibration curve). The 

analytical parameters of this determination of EES are summarized in Table 1. The 

reproducibility of the method was estimated via six successive measurements of the solution 

containing 10.7 µg mL-1 EES (Fig. 9B) and the relative standard deviation (RSD) was found 
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to be 0.84%. In the case of the SW-AdSV measurements based on the optimized tacc and Eacc 

parameters as 5 s at -1.05 V, the analytical method was developed with the remaining 

operating parameters as in the case of direct cathodic SWV. The obtained voltammograms  

(Fig. 9C) showed that there is a linear correlation between the concentration of EES and Ip 

from 0.69 to 2.44 µg mL-1 (inset), at higher concentration the calibration curves showed 

saturation. The RSD of the method, based on the six times repeated SW-AdSV signals for 

1.09 μg mL-1 of EES at pH 7.0 (Fig. 9D) is 1.2%. Thanks to the adsorptive type of 

measurement the LOD of the method is lowered around six times. The appropriate SWV-

AdSV analytical parameters are given in the Table 1 as well. 

Comparative HPLC-DAD measurements were also performed. The optimized HPLC-

DAD method was applicable in a concentration range of EES that was twice as wide – from 

1.18 to 58.8 μg mL-1 – in comparison to the direct cathodic SWV one (for details see Table 1). 

The RSD of the method for 10.0 µg mL-1 of EES is 1.1%. Even though the HPLC-DAD 

methods very often have significantly lower LOQ values, in this case, because of the lack of 

the sensitive chromospheres the selected DAD working wavelength of 205 nm, the 

determination of target analyte is just with four times lower LOQ as it is the case of the 

developed direct SWV method, and nearly two times higher as it is case for SW-AdSV. 

Additional analysis of the recorded UV spectra suggest the 210 and 215 nm as the next 

possible working wavelengths, but after the optimization of the method, these wavelengths 

were found as the possible choice with a little bit higher LOQ value of the method. 

Although the HPLC-DAD method is applicable in wider concentration range, the 

developed voltammetric methods have some advantages such as suitability for the on-site 

analysis, requirements for very simple sample preparation procedures, low cost, fast response 

time and in the case of SW-AdSV, a lower LOQ. 

 

3.3. Determination  of  erythromycin ethylsuccinate in selected samples  

The elaborated voltammetric methods were tested for the determination of EES in the 

spiked urine sample (SW-AdSV) and in the tablet form Eritromicin® (SWV).  In the case of 

both type of samples the standard addition method was selected for the determination of the 

concentration/amount of active compound. 

3.3.1. Determination of erythromycin ethylsuccinate in spiked urine sample 
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The accuracy of the elaborated SW-AdSV method employing the Hg(Ag)FE was 

assessed by quantifying EES in a solution containing 10.0 mL of twice-diluted Britton-

Robinson buffer (pH 7.0), which was spiked with 100.0 µL of human urine and a known 

amount of 1.37 µg mL-1 EES (final concentration in voltammetric vessel). The sample was 

analyzed using the standard additions procedure because the matrix reduces the EES signal 

intensity. A typical standard additions plot and the series of SW-AdSV curves obtained after 

standard additions are presented in Fig. 10. 

 The contents of EES obtained in three repeated measurements (1.33, 1.36 and 1.47 µg 

mL-1, average EES content 1.39 µg mL-1, RSD 5.3%) are very close to the spiked values, 

which are equal to 1.37 µg mL-1. Beside the optimization of tacc and Eacc of the SW-AdSV 

additional simple sample preparation steps as liquid-liquid, or solid phase extractions can lead 

to the further improvement of the sensitivity of the method.  

 

3.3.2. Determination of erythromycin ethylsuccinate in pharmaceutical preparation 

After appropriate preparation of the solution from the tablet form, EES was 

determined in the commercial pharmaceutical product Eritromicin® at pH 7.0 by optimized 

SWV method at Hg(Ag)FE. In the depicted case (Fig. 11) the nominal concentration (based 

on the declaration of the manufacturer) of EES was 14.35 µg mL-1. After recording the 

baseline signal (curve 1) and  voltammogram of the sample of pharmaceutical preparation 

(curve 2) four consecutive standard additions were added (curves 3-6), so that the final EES 

concentration was in the range of 2.85-9.99 µg mL-1, which resulted in the found amount of 

14.26 µg mL-1 of the EES target analyte. The standard addition method was applied because 

the EES signal decrease was recognized, in comparison to the signals from the adequate 

model system, which can be explained by the matrix effect. 

The average content of the erythromycin in tablet form Eritromicin®, obtained by 

determination of EES, and later counted to erythromycin, by developed SWV method was 

251.2 mg (expressed as erythromycin) which is in good agreement with the declared content 

(250 mg expressed as erythromycin). Comparative reversed phase HPLC-DAD measurements 

were also performed, and the obtained results are elaborated in the Table 2. It was found that 

the reproducibility of the analytical signal, expressed as RSD is lower than 1.2 %. Having in 

mind the basic requirement of European Pharmacopeia 8 in term of errors in the accuracy of 

the measurements, both the elaborated analytical methods fulfilled these criteria, and 

confirmed that in the analyzed tablets the declared amount of erythromycin was found. 
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Having in mind the great potential of Hg(Ag)FE further exploratory work is planned 

in the term of widening its possible application area especially in the case of characterization 

and determination of selected macrolide antibiotics and other compounds of biological and/or 

environmental importance.  

 
4. Conclusions 

 Simple and fast SWV and SW-AdSV procedures using a contemporary renewable 

silver amalgam film electrode (Hg(Ag)FE) were developed for the characterization and  

determination of erythromycin ethylsuccinate (EES) in the Britton-Robinson buffer 

supporting electrolytes, and  the appropriate pH value for analytical method was found as 7.0. 

Based on the series of water suppressed 1H NMR measurements it was proved, that at the 

selected pH value for the electroanalytical measurements, the investigated analyte EES, 

mainly exists in protonated form via its tertiary amino group. This cationic form is assumable 

the favorite moiety in the optimized SW-AdSV measurements. The linear response was 

obtained in two concentration ranges, lower in the case of SW-AdSV from 0.69 to 2.44 µg 

mL-1 and higher in the case of direct cathodic SWV from 4.53 to 29.8 µg mL-1 – and the RSD 

did not exceed 1.5%. It was demonstrated that the elaborated methods, using the standard 

addition procedure, were useful for the determination of EES in the spiked urine sample (SW-

AdSV) and in the pharmaceutical preparation Eritromicin® (SWV). The results of the 

comparative HPLC-DAD measurements of EES concentration in model solutions and in the 

tablet form Eritromicin® were in good agreement with those obtained by means of the 

investigated voltammetric method at the Hg(Ag)FE.  

Further exploratory work is planned for expansion of application area of the 

Hg(Ag)FE in pharmaceutical analysis.  
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Figure captions 
 
Figure 1. Structure of erythromycin A (A) and erythromycin ethylsuccinate (B). 

Figure 2. SW voltammograms of: 1) Britton-Robinson supporting electrolyte, pH=7.0, 2) as 1 

+ (and) 30 µg mL-1 of succinate (added in the form of succinic acid), and 3) as 1 + 28.5 µg 

mL-1 EES. 

Figure 3. SWV signals recorded on the Hg(Ag)FE of: A) Britton-Robinson supporting 

electrolytes from pH 5.0 to 9.0 and B) same buffer solutions in the presence of 15.6 µg mL-1 

EES.  

Figure 4. Ep-pH  and Ip-pH (inset) dependences of erythromycin ethylsuccinate (c =  15.6 µg 

mL-1) in Britton-Robinson supporting electrolyte from pH 5.0 to 9.0.  

Figure 5. Possible proposed reduction pathway of erythromycin ethylsuccinate at pH 7.0. 

Figure 6. Linear plot of the reduction peak current (Ip) vs. the potential scan rate (ν) from 

0.025 V s-1 to 0.50 V s-1 and the illustration of the obtained results in the case of Ip vs. v12 

correlation for Britton Robinson supporting electrolyte pH 7.0 with 25.9 μg mL-1 EES. 

Figure 7. 1H NMR spectra of EES in Britton-Robinson buffer with D2O at different pH 

values: A) The full water suppressed 1H NMR spectrum of EES in D2O (containing MeOH 

and DSS) at pH 7.0; B) Section plots for N,N-dimethyl signals at pHs 6.4, 6.8, 7.0, 7.5 and 

8.0.  

Figure 8. Influence of the accumulation potential and accumulation time on the reduction 

signal of EES (c = 1.96 µg mL-1) in Britton-Robinson supporting electrolyte pH 7.0: A) 

comparison of the Ip obtained at  different tacc at 0; 5;10, 30, and 60 s at selected Eacc (1) -1.00; 

2) -1.05; 3) -1.10; 4) -1.15 and 5) -1.20 V), and B-D some the illustrative voltammetric 

signals obtained at selected accumulation potentials (the selected accumulation times are 

marked on the curves in s) at:  B) -1.05 V, C) -1.15 V and D) -1.20 V. 

Figure 9. Characteristics of the developed analytical methods at the Hg(Ag)FE in Britton-

Robinson buffer with pH 7.0: A) SWV signals recorded in the concentration range of EES 

4.53-29.8 µg mL-1 (inset: corresponding calibration curve), B) reproducibility of the direct 

SWV analytical signals for 10.7 µg mL-1 EES (6 repetitions), C) SW-AdSV signals in the 
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concentration range of EES 0.69-2.44 µg mL-1 (inset: corresponding calibration curve), D) the 

reproducibility of the SW-AdSV analytical signals (6 repetitions) for 1.09 µg mL-1 EES. 

Figure 10. An example of EES quantitation in the spiked urine sample by SW-AdSV on 

Hg(Ag)FE. Bottom to top: Britton-Robinson supporting electrolyte with urine sample (dashed 

line); as dashed line + 1.37 µg mL-1 EES and three successive standard additions with final 

concentrations of 0.195; 0.389 and 0.583 µg mL-1 EES. Inset: analytical curve. 

Figure 11. Determination of concentration of EES in pharmaceutical preparation Eritromicin®  

by standard addition method. SW voltammograms of baseline (1), sample of commercial 

formulation (2) four standard addition of EES (3-6, final concentrations in the voltammetric 

vessel : 2.85, 5.43, 7.81 and 9.99 µg mL-1) and the appropriate analytical curve in the inset. 
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Figure 3 
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Figure 4 
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Figure 6 
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Figure 8 
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Figure 9 
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Figure 10 
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Table 1. Analytical parameters for direct cathodic SWV and SW-AdSV methods obtained on 
Hg(Ag)FE for determination of EES together with comparative data of HPLC-DAD method, 
r: linear regression coefficient; LOD: limit of detection; LOQ: limit of quantitation 

Parameters Hg(Ag)FE-SWV  
Hg(Ag)FE-SW-

AdSV  
HPLC-DAD 

Linear concentration 
interval (µg mL-1) 

4.53-29.8 0.69-2.44 1.18-58.8 

Intercept   0.473 (µA) 0.100 (µA) -1.583 (mAUs) 
Slope  -0.235 (µA mL µg-1) -1.577 (µA mL µg-1) 8.163 (mAUs mL µg-1) 

Correlation 
coefficient 

-0.995 -0.997 0.999 

LOD (µg mL-1) 1.36 0.21 0.35 
LOQ (µg mL-1) 4.53 0.69 1.18 

 

 

 

 

Table 2. Determination of erythromycin in form of EES and expressed as erythromycin in 
Eritromicin® tablets. The declared amount of the active compound is 250 mg expressed as 
erythromycin/tablet 

Parameters 
Found (mg/tablet) by 

Hg(Ag)FE-SWV 
Found (mg/tablet) by 

HPLC-DAD 

Sample number 1 248.5 252.2 
Sample number 2 253.0 246.9 
Sample number 3 252.1 250.5 

Average value 251.2 249.9 
RSD (%) 0.95 1.12 

 

 


