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Eggshell waste is among the most abundant waste materials coming from food

processing technologies. Despite the unique properties that both its components

(eggshell, ES, and eggshell membrane, ESM) possess, it is very often discarded without

further use. This review article aims to summarize the recent reports utilizing eggshell

waste for very diverse purposes, stressing the need to use amechanochemical approach

to broaden its applications. The most studied field with regards to the potential use of

eggshell waste is catalysis. Upon proper treatment, it can be used for turning waste oils

into biodiesel and moreover, the catalytic effect of eggshell-based material in organic

synthesis is also very beneficial. In inorganic chemistry, the eggshell membrane is very

often used as a templating agent for nanoparticles production. Such composites are

suitable for application in photocatalysis. These bionanocomposites are also capable

of heavy metal ions reduction and can be also used for the ozonation process. The

eggshell and its membrane are applicable in electrochemistry as well. Due to the high

protein content and the presence of functional groups on the surface, ESM can be

easily converted to a high-performance electrode material. Finally, both ES and ESM

are suitable for medical applications, as the former can be used as an inexpensive

Ca2+ source for the development of medications, particles for drug delivery, organic

matrix/mineral nanocomposites as potential tissue scaffolds, food supplements and

the latter for the treatment of joint diseases, in reparative medicine and vascular graft

producing. For the majority of the above-mentioned applications, the pretreatment of the

eggshell waste is necessary. Among other options, the mechanochemical pretreatment

has found an inevitable place. Since the publication of the last review paper devoted to the

mechanochemical treatment of eggshell waste, a few new works have appeared, which

are reviewed here to underline the sustainable character of the proposed methodology.
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The mechanochemical treatment of eggshell is capable of producing the nanoscale

material which can be further used for bioceramics synthesis, dehalogenation processes,

wastewater treatment, preparation of hydrophobic filters, lithium-ion batteries, dental

materials, and in the building industry as cement.

Keywords: eggshell, eggshell membrane (ESM), mechanochemistry, catalysis, electrochemistry, biomedical

applications, sustainable resources, waste treatment

INTRODUCTION

Eggshell is one of the most common forms of food waste.
Its production worldwide is 50,000 t per year (Palka, 2006). It
basically consists of two parts: eggshell itself, which is mainly
composed of calcium carbonate and eggshell membrane, which
is a proteinous structure.

The chemical composition of eggshell has been reported many
times (Nakano et al., 2003; Nys et al., 2004; Rose and Hincke,
2009). All reports agree that the main component is calcium
carbonate in the form of calcite, its contribution is usually
reported to be in the range of 94–97% (Burley and Vadehra,
1989; Stadelman, 2000; Hunton, 2005). The other constituents
encompass Ca3(PO4)2 (1%), MgCO3 (1%), and organic material
(4%) (Stadelman, 2000).

Apart from mainly inorganic ES, the eggshell membrane
(ESM) is of purely organic character. It is composed of
different proteins, the composition of which has been extensively
discussed in the literature (Leach, 1982; Wong et al., 1984;
Arias et al., 1991; Nakano et al., 2003; Zhao and Chi, 2009;
Hincke et al., 2012; Kaweewong et al., 2013). The reported
content of individual amino acids in eggshell membrane also
varies in different literature sources. According to Nakano et al.
(2003), themost abundant amino acids are proline, glutamic acid,
and glycine.

The morphology of eggshell has been nicely described in
Rodriguez-Navarro et al. (2007) and Zhou et al. (2010). It
contains mainly calcite crystals, which are arranged into surface,
palisade, and mammillary layers with different morphology
and porosity. The eggshell membrane is a fibrous structure
and the fibers are known to decrease in the diameter from
outside of the egg to the inside (Zhou et al., 2010). They are
also known to possess core-mantle structure, which differs in
chemical composition (Li et al., 2011). The eggshell membrane
can be subdivided into more structures- outer membrane, inner
membrane and limiting membrane (Hincke et al., 2000). The
sublayers of the ESM slightly differ in the individual amino acid
content (Nakano et al., 2003). The largest difference has been
observed in the case of leucine, which is more abundant in the
outer ESM.

Although this paper is materials science-oriented, at least a
short note about the function of eggshell and the membranes
during the development of chicken embryo needs to be
mentioned. Eggshell provides a barrier against pathogens and
because of its porosity, it is permeable for gas exchanges.
However, after fertilization, the eggshell starts to be degraded
as the calcium is used for the proper development of the chick
embryo. As a result of this, the bottom part of the mammillary

layer is dissolved and eggshell membrane detaches (Hincke
et al., 2019). This can be nicely seen from Figure 1, where the
comparison of the morphology of ES/ESM of a fertilized and
unfertilized egg is provided.

There are many review papers devoted to the eggshell waste
showing their wide application potential in materials science
(King’ori, 2011; Marwaha et al., 2018; da Silveira Pinto and de
Souza, 2019; Konwar et al., 2019; Waheed et al., 2019, 2020;
Girelli et al., 2020; Hamada et al., 2020; Hart, 2020). The use
of eggshell waste as a food supplement (Waheed et al., 2019),
for organic synthesis (da Silveira Pinto and de Souza, 2019),
catalysis (Tan et al., 2015a; Laca et al., 2017), and adsorption
(Carvalho et al., 2011; Guru and Dash, 2014; He et al., 2016) has
been already reviewed in the past. Some technologies applying
eggshell are patented (Balassa, 1971; Dawson, 2003; Cordeiro
and Hincke, 2011; Schmidt et al., 2017; Kenny et al., 2018;
Blaine and Thang, 2019; Huang et al., 2020). The proteinous
eggshell membrane also has a great potential to be applied in
materials science (Baláž, 2014), and its soluble form is applicable
for tissue engineering (Sah and Rath, 2016). This contribution
aims to shed a light on recent achievements in using eggshell
waste in the field of materials science, namely targeting the
fields of catalysis, electrochemistry, and medical applications.
In the last part, an update on the recent publications utilizing
mechanochemical approach for the treatment of eggshell
waste is provided.

EGGSHELL IN CATALYSIS

Due to the remarkable importance of bioactive compounds for
the chemical, pharmaceutical, cosmetic, and food industries,
finding environmentally friendly synthetic strategies involving
catalytic steps represents a key task for a sustainable
development. In this regard, several factors need to be
considered, including not only the green character of the
catalytic materials but also the environmental benefits and
the cost and energy efficiencies of the synthetic methodology
for catalysts preparation. Biomass transformation toward
advanced nanocatalytic systems has been demonstrated to
be a very valuable option, which still requires further efforts
in order to achieve optimized protocols and highly versatile
and appealing materials. The suitable chemical composition,
structural, morphological, and textural properties of eggshell are
important to promote different catalytic reactions. Depending
on the desired applications field, eggshell could be treated
using different methods to obtain a catalyst with well-defined
properties. The eggshell treatment methods may be divided into
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FIGURE 1 | Ground and polished sections and scanning electron microscopy (SEM) images of the eggshell (ES) and its membranes in unfertilized (left) and fertilized

egg (right), showing dissolution of the innermost portion of the ES and detachment of the membranes during incubation of the fertilized egg. Brackets- dissolved

mammillary tips; asterisks- intact mammillary tips; arrows- residual membrane fibers. ED17 stands for day 17 of incubation. Scale bars, 10µm (Hincke et al., 2019).

simpler ones (preceded by washing, cleaning, and drying), which
include only thermal treatment (calcination in a muffle furnace
in the oxygen or inert atmosphere in the temperature range 600–
1,000◦C) or more complex methods, which include chemical
reaction, hydration, dehydration, precipitation, co-precipitation,
deposition, sol-gel, and interaction between two components
(one of which is mainly catalytic support). In order to avoid some
toxic salt solutions and save energy, there are some waste-free
and low-energy demanding techniques for catalyst synthesis,
such as mechanochemical one. It will be shown below that the
attention of many researchers is focused on the utilization of
eggshell in different environmentally beneficial processes.

Synthesis of Bioactive Compounds and the
Eggshell-Based Catalysis in Organic
Synthesis
Eggshell-derived nanocatalysts have been reported for the
synthesis of various bioactive compounds, such as chromenones,
pyran derivatives, polyhydroquinolines, aromatic aldehydes,
benzothiazoles, and carbohydrates (Laca et al., 2017).

N-heterocycles, such as nitrogen-containing phthalazine
compounds, could have potential applications as antimicrobial,
antioxidant, and anti-convulsant agents. The synthesis of this
family of compounds is achieved through a multicomponent
reaction employing heterogeneous catalytic systems. For
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instance, the use of eggshell powder as a catalytic material
for the synthesis of pyrazolo-phthalazine derivatives via four-
component condensation through a Knoevenagel–Michael
reaction has been reported. Remarkably, the aforementioned
reaction was performed in water, as a green solvent, and under
moderate conditions, in terms of temperature and reaction
time. Under the aforementioned parameters, eggshell powder
exhibited good catalytic performance, achieving 93–98%
yield of the desired products. More importantly, as one of
the most valuable possibilities that heterogeneous catalysis
offers, recyclability of the material was carried out for four
cycles without a considerable loss of activity (Kerru et al.,
2020). Moreover, spiro-heterocycles, due to their biological
activity, could also be employed for a wide range of applications
as analgetic, fungicidal, and antibacterial agents. Such kind
of heterocycles have been prepared by a three-component
reaction, passing as well through a Knoevenagel condensation
and a Michael addition, which require a catalytic system. In
this sense, milled eggshell has served as an active catalyst,
displaying both good catalytic activity and stability over
five reaction cycles (Youseftabar-Miri, 2019). Milled and
calcined eggshell residues have been also used for Knoevenagel
condensation of aromatic aldehydes, which could give rise
to a myriad of organic compounds with pharmacological
features, such as benzylidenepropanedinitrile (Patil et al., 2013).
Similar eggshell-based materials have been demonstrated to be
potential candidates as catalytic materials for benzothiazoles
preparation. These molecules are important bioactive scaffolds
with antitumor, antiallergic, antidiabetic, and antimicrobial
agents (Borhade et al., 2016).

In the aforementioned cases, the catalysts were prepared by
simply milling, usually using a mortar and pestle, which certainly
are one of the least expensive tools in mechanochemistry.
However, the use of such instruments possesses several
disadvantages, since it is not possible to precisely control
milling conditions and therefore material reproducibility is
compromised. Looking forward to overcoming these issues,
several reports in the literature have considered the use of ball
milling for the preparation of similar materials. In this sense, the
ball milling assisted synthesis of nano-CaO derived from eggshell
residues for the solventless preparation of pyrano[4,3-b]pyran
derivatives has been reported. Such a catalyst-design strategy has
a strong sustainable character, since it combines the use of a
readily available waste, as CaO precursor, with the employment of
a solvent-free preparation procedure. This study also considered
the effect of the mechanochemical approach in the CaO particle
size and consequently in the catalytic performance, revealing
that longer milling times resulted in smaller catalyst particle
size and higher product yield (Mosaddegh and Hassankhani,
2014). Mechanochemical methods have also been employed for
the preparation of nano-bio calcite (CaCO3), employing eggshell
as a green source. Such material has demonstrated to be an
efficient catalytic system, in terms of activity and reusability,
for the solvent-free synthesis of pyrano[4,3-b]pyrans at 120◦C.
Outstandingly, the eggshell derived material displayed higher
surface area and improved catalytic results, in comparison with
the commercially available CaCO3, validating the catalyst design

and the efficient use of eggshell as CaCO3 precursor for organic
synthesis applications (Mosaddegh et al., 2013).

Besides mechanochemistry, also other methodologies have
been employed for the synthesis of eggshell derived materials,
including ultrasound treatment and impregnation approaches.
For instance, nano-eggshell powder has been prepared through
an ultrasound-assisted procedure in a CH2Cl2 solution. The
catalytic behavior of the obtained sample was evaluated
in the thermal-assisted solventless condensation reaction of
α- or β-phathol, malononitrile, and aromatic aldehydes, to
obtain 2-aminochromenes, showing high product yields in
short reaction times. 2-aminochromenes possess a wide range
of applications due to their antioxidant, antiviral, anti-
tubulin, antidepressant, and antihypertensive activities, among
others. The sonochemically prepared nano-eggshell powder
exhibited enhanced catalytic performance in comparison with
the ultrasound-treated CaCO3 (Mosaddegh, 2013).

Eggshell as a catalyst for base-catalyzed reactions can be also
applied for the production of important industrial chemicals,
such as dimethyl-carbonate, oximes, and glycerol oligomers. In
order to avoid some toxic chemicals, such as dimethylsulfate
and methylhalides in methylation reactions and phosgene
in polycarbonate and isocyanate synthesis, dimethylcarbonate
presents a suitable chemical that meets many aspects of
sustainable and green chemistry (Sankar et al., 2010). In Gao
and Xu’s (2012) study, the successful dimethylcarbonate synthesis
was performed by the reaction between propylenecarbonate and
methanol in the presence of calcined eggshell as a catalyst. In
this reaction, the catalyst exhibited high activity (achieved yield
was 75%) and suitable stability (five reaction cycles). Despite
the presence of impurities (Mg and P) in the final catalyst,
the catalytic activity remained unchanged. Another group of
compounds important for various organic syntheses (preparation
of nitriles, amines, nitro compounds, paracetamol, oxime ethers,
azatricyclic core of (±)-halichlorine, and amides), which may
be obtained in the process catalyzed with eggshell, are oximes.
Using eggshell-based catalyst prepared by alkali and alkali-
thermal treatment, oximes yield increased from 17 to 20 times
(depending on the conditions of the treatment procedure), in
comparison with the non-catalyzed process, respectively (Taleb
et al., 2017). The suitable catalytic activity with prepared catalysts
was achieved even after seven cycles, whereas the activity drop
was slightly larger for alkali-thermal treated eggshell than for
only alkali-treated one. The eggshell catalyst was also helpful in
the reaction of glycerol-oligomers production, as its presence led
to the 3,5-fold increase of reaction yield for glycerol conversion
and 1.5-fold increase for oligomers yield in comparison with the
non-catalyzed process (Barros et al., 2017). However, due to high
calcium leaching in the reaction mixture at reaction conditions
used (catalyst loading of 2 wt% and temperature of 220◦C), the
catalyst exhibits low stability.

Wastewater Treatment: Opportunities in
Photocatalysis
Eggshell-supported semiconductor materials have also been
employed for photocatalysis, which is an area of catalysis
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FIGURE 2 | Schematic illustration of photocatalytic processes on the

eggshell-modified surface (blue spheres correspond to photocatalytically

active semiconductor nanomaterials).

with an intrinsic environmentally friendly nature, where the
rate of the chemical reaction is driven by the absorption of
light irradiation by a semiconducting material (photocatalyst)
(Rodriguez-Padron et al., 2020). Eggshell residues have been
employed either as support of semiconductor materials, or as
a biotemplate for the synthesis of semiconductor samples. As
shown in Figure 2, the absorption of ultraviolet, visible or
infrared radiation gives rise to the generation of holes and
electrons, which could initiate oxidative and reductive reaction
pathways, respectively (Rodriguez-Padron et al., 2019). However,
surface or volume recombination phenomenon could occur,
diminishing the photocatalytic activity of the samples. The
efficiency of the photocatalytic process will depend on the
semiconductor material. It should be also highlighted that when
looking for more sustainable protocols, semiconductors able to
absorb visible light are highly desirable (Munoz-Batista et al.,
2018). Wastewater treatment is one of the main applications
of photocatalytic processes, which could not only result in the
degradation of pollutants but also in their transformation into
valuable chemicals. Nowadays, the presence of dyes and organic
compounds in wastewater from the pharmaceutical and textile
industries constitute amajor concern and an ecological challenge.
For instance, the presence of dyes in wastewater could negatively
affect the photosynthetic function of plants, and aquatic life by
decreasing light penetration and oxygen consumption (Holkar
et al., 2016).

Among the possible semiconductors that could be employed
in photocatalytic applications, sulfides have risen as suitable
materials for several reactions. For instance, various transition-
metal sulfides, including ZnS, Cu2S, CdS, In2S3, WS2, and MoS2,
have been reported as effective photocatalysts (Rodriguez-Padron
et al., 2020). In this sense, Luque et al. have developed an efficient
photocatalytic system based on copper sulfide and calcium
carbonate, employing eggshell waste as a well-known source of

CaCO3 (Zhang et al., 2020b). In this work, eggshell is employed
as a sustainable support, allowing the proper deposition of CuS
nanoparticles, avoiding possible sintering effects, as indicated in
the SEM-mapping analysis and facilitating the recovery and reuse
of the sample. In addition, the presence of CaCO3 also resulted in
the formation of reactive •CO3

− species, which participate in the
catalytic processes. CaCO3/CuS nanocomposites were prepared
by an impregnation method, after eggshell residues, used as
a template, were powdered and homogenized. The obtained
samples were tested in the Near-infrared (NIR) light (according
to their absorption in the NIR and visible regions) induced
photocatalytic degradation of 4-nitrophenol (4-NP), which is
a typical water pollutant and could cause some alterations in
human endocrine systems (Zhang et al., 2020b) (Figure 3A).
The reduction of 4-NP gives rise to the formation of 4-
aminophenol (4-AP), which in turn is a valuable intermediate
in the chemical industry, with applications in the production of
valuable materials, such as analgesic and antipyretic drugs and
anti-corrosion substances.

Lead sulfide is another semiconductormaterial, which has also
been used, in combination with calcium carbonate from eggshell
wastes, for solar light assisted photo-degradation of tetracycline
hydrochloride (Zhang et al., 2020a). Interestingly, this work
provides insights into the photocatalytic reaction mechanism
of carbonate-based composite materials, where besides •O2

−,
•CO3

− also acts as an active species. These results could be
understood considering that PbS excitation gives rise to electron-
hole pairs, and particularly the generated holes participate in the
oxidation of H2O into •OH. Such radicals react with carbonate
and bicarbonate ions to form •CO3

−(Zhang et al., 2020a)
(Figure 3B).

Eggshell residues modified with polyethyleneimine (PEI),
have also been used as support for the deposition of titania
(TiO2) nanoparticles (Li et al., 2017). The modification with
PEI provided amine groups on the surface of the eggshell
membrane, which further favors the interactions with TiO2.
The obtained material displayed good photocatalytic behavior
for the degradation of pollutants, in particular Rhodamine B,
which is a common dye in wastewater (Li et al., 2017). In
addition, ZnO-based materials have been broadly studied for
photocatalytic applications, as an alternative to titania. The
similar band gap energy, together with the higher absorption
efficiency under sunlight irradiation of ZnO (in comparison to
TiO2) open up new possibilities for its application for visible light
photocatalysis. Eggshell residues have been also used as support
for ZnO semiconductor material. For instance, Danish et al. have
reported the preparation of ZnO-CuO-supported on eggshell
for photocatalytic degradation of dyes and organic compounds
(Khairol et al., 2019a). The designed material displayed good
results for the degradation of methylene blue, congo red, and
phenol, among others, suggesting that it could be effectively used
for wastewater treatment (Khairol et al., 2019a,b).

Nanocomposite materials based on ZnO and CuO employing
eggshell residues as biotemplate have also been reported and
tested as potential photocatalytic systems for the reduction of 4-
nitrophenol. Remarkably, the aforementioned pollutant could be
completely degraded by using CuO/ZnO/eggshell sample, within
8min under light irradiation, most likely due to the efficient
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FIGURE 3 | (A) Schematic representation of 4-NP degradation using CaCO3/CuS. Reprinted from Zhang et al. (2020b), Copyright (2020) American Chemical Society;

(B) Illustrative degradation of TC-HCl over PbS/CaCO3 catalyst. Reprinted from Zhang et al. (2020a), Copyright (2020), with permission from Elsevier; (C) Schematic

representation of 4-NP degradation using CuO/ZnO/eggshell. Reprinted by permission from Springer Nature Customer Service Centre GmbH: Springer Nature (Zhang

et al., 2019a), Copyright (2019).

charge separation and the good absorbance features. Moreover,
the catalyst exhibited a good stability over 5 reaction cycles,
demonstrating to be a sustainable and effective candidate for
photocatalytic degradation of pollutants (Zhang et al., 2019a)
(Figure 3C). Besides their application for 4-NP reduction, similar
materials have been also used for the photocatalytic degradation
of methyl orange, achieving excellent results (He et al., 2019).

Furthermore, Yassein et al. have investigated the reduction
of 4-NP toward 4-AP using CuO-eggshell nanocomposites
(Sajadi et al., 2018). In this case, the effect of NaBH4 in the
reaction media was also studied, indicating that the reaction
proceeds with the absorption of 4-NP and hydrogen over the
metal surfaces, electron transfer from BH−

4 to 4-NP through
CuO and final desorption of 4-AP. More importantly, CuO-
eggshell nanocomposites displayed better catalytic performance
in comparison with pure copper oxide, also indicating a
synergistic effect between CuO nanoparticles and eggshell
component (Sajadi et al., 2018).

Moreover, calcium oxide nanoparticles derived from eggshell
residues have also been employed as a catalytic material for
the degradation of dyes, including methylene blue and toluidine
blue. In this regard, Rajasekaran et al. performed a parametric
analysis, considering several factors affecting the degradation rate
such as catalysts loading, dye concentration and pH (Vanthana
Sree et al., 2020). The kinetics of dye degradation over eggshell
derived CaOmaterial was also investigated in this work, revealing
that the reaction followed a pseudo-first order. In addition,
the scavenging analysis was performed for methylene blue
degradation, indicating that •O−

2 are the primary active species
in the aforementioned photocatalytic process. The eggshell-
derived material exhibited outstanding stability within seven
reaction cycles, demonstrating to be an excellent candidate for
wastewater treatment and dye degradation (Vanthana Sree et al.,
2020). Similarly, CaO nanocrystals derived from eggshell residues
by thermal annealing have been used for the sunlight-assisted
photocatalytic degradation of indigo carmine. In this work,
the authors further modified the calcium oxide material with
silver nanoparticles. However, no considerable differences were
observed for both materials (CaO nanocrystals and Ag@CaO

composite) in the photocatalytic dye degradation. In any case,
unmodified calcium oxide nanocrystals exhibited a noticeable
photocatalytic activity, with percentages of dye degradation
around 99% (Alsohaimi et al., 2020).

Other Environmentally Beneficial
Applications in Catalysis
Besides all the possibilities of the use in catalysis mentioned so far,
eggshell-derived materials can be also applied in a conventional
heterogeneous catalysis. For instance, bionanocomposites based
on eggshell as a bioscaffold and noblemetal (Pt, Pd) nanoparticles
have been synthesized and used for catalytic reduction of
Cr(VI) to Cr(III) in aqueous solution, employing formic acid
as a reducing agent (Figure 4). Importantly, metal nanoparticles
were found to be well-dispersed and maintained good stability
on the eggshell based support. It is well-known that Cr(VI)
species are serious environmental pollutants, which are present
in wastewater from several industries. Indeed, hexavalent
chromium could have mutagenic and carcinogenic effects on
human health. In turn, chromium (III) species are much less
toxic and are used to form insoluble hydroxides. Therefore, the
reduction of Cr(VI) into Cr(III) is a promising strategy for water
remediation and this could be achieved using Pt/Pd nanoparticles
embedded on the eggshell membrane (Liang et al., 2014).

Eggshell-derived materials functionalized with copper and
iron oxide at different concentrations have been also designed
for the application in the catalytic wet oxidation of humic acid (a
refractory compound present in industrial wastewaters) (Oulego
et al., 2020). In this work, it was found that copper-modified
eggshell showed enhanced catalytic activity in comparison
with unmodified eggshell, most likely due to the better metal
distribution on the eggshell support. Interestingly, eggshell by
itself could also be employed to degrade humic acid and, even
if less effectively, this option should be considered for future
works due to the cost-efficiency of the catalyst design (Oulego
et al., 2020). In another example, Asgari and coworkers have
reported the preparation of carbon-doped magnesium oxide on
eggshell powder as an efficient catalyst for the ozonation process
to treat real wastewater from the textile industry, displaying
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improved results in comparison with commercially available
activated carbon (Asgari et al., 2019).

In summary, eggshell-derived samples have a broad range
of opportunities in catalytic and photocatalytic processes
for wastewater treatments. Such materials include calcium
oxide, calcium carbonate or even eggshell without exhaustive
treatments. In particular, for photocatalytic reactions employing
calcium carbonate, it has been demonstrated that •CO3

− species
also participate in the reaction mechanism. The eggshell-based
catalysts could act either as efficient support or active species.
Eggshell residues certainly represent an outstanding alternative
with unlimited opportunities to materials traditionally applied
in catalysis.

Eggshell as a Biodiesel Synthesis Catalyst
The Importance of Pretreatment

It is evident that calcium oxide represents a promising catalyst
for biodiesel production due to many advantages (high catalytic
activity, low solubility in methanol, non-toxicity, low price,
availability in nature, and being a waste material) (Marinkovic
et al., 2016; Marwaha et al., 2018). In the case of eggshell
utilization to obtain active catalysts, the starting material was
mainly thermally treated. Namely, in the synthesis process,
the pre-treatment stage is very important due to the fact that
eggshell waste contains different impurities, such as the eggshell
membrane, which must be removed before the calcination
process. The eggshell membrane can be partially carbonized
during the calcination process, whereby the obtained carbon
can strongly influence the development of the porous network
system inappropriate for large organic molecules, such as
triacylglycerols. The calcination process is carried out mainly
in the muffle furnace in the temperature range between 850
and 950◦C in different atmospheres (N2 and O2 both static
and flow) (Salaudeen et al., 2018; Lima and Perez-Lopez, 2020),
where a complete conversion of carbonate into oxide form can
be achieved. Calcination conditions affect the textural properties,
especially the specific surface area. In (Lima and Perez-Lopez,
2020), it was shown that the low specific surface area of the
raw eggshell (1.3 m2 g−1) was increased almost 10 times by
calcination in the flow of nitrogen. The specific surface area
increase (albeit about five times smaller) was also achieved using
calcination in the flow of oxygen. On the other hand, calcination
of eggshell in the static oxygen atmosphere did not affect the
specific surface area at all. Additionally, the study (Salaudeen
et al., 2018) showed that calcination in the flow of carbon-dioxide
is very slow and leads to incomplete conversion (max. 21 wt%)
of calcium carbonate into calcium oxide due to the increase
of CO2 partial pressure. Many studies showed that eggshell-
derived calcium oxide exhibits high catalytic activity. However,
low specific surface area, a non-uniform basic active sites
distribution, non-defined porous network of pure and only partly
calcined calcium oxide lead to low catalytic activity. Also, only
partly calcined eggshell exhibits a higher tendency to leaching
into reaction mixture, whereby catalyst becomes non-stable and
unusable in the next reaction cycles. In order to avoid such
undesirable behavior, more complex synthesis procedure should
be used. Better textural, morphological, and basic properties

of calcined eggshell can be obtained by hydration-dehydration
(Yoosuk et al., 2010) or impregnation of calcium oxide on a
suitable support, whereby it is important that suitable interaction
between active species and support is achieved.

Biodiesel Production Results

The study (Pavlovic et al., 2020) showed that pure calcined
eggshell exhibits great catalytic potential in biodiesel production.
The catalytic activity and stability increased especially if the
calcium oxide is dispersed over catalytic support, whereby the
leaching of the active species is significantly reduced. In the same
study, it was shown that pure calcined eggshell exhibited almost
four times higher leaching of calcium into the crude biodiesel
than coal fly ash-supported chicken eggshell calcium oxide. The
catalyst was stable even after five reaction cycles with a negligible
drop in catalytic activity. In the case when feedstock for biodiesel
production contains some waste oils with high free fatty acid
content, calcium oxide-supported catalysts represent satisfactory
solution due to a suitable interaction between calcium oxide,
as active component and the support (Stanković et al., 2020).
Particularly, the role of support becomes more dominant when
it exhibits an acidic character due to the presence of acid sites.
Such catalysts exhibit bifunctional behavior by simultaneously
carrying out the reactions of esterification and transesterification.

The studies by Gupta and Rathod (2018) and Gollakota et al.
(2019) investigated the behavior of calcium oxide-supported
catalysts in biodiesel synthesis from waste cooking oil. High
conversion (>93.1%) and biodiesel yield (>96.3%) were obtained
at relatively mild reaction conditions without the need of
feedstock pretreatment using two eggshell-supported catalysts
(calcium diglyceroxide and pyrolysis residue). In the case of
pure calcined eggshell under the same operating conditions
conversion (82.1%) and biodiesel yield (72.3%) were lower. A
significant catalytic activity of eggshell in the production of
biodiesel from waste cooking oil under solar irradiation was
evidenced in the research of Bharti et al. (2020). It should
be noted that despite lower reaction temperature (40–46◦C),
which is below the usual (≈60◦C), and waste feedstock used
(waste cooking oil), eggshell-based catalyst exhibited relatively
high conversion (≈90%) in the short reaction time (2 h). In
addition, the catalyst was stable and was successfully re-used in
three reaction cycles. Calcium oxide from eggshell exhibits high
catalytic potential for the biodiesel synthesis from the highly
acidic feedstock, like chicken fat. However, such feedstock needs
to be first esterified to adjust free fatty acid content to be lower
than 4%. Kirubakaran and Selvan (2018) have shown that eggshell
calcined at 900◦Cwas still active after five reaction cycles with the
highest biodiesel yield of 85% (Kirubakaran and Selvan, 2018).

Gasification Processes
The simpler preparation procedure was used for utilization of
eggshell in biomass or coal thermal conversion, which leads to the
formation of various gases (depending on biomass and coal type).
It can be seen that previously mentioned pre-treatment methods
and calcination are sufficient to obtain a final active catalytic
form. In these reactions, selectivity is particularly important. The
study by Raheem et al. (2019) investigated eggshell-catalyzed
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gasification of algal biomass. During the catalyst-free process,
the undesirable reactions, such as cracking and combustion
occurred, and the composition of generated gas was shifted
toward CO and CO2 with a small quantity of C2H2 and CH4.
On the other hand, the presence of calcined eggshell led to
the production of hydrogen, the amount of which increased
with an increase in catalyst loading. This can be explained
by adequate CO2 sorption properties of calcium oxide. The
gasification process in the presence of calcium oxide takes place
in two stages (rapid chemical reaction and diffusion controlled
regime) and the carbonation at the first stage is inhibited by
the growth of the calcium carbonate layer (Salaudeen et al.,
2018). The low particle size of calcium oxide enhances the
carbonation process, due to the more accessible surface. The
main by-products, which can deactivate the catalyst are tar and
char. Calcium oxide’s ability to absorb CO2, the benefits of which
are reflected in gasification reaction and lead to a selective gas
formation, was used in the steam gasification process of low-
rank coal, such as the sub-bituminous one used in Fan et al.
(2017). This study shows the success of using the eggshell as a
catalyst, as it improves carbon dioxide conversion and yields of
hydrogen and carbon monoxide in the syngas. Favorable calcium
behavior in the gasification reaction is explained by Ohtsuka and
Asami (1997), who stated that calcium ions first undergo the ion-
exchange process with carbonyl group present in coal due to their
high basicity. Themain role of dispersed calcium is reflected in its
strong interaction with carbon, which leads to the dissociation of
oxygen-containing gas and oxygen spillover with the formation
of oxygen complexes as active catalytic sites responsible for
successful performance the coal gasification reaction.

Catalytic Oxidation
In these processes, pure eggshell does not exhibit activity
at oxidation temperature characteristic for processes with
conventional catalysts. However, eggshell exhibits better catalytic
support in comparison with commercial calcium carbonate
and allows better interaction with active species. The recent
investigations show that eggshell-based oxidation catalysts
exhibit acceptable activity with a special emphasis on activity,
stability, and selectivity. In the study by Li et al. (2020), the
eggshell-supported Co3O4 catalyst for benzene oxidation has
been prepared. The catalyst was synthesized by the impregnation
method using Co acetate solution, and the obtained precursor
was calcined at different temperatures (300–500◦C). This process
resulted in the uniform Co3O4 nanoparticles distribution on the
eggshell support. Comparing with benzene oxidation with pure
eggshell, where oxidation was carried out at 380◦C the oxidation
with eggshell-supported Co3O4 catalyst could be performed at
a lower temperature (256◦C), yielding the same result. Also,
the concentration of Co3O4 above 16.7% did not contribute to
further activity increase. By in situ FTIR analysis, it is determined
that active oxygen species in the catalyst directly participate in
the reaction. The prepared catalyst was stable with constant
benzene conversion of 95% during 50 h. Similar research was
conducted by Guo et al. (2019) with eggshell-supported Ag
catalyst. It was determined that optimal Ag concentration for this
process was 19.9%, whereas the necessary oxidation temperature

was lower (225◦C) than in the case of Co3O4/eggshell-catalyzed
process. It is important to note that this catalyst was stable even
after 200 h with achieved benzene conversion of 95%. In the
preparation methods of oxidation catalysts, it can be seen that
the eggshell membrane is not removed, which is contrary to the
preparation methods of other catalysts. It has been confirmed
that eggshell membrane is very important in regulating the
particle size and metal distribution due to strong metal-protein
bonding interactions. Unlike the benzene oxidation process, pure
eggshell catalyst exhibits suitable activity in oxidative coupling
of methane to light olefins (Lima and Perez-Lopez, 2020). In
the case of catalyst, the main role is played by specific surface
area, which was controlled using different calcination conditions
[e.g., the changing the calcination atmosphere (N2 or O2) and
its state (static or flow)]. Catalysts obtained in the flow N2 and
O2 atmosphere have shown similar methane conversion (30%
at 800◦C), whereas the catalyst calcined in static air exhibited
the lowest activity due to the low specific surface area. On the
other hand, using catalysts calcined in the flow N2 or O2, equal
amounts of ethane and ethylene fractions were generated, which
is not case for the catalyst obtained by calcination in static air
(more selective toward ethane than ethylene). At a high reaction
temperature (800◦C), the eggshell catalysts calcined in flow of
N2/O2 (methane conversion of 25%) and those calcined in static
air atmospheres (methane conversion of 17%) were stable for 5 h.

These studies have demonstrated that eggshell-based catalysts
outperformed other types of support materials (i.e., commercial
CaCO3; Guo et al., 2019; Li et al., 2020 and oyster shell; Li et al.,
2020) as well as pure NPs (Guo et al., 2019; Li et al., 2020).
Moreover, Guo et al. showed that Pt NPs/eggshell exhibited a
more preferable catalytic activity compared to that of commercial
5Pt/C catalyst (Guo et al., 2020). Authors working in this
field claim that the enhanced catalytic activity of eggshell-based
catalysts is driven by the comprehensive effect of chemical
composition and morphology of the eggshell. More specifically,
functional groups present on the surface of the eggshell provide
a high dispersion of NPs on eggshell supports through the strong
metal-functional groups bounding interaction and consequently
improved catalytic performances. The strong interaction between
NPs and eggshell causes the decomposition of the eggshell (i.e.,
CaCO3) to take place at a lower temperature compared to that
of the pure eggshell, which has a positive impact on catalytic
performance. The hierarchical porous structure of eggshell also
significantly contributes to the enhancement of overall catalytic
performance as it increases the contact area between VOCs and
NPs and enhances mass and energy transfer. Finally, it is worth
mentioning that the fine-tuning of catalytic performance [i.e.,
turnover frequencies and the temperature for achieving 90%
benzene conversion (T90%)] of eggshell-based catalysts can be
easily accomplished by the appropriate choice of parameters such
as type of metal, metal loading, method of synthesis, calcination
atmosphere, and temperature (Guo et al., 2019, 2020; Li et al.,
2020).

Limitations
Despite many advantages of the eggshell (availability, non-
toxicity, and low price), there are certain limitations in
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FIGURE 4 | Synthetic strategy for bionanocomposites based on eggshell and noble metal (Pt, Pd) nanoparticles and their application for Cr (IV) reduction. Reprinted

from Liang et al. (2014), Copyright (2014) American Chemical Society.

terms of textural properties that complicate the process of
eggshell application and manipulation. These limitations are
reflected in an insufficiently developed system of pores and
channels, characteristic for non-porous materials, materials with
macropores or open voids, that are directly related to the active
specific surface (Tan et al., 2015b). Moreover, the specific surface
area is in this case correlated with the distribution of active
species available for the chemical reaction, which has a direct
impact on catalytic activity and hence the higher surface area
catalyst is expected to have higher catalytic activity (Kumar
and Ali, 2012). However, during catalyst preparation, it is
important to conduct a controlled synthesis in order to obtain
an optimal specific surface area with a well-developed pores
in the mesoporous region. Special attention should be drawn
to the organic part of the eggshell, which can be transformed
into unburned carbon, which leads to a formation of material
with high specific surface area and pores in the micro-region
(Manique et al., 2017). The biodiesel production is strongly
influenced by intra-catalyst mass transport limitations, which are
due to the slow diffusion of high molecular weight triacylglycerol
molecules inside the catalyst process (Pavlovic et al., 2020). This
is precisely the reason why it is important to make eggshell
modification in terms of adjusting the specific surface area, and
obtaining a system of available pores and channels with the
adequate positioning of the active catalytic species.

APPLICATION OF EGGSHELL-BASED
MATERIAL IN ELECTROCHEMISTRY

Although electrically non-conductive, ES and its membrane have
been attracting great attention from electrochemists. Properties
and applications of the ESM that are important from an
electrochemical standpoint are summarized in a review paper
(Baláž, 2014). Ever since, there have been growing numbers of

papers dealing with this topic. To this end, herein we will describe
recent progress concerning the utilization of both ES and ESM in
the field of electrochemistry.

ESM in its unmodified form has only found its application
as a separator in energy storage devices. Yu et al. demonstrated
that an avian ESM separator could replace the conventional
polypropylene separator in supercapacitors (Yu et al., 2012).
Recently, Nguyen et al. studied eggshell membranes of various
species (i.e., quail, chicken, goose) as separators in lithium-
ion batteries (LIB) (Nguyen et al., 2018). It was established
that different surface morphology, surface area and thickness
of the ESMs affected the electrochemical performances such
as discharging capacity, impedance and lithium-ion diffusion
coefficient of Li-ion batteries.

On the other hand, ESM can be easily modified and
consequently, high-performance electrode materials can be
obtained. The presence of functional groups on the surface
and high protein content make ESM suitable for various types
of modifications. The functional groups have two important
roles for the preparation of electrode materials: one is their
ability to anchor electroactive metal precursors on ESM surface
and the other is to reduce the metal cations to zero-valent
metal nanoparticles. For instance, Selvacumari et al. showed
that ESM can be used for the synthesis of metal oxides (i.e.,
SnO2) as a supercapacitor electrode material without using
any toxic chemicals (Selvakumari et al., 2018). The suggested
mechanism for SnO2 synthesis includes the reduction of the
adsorbed Sn2+ on ESM into Sn0 by an aldehydic group naturally
present in ESM. Upon annealing, SnO2 nanoparticles are formed
through oxidation of Sn0. Meng and Deng demonstrated that
NiO attached to carbonized ESM can be partially reduced to
Ni in the reducing environment provided by released reducing
agents from the ESM under heating (Meng and Deng, 2019).
On the other hand, due to high protein content (rich in C
and N), the ESM can be easily converted to functional carbon
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and heteroatom-doped (i.e., doped with nitrogen, oxygen and
sulfur) carbon by its carbonization in an inert atmosphere. This
results in an enormous potential of ESM application for energy
conversion and storage devices (Li et al., 2012). Recent progress
has been made in the development of composite materials
based on non-noble metal compounds (oxides, sulfides etc.)
and carbon derived from eggshell membrane. Meng and Deng
used eggshell membrane as a bio-template for the formation
of both carbon fibers and functional sulfides (Co9S8) based on
in situ carbonization and sulfurization (Meng and Deng, 2016).
This approach paved the way for the integrated use of eggshell
waste and at the same time for the synthesis of functional
nanostructures. A similar procedure was applied for syntheses
of NiO (Lu et al., 2019), NiO-Ni (Meng and Deng, 2019),
FeS (Zhao et al., 2019a), and Co4S3 (Xie et al., 2019) attached
to the carbonized eggshell membrane (CESM) as electrodes.
Improved electrochemical performance of composite materials
compared to those of single component was attributed to the
synergetic effect of CESM and metal oxide/sulfide nanoparticles.
Moreover, Tong et al. demonstrated that FeCo alloy embedded in
nitrogen self-doped carbon derived from ESM composite could
be a good candidate for the substitution of commercial Pt/C
(20%) electrocatalyst for oxygen reduction reaction (ORR) (Tong
et al., 2017). The authors also found that pyrolysis temperature
played a crucial role in controlling crystallinity, nitrogen and
carbon content and textural properties of CESM and accordingly
affected the electrocatalytic activity. Cui et al. also fabricated a
competitive ORR electrocatalyst based on carbon nanofibers with
a hierarchical structure, prepared by combining Co-containing
zeolitic imidazolate frameworks with natural ESM (Cui et al.,
2020). ESM was introduced to ensure the desired porous
structure and to protect the aggregation of nanoparticles. As
a result, they have noted the enhancement of mass transfer
efficiency and consequently, electrocatalytic performance.

Recently, the research group of Pequendo de Olivera has
recognized that eggshell membrane could be used for designing
electrodes suitable for contemporary flexible supercapacitors
(SCs) based on carbon nanostructures (CNs) material and
conducting polymers (Alcaraz-Espinoza et al., 2017; da Silva
et al., 2020). Fabrication of the supercapacitor electrodes often
requires using binder materials or surfactants that could derogate
electrochemical performance. On the contrary, authors suggested
that flexible supercapacitor (SC) can be designed without the
addition of auxiliary substances by the electrostatic assembly
of CNs on pristine ESM (owing to the presence of functional
groups), which was succeeded by the in situ polymerization of
conducting polymer.

Utilization of ES has recently emerged in energy storage
devices. Minakshi et al. have introduced the pioneering concept
of using CaCO3 from eggshell as the cathode in Li-ion capacitors
(LIC) in a non-aqueous electrolyte (Minakshi et al., 2018).
Interestingly, the ES-based electrode showed a capacitance of
120 F g−1 (which was comparable to a classically activated
carbon electrode under the same conditions) and good cyclic
stability, with a capacity retention of 92% after 1,000 cycles.
Moreover, the same group of authors concluded that eggshell-
derived materials are suitable for the construction of electrode

materials for aqueous energy storage devices (Minakshi et al.,
2019). They built a symmetrical aqueous supercapacitor using
chicken eggshell (CaCO3) as a cathode and its calcined form
(CaO) as an anode, achieving the energy density of 14.5W h
kg−1 and power density of 525W kg−1. In their latest work,
Minakshi et al. fabricated a hybrid device comprising eggshell-
derived CaO as a capacitor anode and NiO/Co3O4 as a pseudo-
capacitor cathode with enhanced energy density up to 35 =
Wh kg−1 (Minakshi et al., 2020). Also, eggshell was utilized as
an inexpensive Ca2+ (Foruzin et al., 2020) and CaO (Senthil
et al., 2019) chemical source for the doping and coating of active
electrode materials.

Recently, both ESM and ES have been investigated for
electroanalytical purposes. ESM was used as a removable
template for the synthesis of the Au/CeO2 3D nanocomposite
network (Liu et al., 2020a) and 3D Au porous network
(Zhong et al., 2017) in the fabrication of electrochemical
non-enyzmatic dopamine and glucose sensors, respectively.
Superior electroanalytical performances of the developed sensors
were attributed to the unblocked macroporous network and
interwoven fiber structure of electroactive materials that
provided small hindrance of analytes and great availability to
active sites. Additionally, the rigid structure of the 3D network
prevents the derogation of the sensor by aggregation and
consequently improves operation and storage stability. On the
other hand, it was shown that due to its porous structure
and active nucleation sites ES can be employed as a support
for nanoparticles and can be applied in the electroanalytical
determination of various analytes. For instance, Au/CaCO3 was
used for 4-nitrophenol electrochemical detection (Ding et al.,
2020), while Fe3O4/eggshell composites were applied for the
voltammetric determination of cadmium (Mohammadi et al.,
2019).

In another report, Zhang et al. demonstrated a new approach
for the utilization of every individual component of the egg in
the formation of a 2D graphene-like carbon electrode and gel-
like solid-state electrolyte (Zhang et al., 2019b). 2D graphene-like
carbon was obtained by the carbonization of egg white/yolk at
650◦C in argon with eggshell-derived CaCO3. Authors suggested
that the CO2 released during the degradation of CaCO3 played
a crucial role in the formation of 2D morphology with the
high surface area of 593.1 m2g−1. Further activation of egg-
derived carbon with KOH increased the surface area to 1,572
m2g−1. By mixing egg white/yolk with KOH, the gel-like solid
electrolyte was obtained with competitive ionic conductivity and
water preservation. Thereby, they introduced a concept that
every part of the egg may be used for the construction of various
parts of supercapacitor components. Fascinatingly, the authors
constructed an all-solid flexible supercapacitor only based on the
egg that exhibited the capacitance retention rate of 80% after
5,000 cycles at the current density of 1 A g−1.

Limitations
Although excellent electrochemical performances of both ES and
ESM were achieved, there are still some challenges that hamper
their wide use. Most research in the field of electrochemistry
has been focused on converting eggshell waste into a high-value
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carbon material and its further improvements by combining it
with transition metals. On the other hand, it is unclear whether
ESM-derived carbon can be fabricated in a reproducible manner.
For instance, a small variation in themorphology of ESM-derived
carbon may cause substantial changes in its electrochemical
properties. Therefore, the lack of the reproducibility could
present a major hurdle for large-scale application of ESM-derived
carbon in electrochemical devices.

EGGSHELL IN THERAPEUTICS

Both ES (mineral ES) and ESM (ES membrane) find various
biomedical applications both as a raw natural source, and
as components of synthesized materials. Numerous medical
applications of ES (Rovensky et al., 2003; Baláž, 2018) and
ESM (Baláž, 2014; Park et al., 2016; Sah and Rath, 2016) have
been surveyed previously. Correspondingly, this review primarily
discusses the advances which have been made since 2018.

Biomedical Applications of Mineral
Eggshell
ES is used as an inexpensive Ca2+ source for the development
of medications (Rovensky et al., 2003; Siemiradzka et al., 2018),
as particles for drug delivery (Jayasree et al., 2018; Verma
et al., 2019), within organic matrix/mineral nanocomposites as
potential tissue scaffolds in bone grafting (Apalangya et al., 2019;
Shafiei et al., 2019; Trakoolwannachai et al., 2019; Wu et al., 2019;
Ingole et al., 2020), and in food supplements (El-Shibiny et al.,
2018; Islam et al., 2019; El-Zeftawy et al., 2020).

Calcium-containing medicines, food supplements, and
vitamin-mineral complexes are mainly intended for the
concomitant treatment of osteopenia and osteoporosis, and
for the prevention of osteoporotic fractures. Osteoporosis is
associated with a gradual decrease in bone mineral density
(BMD) due to some imbalance in bone tissue remodeling
when bone resorption, rather than bone formation prevails
(Florencio-Silva et al., 2015). Bone resorption happens, for
example, if the production of hormones and cytokines which
trigger the process of osteogenesis subsides as a consequence
of natural aging, immobilization, or from toxic effects of the
environment. Resorption is initiated by osteoclasts. Within
the lacunae formed by osteoclasts, osteoblasts create a new
extracellular organic matrix (collagen type I), followed by a
subsequent mineralization which yields precipitated crystals
of the calcium-based mineral, hydroxyapatite (HA). Calcium
also plays a crucial role in the transmission of intercellular
and intracellular signals, and facilitates allosteric regulation in
a series of biochemical reactions, thereby affecting both the
differentiation and proliferation of cells, including bone-forming
osteoblasts (Munaron, 2006; Blair et al., 2011). Therefore,
bone resorption can be triggered by calcium-dependent PTH
release and the subsequent osteoclast activation through the
RANK/RANKL/OPG signaling pathway1 to compensate for
the reduced concentration of calcium in the serum. So, the

1PTH (parathyroid hormone). Its secretion is determined chiefly by serum ionized
calcium concentration through negative feedback. PTH is secreted when Ca2+

prevailing opinion is that calcium supplements can slow down
the osteoporotic degradation of bone tissue.

Calcium is not, however, without its hazards. To avoid
hypercalcemia and its negative health consequences, the calcium
release profile of medicines and supplements should be provided
properly, maintaining optimum calcium concentration in the
blood serum. In a recent study (Siemiradzka et al., 2018), tablets
were produced from the mineral ES, roasted at 120◦C for 2 h, and
sieved to unify grain size. Calcium citrate prepared using ES as
raw material and calcium bis-glycinate were completely released
within 150min. At the same time, ES calcium carbonate added to
calcium bis-glycinate prolonged the release of calcium ions to 4 h.

Evaluation of the optimum calcium release profile is also
related closely to the determination of adequate dosages.
Moreover, the range of effective dosages should be established
for each indication. However, the biological response to the
dose of administered calcium could be non-linear. The dosage
dependence of ES calcium supplements on obese disorders
in rats was studied for 26 weeks (El-Zeftawy et al., 2020).
A low dose of ES supplement (7.2 g Ca2+ in form of ES/kg
rat) for the treatment of rats with a high-fat diet led to
significant enhancement of lipid profiles, liver enzymes, kidney
functions, leptin, adiponectin, Ca2+, 25-hydroxyvitamin D,
thyroid-stimulating hormone, free thyroxine, and PTH levels.
The superoxide dismutase specific activity was elevated, thereby
improving the antioxidant response. However, a high dose of
Ca2+ (18 g Ca2+ in form of ES/kg rat) and a low-fat diet were less
effective for the treatment of obese rats, as compared to providing
rats with a low dose of ES alongside the high-fat diet. Thus, Ca2+

supplementation by ES can be regarded as a beneficial approach
for obesity management with anti-cholesterol effects in low dose
treatment. There was a reduction in weight gain, body weight,
body mass index, blood glucose, insulin, and homeostasis model
assessment of insulin resistance.

The main message of some studies is that the additional
calcium sources should be included into the diet, to normalize
the process of bone remodeling, because ≪a typical dietary
calcium intake is not sufficient to satisfy the recommended
daily calcium intake for all age groups≫ (El-Shibiny et al.,
2018). To enhance the bioavailability of poorly soluble calcium
salts, the eggshell powder is processed into the nano-sized state,
which is characterized by high water absorption and lower zeta-
potential as compared to micro ESP (eggshell powder) (El-
Shibiny et al., 2018). ES wasmilled to achieve nano-sized particles
(∼10 nm) agglomerated into clusters of few µm. However,
after ultrasound treatment of suspension and filtration through
a 0.45µm membrane filter, rapid aggregation of nano-sized
particles was observed. This aggregation was attributed to the
hydrophobic nature of the crystalline particles. Yogurt from the
milk of buffalo and cows was fortified with nano-ESP up to 0.3%
with no adverse effects or biochemical changes in the product.

concentration is decreased. RANK (Receptor activator of nuclear factor kappa-
B); RANKL (Receptor activator of nuclear factor kappa-B ligand)—a membrane
protein, a member of the tumor necrosis factor (TNF) cytokine family, it binds to
RANK on cells of the myeloid lineage and functions as a key factor for osteoclast
differentiation and activation; OPG (osteoprotegerin).
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The design of mineral composites themselves and organic
matrix/mineral composites (OM/MC) as potential tissue
scaffolds is another interesting application of ES. ESP or ESP-
derived HA are implanted into the organic matrix, to enhance
its mechanical properties and thermal stability, increasing
simultaneously specific surface area to provide osteoblast-like
cells infiltration and better adhesion (Apalangya et al., 2019;
Trakoolwannachai et al., 2019; Wu et al., 2019). Ca-based
minerals seem to stimulate osteoblast differentiation and
proliferation in vitro and in vivo.

In a recent review (Opris et al., 2020) and original papers
(Kattimani and Lingamaneni, 2019; Kattimani et al., 2019a,b)
clinical studies on the effect of nano-dispersed HA as a
substitute material in oral surgery were described in detail.
Both ESP-derived HA and synthetic HA promoted bone
regeneration displaying similar healing characteristics confirmed
with histological analysis and microcomputed tomography.

OM/MC on the basis of ESP-reinforced microparticle
hydrogels implanted in a rat model enabled the differentiation
of pre-osteoblasts enhancing mineral deposition by these cells
(Wu et al., 2019). The hydrogel porous matrix allowed the
pre-osteoblast migration in 3D and provided integration of
the ESP. Gelatin methacrylate-ESP composite did not generate
inflammatory responses in vivo and integrated well with the host.
More importantly, the osteogenic differentiation was induced in
a concentration-dependent manner, without using a specialized
osteogenic growth medium.

The shape of the particles and the associated specific surface
area are important characteristics for cell viability in the process
of bone grafting. A potential scaffold for tissue regeneration was
described in Apalangya et al. (2019), where ESP-derived nano-
dispersed HA and poly(lactic) acid electrospun fibers composite
(PLA/HA) was fabricated. HA particles were obtained from a
pre-milled ES/ethanol/water/propylene glycol suspension using
two sets of 6 × 3mm and 12 × 6mm diameter stainless-steel
balls simultaneously, followed by the addition of diammonium
hydrogen phosphate and ammonium hydroxide solution. The
resulting elongated milled particles ranged in lengths from
100 to 120 nm and their diameters ranged from 10 to 20 nm.
The nanostructured HA agglomerates displayed a high specific
surface area to enable a better biological activity of osteoblastic
cells (Laranjeira et al., 2010). The porous OM/MC structure was
suitable for cell infiltration and proper attachment.

The enhanced osteogenic activity was displayed in poly
(ε-caprolactone) (PCL)/polyvinyl alcohol (PVA) nanofibrous
scaffolds doped by both carbon dots and ES-derived calcium
phosphates in Shafiei et al. (2019). Such doping demonstrated a
synergetic effect, promoting a high osteogenic differentiation and
proliferation rate.

Fiber/HA nanocomposites of another type were produced by
synthesizing (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO)-
oxidized cellulose nanofibrils (TCNFs), or cellulose nanocrystals
(CNCs) with hydroxyapatite (HA) in varying composition
ratios (Ingole et al., 2020). Ca(OH)2 obtained from eggshells
and NH4H2PO4 used as HA precursors were mixed in a
stoichiometric ratio of Ca/P = 1.67. The mixture was ground
in an agate mortar with a pestle, and subsequently dissolved in
distilled water and heated to form a HA solution. The solution

was then ultrasonicated and subjected to uniaxial compression.
HA with either nanocellulose type (nanofibrils or nanocrystals)
was found to improve human osteoblast cell viabilities.

Chitosan was used as a natural organic matrix (as an
alternative to synthetic matrices) of a prospective scaffold
(Trakoolwannachai et al., 2019). Chitosan is a biomaterial
produced by alkaline deacetylation of chitin, composed of b-(1-
4)-D-glucosamine and β-(1-4)-N-acetyl-D-glucosamine (Santos
et al., 2019). Among other benefits, chitosan demonstrates
antioxidant, anti-allergic, anti-inflammatory, and antimicrobial
activities (Santos et al., 2019). The last one is of utmost
importance, to prevent typical adverse reactions during bone
grafting and wound healing. 10–30 wt.% of hydroxyapatite
was loaded into the chitosan film, binding to the hydrophilic
–OH and NH2 and lowering the water content in the
composite (Trakoolwannachai et al., 2019). To produce HA,
orthophosphoric acid and ESP were co-precipitated with
ammonium hydroxide, adjusting the pH of the solution to 10.
The reinforcement of the matrix with HA particles imposes an
obstacle for chitosan chain movement, thereby increasing the
glass transition temperature while the melting point stays the
same. The chitosan film with an increased roughness becomes a
suitable support for cell growth.

ES-derived carbonated calcium deficient nano-HA can be
used both in bone substitutes and in local drug delivery
systems demonstrating the improved cellular response compared
to synthetic calcium-deficient hydroxyapatite nanoparticles
(Jayasree et al., 2018; Verma et al., 2019). Calcium hydroxide
with residual carbonate content (ES heated at 805◦C for
1 h) in distilled water suspension and diammonium hydrogen
phosphate solution at Ca/P ratio of 1.61 were mixed and HA
synthesis was accelerated by a microwave irradiation. Carbonate
(CO2−

3 ) group substitution ∼6% for the phosphate (PO3−
4 )

group in ES-derived HA reduced the crystallinity down to 4%
compared to 15% in synthetic HA. The substitution suppressed
crystal growth and increased the surface area and solubility. As
a potential nano-carrier for the local drug delivery, ES-derived
carbonated HA showed higher drug loading and releasing
compared to the synthetic analog in the studies with doxycycline
and curcumin.

Limitations

In summary, in vitro and in vivo studies demonstrate low toxicity
and substantial efficacy of ES-derived active pharmaceutical
ingredients (APIs) for bone grafting. Nevertheless, discussions
concerning the efficacy of calcium-containing supplements
at osteoporosis treatment and preventing fractures continue.
Numerous clinical studies and metadata analyses show equivocal
results when using similar compounds (Rovensky et al., 2003;
Grant et al., 2005; Reid et al., 2015; Tai et al., 2015; Yao et al.,
2019; Reid and Bolland, 2020). Moreover, cardiovascular and
gastrointestinal adverse events, together with renal calculi in
calcium supplement use were reported to be likely (Reid et al.,
2015; Reid and Bolland, 2020). The deficiency in regulative
hormones and cytokinesmodulating calcium signaling pathways,
such as cholecalciferol, PTH, and BMP2, disrupt proper calcium
assimilation, as well as differentiation and proliferation of
osteoblasts. That is why a mere intake of calcium supplements,
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FIGURE 5 | TEM of mechanically activated calcium salt of gluconic acid.

Reprinted from Rybin et al. (2018) with permission from UdmFIC UB RAS.

without normalizing calcium metabolism, does not appear to
resolve issues concerning a decrease in the magnitude of BMD.
Instead, taking calcium supplements in this way can yield
severe side-effects. In certain cases, some discrepancies in the
conclusions of the published studies could be explained by the
study design. It is important to know how the experimental
protocol was controlled. Therefore, it is obvious that the choice
of the correct experimental model for each indication when
conducting preclinical studies is a priority task. Unfortunately,
when developing the design of efficacy studies of ES-derived
medicines, the physical state of a substance is rarely taken
properly into account. At the same time, it is well-known that
a drug should be considered as a material (Gardner et al.,
2004; Boldyreva, 2016). The ability to deliver the medicine to
targets substantially depends on the properties of API-containing
compounds in the solid state, such as polymorphism, crystal
shape, size, defects, etc. (Boldyreva, 2016). A striking example
is the transformation of a crystalline API into an amorphous
state, that can drastically modify both the pharmacokinetic
and pharmacodynamic characteristics of a drug (Rams-Baron
et al., 2018). For example, mechanical treatment of a complex
based on calcium gluconate converts it into a nano-dispersed
amorphous state (Figure 5) (Rybin et al., 2018). As a result,
the physicochemical and biological properties of the complex
change radically (Konygin et al., 2014; Rybin et al., 2014),
converting it into a new non-protein regulator of calcium
metabolism. Another example is amorphous calcium carbonate,
which plays a significant role in biomineralization (Cartwright
et al., 2012). The origin of the benefits of amorphous calcium
carbonate on bone grafting and osteogenesis, as compared to the
crystalline compound, still needs to be explored in detail. Thus,
a comparative assessment of the clinical effectiveness between
APIsmanufactured from eggshells and from other sources should
be carried out, considering the physical properties of drugs
as materials, i.e., characterizing the samples by a complete
set of structural parameters on microscopic, mesoscopic, and
molecular scales.

Biomedical Applications of Eggshell
Membrane (ESM)
The eggshell membrane (ESM) is another important component,
which is widely used for various applications, including in

biomedicine, such as for the treatment of joint diseases,
applications in reparative medicine (in particular, wound healing
and sciatic nerve regeneration), and for producing vascular grafts
(Park et al., 2016; Sah and Rath, 2016; Ruff et al., 2018; Hincke,
2019; Jalili-Firoozinezhad et al., 2020; Kulshreshtha et al., 2020).

ESM is a natural source of proteins, such as glucosamine and
glycosaminoglycans, elastin, collagen (type I, V, X), hyaluronic
acid, and other components that are related to the joint cartilage.
The degradation of cartilage during osteoarthritis leads to bones
rubbing, causing pain. ESM-based supplements were suggested
to be used to slow down the progression of the disease. ESM
suppresses the production of IL-1β and TNF-α inflammatory
cytokines, subsiding inflammation (Hewlings et al., 2019). The
double-blind and placebo study by Gil-Quintana et al. (2018) on
the effect of daily intake of ESM supplement displayed short-
term effects within the first 3 days. Joint pain was significantly
reduced, as was joint dysfunction. In a randomized, double-blind,
placebo-controlled clinical trial (Hewlings et al., 2019) the intake
of water-soluble chicken eggshell membrane hydrolysate dietary
supplement significantly reduced the joint stiffness in adults with
knee osteoarthritis by the 5th day of supplementation. One of
the possible reasons for the development of osteoarthritis is the
excessive presence of free radicals in the body. As osteoarthritis
cannot be cured at the present time, early prevention of
osteoarthritis is preferable to subsequent treatment. Antioxidant
protection is considered to be amongst the most effective
prevention methods. It has been shown that peptide fractions
obtained by the enzymatic hydrolysis of ESM with Na2SO3

and alkaline protease combinations cope well with this task
(Zhao et al., 2019b). After the separation, the identified water-
soluble peptides with ESYHLPR and MFAEWQPR2 amino acid
sequences exhibited the best antioxidant activities and could be
used as highly efficient antioxidant agents.

Another interesting ESM application is its use in a wavy
small-diameter vascular graft (Yan et al., 2020a,b). The internal
membrane with the ESM surface modified with heparin
and dopamine exhibited improved anticoagulation properties,
simultaneously promoting human umbilical vein endothelial
cell proliferation in vitro. The desired mechanical properties
were provided by the formation of the composite with elastic
thermoplastic polyurethane fibers.

Another important biomedical application of the ESM is
wound healing (Balassa, 1971; Dawson, 2003; Sandri et al., 2013;
Jun et al., 2014; Guarderas et al., 2016; Kiselioviene et al., 2016;
Tummalapalli et al., 2016; Kuruoglu, 2017; Schmidt et al., 2017;
Vuong et al., 2017, 2018; Kenny et al., 2018; Salah et al., 2018;
Saporito et al., 2018; Augustine et al., 2019; Blaine and Thang,
2019; Huang et al., 2020; Kulshreshtha et al., 2020). Non-healing
wounds are a major health problem worldwide and a significant
cause of morbidity and mortality. Cutaneous wounds caused by
burns, trauma, or other conditions, such as diabetic foot ulcers,
can lead to serious infections, body fluid loss, as well as major
medical burdens (Ahmed et al., 2019b). Effective treatments for

2Characters in the abbreviations encoding the amino acid residues: E – Glutamic
acid, S – Serine, Y – Tyrosine, H –Histidine, L – Leucine, P – Proline, R – Arginine,
M –Methionine, F - Phenylalanine, A – Alanine, W - Tryptophan, Q - Glutamine.
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acute and chronic skin wounds are the focus of intensive research.
ESM is supposed to offer great solution also as a topical ingredient
in skincare applications to maintain skin health by reducing
bacterial infections and inflammation (Kulshreshtha et al., 2020).

ESM was used as an integral component of various
formulations, to enhance wound healing, facilitate rapid
endothelialization and anticoagulation (Yan et al., 2020a). It
was suggested as an important component of various wound-
care dressings (Guarderas et al., 2016; Kiselioviene et al., 2016;
Li et al., 2016, 2019b,c; Krishnan et al., 2020). ESM was also
used to produce hybrid nanofibrous scaffolds for cutaneous
tissue engineering (Mohammadzadeh et al., 2019), materials for
periodontal tissues (Motoji et al., 2020), and for sciatic nerve
regeneration (Farjah et al., 2020). The nanofibrous scaffolds
based on the natural extracellular matrix promote the dynamics
of skin progenitor cells and accelerate differentiation into mature
keratinocytes (Mohammadzadeh et al., 2019).

A wound dressing should act as a skin barrier during
the wound healing process. Ideally, it should promote wound
healing and prevent bacterial infection. It should exhibit good
biocompatibility and appropriate porosity, as well as effective
antibacterial activity (Liu et al., 2020b). Only few clinical products
can meet all these needs due to their mono-functionality,
relatively complicated preparation procedures, and high cost.
Developing such an ideal wound dressing for tissue regeneration
remains a significant challenge. Natural materials are often
multifunctional, owing to their complex composition and
structure; ESM is no exception in this respect. Its successful use
in various capacities for wound healing has been documented
in numerous original research papers, reviews, book chapters,
and books, as well as patents (Balassa, 1971; Dawson, 2003;
Sandri et al., 2013; Jun et al., 2014; Guarderas et al., 2016;
Kiselioviene et al., 2016; Tummalapalli et al., 2016; Kuruoglu,
2017; Schmidt et al., 2017; Vuong et al., 2017, 2018; Kenny
et al., 2018; Salah et al., 2018; Saporito et al., 2018; Augustine
et al., 2019; Blaine and Thang, 2019; Huang et al., 2020;

Kulshreshtha et al., 2020). Still, the mechanisms of action of the
ESM and its role in the already successfully tested materials for
wound healing remains hardly explored. Most likely, there is
no single mechanism, and depending on the formulation and
the application, the ESM can be either an active ingredient or
an excipient.

ESM contains an abundance of antimicrobial,
immunomodulatory, and other bioactive proteins,
peptides, amino acids, collagen-like proteins, enzymes, and
glycosaminoglycans (Yamauchi et al., 2013; Yoo et al., 2014;
Benson et al., 2016; Jensen et al., 2016; Ahmed et al., 2017,
2019a,b; Niu et al., 2017; Dubourdieu, 2019; Gautron et al.,
2019; Zhao et al., 2019b; Zhu, 2020). Each of them can have
a pronounced influence on wound healing as a biologically
active compound. Proteoglycans in ESM have been used
successfully in treating non-healing wounds and burns, due
to their biocompatibility, biodegradability, and similarity to
macromolecules found in the human body (Benson et al., 2016;
Mohammadzadeh et al., 2019).

Collagen (several types, in particular I, V, X) was named as
one of the components that accounts for the biological activity of
ESM (Yamauchi et al., 2013; Benson et al., 2016; Tummalapalli
et al., 2016; Ahmed et al., 2017, 2019a,b; Dubourdieu, 2019;
Mohammadzadeh et al., 2019; Farjah et al., 2020; Liu et al., 2020b;
Motoji et al., 2020). ESM exerts an anti-aging effect by increasing
type III collagen levels (Motoji et al., 2020). ESM has been shown
to upregulate the expression of both collagen types I and III
(Yamauchi et al., 2013).

Proteomic analysis of processed eggshell membrane powder
(PEP) identified 110 proteins, including structural proteins
such as collagen and cysteine-rich eggshell membrane proteins
(CREMPs) that together constitute about 40% of PEP. Functional
annotation clustering showed various predicted functionalities
related to wound healing, including response to an external
stimulus, defense response, inflammatory response, and cell-
substrate adhesion (Ahmed et al., 2017, 2019a,b).

FIGURE 6 | Various applications of eggshell and its membrane subjected to mechanochemical treatment. Reprinted from Baláž (2018), Copyright (2018), with

permission from Elsevier.
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TABLE 1 | Overview of research studies applying a mechanochemical approach for the treatment of eggshell waste published recently: experimental techniques, the

most important result and application field of the final product.

Milling input Experimental techniques Most important results Final product/

application

References

Eggshell SEM Statistical approach; milling speed is the

most important factor

Hydroxyapatite/bioceramics (van Hoten et al., 2018)

Eggshell +

ethanol/water

XRD, SEM, TEM, TA, optical

microscopy, mechanical

properties evaluation,

biocompatibility

5 wt% nanohydroxyapatite was the ebst,

cells grow on the fibers

PLA-nanohydroxyapatite

fibers/bioengineering

(Apalangya et al., 2019)

Eggshell +

window parapet

made of PVC

XRD, FTIR, titration Comparison of planetary and vibratory

milling, scalability

Calcium chloride + harmless organic

matrix/dechlorination

(Baláž et al., 2019a)

Eggshell +

TiO2/+ Mg

XRD, TA, SEM Comparison of conventional and

high-energy ball milling

CaTiO3 ceramics/electronics (Cherdchom et al.,

2019)

Eggshell/cuttlefish

bone+

phosphoric acid

SEM, XRD, Raman, TEM No sintering, comparison of eggshell and

cuttlefish bone as Ca sources

Hydroxyapatite/bioceramics (Ferro and Guedes,

2019)

Eggshell + rice

straw

XRD, SEM, adsorption kinetics

and thermodynamics and

influence of various factors

Maximum sorption capacity of 231 mg/g

was evidenced for balanced eggshell:rice

straw ratio

Phosphate ions adsorbent/wastewater

treatment

(Liu et al., 2019)

Eggshell +

acetone

XRD, SEM Sintering enriched Ca content and did not

result in a significant increase in crystallite

size

Nanoization (Puspitasari et al.,

2019)

CaO from

eggshell

XRD, FTIR, SEM, fluorescent

microscopy, biocompatibility

evaluation

Comparison of ball milling, mortar and

pestle and Food and Drug Administration

(FDA)-approved methodology, post-milling

reaction with H3PO4

β-tricalcium phosphate

scaffolds/bioceramics

(Roopavath et al.,

2019)

CaO from

eggshell

XRD, SEM, chemical oxygen

demand, biogas and methane

production

Size reduction into nano-range resulted in

a significant improvement in biogas

production

Biogas production from palm oil mill

effluent: cow manure mixture

(Sari et al., 2020)

Eggshell +

ethanol

XRD, FTIR, SEM, WCA, SPM Stearic acid favors the transformation into

aragonite

Superhydrophobic eggshell/filtration (Seeharaj et al., 2019)

Eggshell + Li-

Ni0.8Co0.1Mn0.1O2

TA, XRD, FTIR, SEM/EDS, XPS,

electrochemical measurements

CaO prevents electrolyte dissolution and

electrode corrosion

CaO-coated Li-Ni0.8Co0.1Mn0.1O2

electrode/electrochemistry

(Senthil et al., 2019)

Eggshell +

acetone

XRD, SEM, FTIR Comparison of calcined (CaO) and

non/calcined (CaCO3) material

Nanoization (Supriyanto et al., 2019)

Eggshell +

stearic

acid/water

XRD, TA, TEM Stearic acid reduces the crystallite size

and thermal degradation temperature

Nanoization (Villarreal-Lucio et al.,

2019)

Eggshell +

aqueous solution

of phosphate

precursor

XRD, FTIR, SEM, TA Pure HA produced from different

precursors using three different CaCO3

sources using wet milling and

low-temperature treatment

Hydroxyapatite/bioceramics (Cestari et al., 2020)

Eggshell +

ethanol

SBET, particle size distribution,

zeta potential, SEM, TEM, EDS,

FTIR, Ca2+ concentration

determination, XRD

Zeta potential was decreased during

treatment

Nanoization (Huang et al., 2020)

Eggshell

membrane +

Li2FeSiO4

XRD, TA, SBET, Raman, XPS,

TEM

ESM served as a carbon source for

improving electrical properties of the LFS

ESM composite

LFS-C composite/electrochemistry (Karuppiah et al., 2020)

Eggshell +

Al2O3

SEM, mechanical properties,

corrosion, thermal expansion

Toughness and ductility reduced, but

tensile strength, hardness, corrosion

resistance, thermal stability improved upon

addition of CaO derived from eggshell

Al/eggshell/Al2O3 composite (Kumar, S., Dwivedi, S.

P., and Dwivedi et al.,

2020)

Eggshell Particle size distribution, SEM,

EDX, XRD

The authors report graphite in the eggshell Micronization (Ononiwu and Akinlabi,

2020)

Eggshell/eggshell

+ TiO2

FTIR, TEM, XRD, acid-resistant

and buffering properties

The buffering performance was evaluated

against that of four available toothpastes

Eggshell-TiO2 composite/dentistry (Onwubu et al., 2019a)

(Continued)
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TABLE 1 | Continued

Milling input Experimental techniques Most important results Final product/

application

References

Eggshell/eggshell

+ TiO2

The same as above, but also

SEM

The tooth surface is less destroyed when

using Colgate toothpaste and the

prepared composite in comparison with

other toothpastes

Eggshell-TiO2 composite/dentistry (Onwubu et al., 2019b)

Eggshell XRD, SEM, TEM, FTIR,

mechanical properties,

microhardness, erosion

resistance

Different amounts of eggshell (from 1-4%)

in the composites were beneficial for

different mechanical properties

Eggshell-epoxy composite/composites (Panchal et al., 2020)

Eggshell +

acetone

XRD, FTIR, Raman, SEM Effect of various post-milling sintering

temperatures (900–1,200◦C) on

CaCO3-CaO transformation was

investigated

Nanoization (Puspitasari et al.,

2020)

Eggshell Particle size, SEM, XRD, AFM,

mechanical properties, chloride

ion permeability

Improvement of mechanical properties of

oil well cement and accelerate hydration

process

Oil well cement-eggshell composite (Salman et al., 2020)

FIGURE 7 | Schematic illustration of main idea and results of the laboratory and semi-industrial dechlorination of PVC waste using eggshell. Reprinted from Baláž

et al. (2019a), Copyright (2019), with permission from Elsevier.

The presence of essential structural proteins such as
osteopontin, sialoprotein, keratin, proteoglycans, and
glycoproteins has been previously proved (Wong et al.,
1984; Chowdhury, 1990; Arias et al., 1991; Nakano et al.,
2003; Zhao and Chi, 2009; Hincke et al., 2012; Dombre et al.,
2017; Silva et al., 2018). Also, ESM harbors numerous natural
glycoproteins, notably glucosamine, chondroitin, and hyaluronic
acid, which are applicable for the cutaneous wound dressings
(Mohammadzadeh et al., 2019).

The ESM enzymatic hydrolysate possesses a remarkable
antibacterial activity (Yoo et al., 2014; Niu et al., 2017). A
hydrolyzed water-soluble ESM product triggered upregulation
of antioxidant-response elements in human keratinocytes, and
significantly reduced production of reactive oxygen species
by polymorphonuclear (PMN) cells in vitro. Furthermore,
human dermal fibroblasts treated with soluble ESM in vitro
showed an increase in the production and secretion of collagen

and elastin (Benson et al., 2016; Augustine et al., 2019).
Usually, the enzymatic hydrolysis is used to obtain solubilized
proteins because both acid and basic hydrolysis destroy some
constituents, decreasing the nutritional value of proteins (García
and González, 2020). Solubilization of ESM, however, requires
a more complicated approach due to the high resistance of
ESM to the enzymes. In the study by García and González
(2020), denaturing agent with detergent properties (sodium
lauryl sulfate or taurocholate)/reducing agent (dithiothreitol and
sodium metabisulfite) compositions were patented to break
disulfide bridges of ESM proteins and provide access to the
enzymes (cysteine proteases), facilitating the hydrolysis.

In many studies the ESM is used as a template or framework,
forming a composite with bioactive molecules or nanoparticles
embedded into its structure (Jun et al., 2014; Li et al., 2016, 2019b;
Puertas-Bartolome et al., 2018; Augustine et al., 2019; Raz et al.,
2019; Farjah et al., 2020; Krishnan et al., 2020; Selvam et al.,
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2020). Consisting of unique interwoven shell membrane fibers,
the ESM provides a unique supporting platform for functional
nanoparticles in catalysis and sensing (Vuong et al., 2017). The
same or similar materials can be used for wound healing. The
flexible and highly pure microfibrous network structure of the
ESM can be used as an artificial extracellular matrix (ECM)
platform for engraftment or as a tissue-engineered scaffold
(Vuong et al., 2017, 2018; Park et al., 2019; Liu et al., 2020b).

Flexible and functional scaffolds were constructed, for
example using an ESM and graphene. The graphene-layered
ESM (GEM) scaffolds showed better mechanical and hydrophilic
properties than those of a raw ESM. The GEM scaffolds can
control the adhesion properties of stem cells, enhancing the
proliferation and osteogenic properties of the cells as compared
to the effects of a raw ESM. Additionally, the GEM scaffolds can
improve the secretion of growth factors from stem cells, possibly
through enhanced cell–substrate interactions, thereby promoting
the proliferation and differentiation of these cells (Park et al.,
2019). Physical and biochemical features of a collagen membrane
can be significantly improved by conjugating it with soluble ESM
proteins (Ino et al., 2006).

Some studies emphasize the positive effect of lycopene on
ESM guidance channels in sciatic nerve regeneration in rats, with
ESM acting as a nerve guidance channel (NGC). Ideally, NGC

FIGURE 8 | A photograph of the experimental setup for diesel/water

separation test (water was dyed blue with methylene blue for better contrast)

(Seeharaj et al., 2019) copyright 2019. The American Ceramic Society.

must be biodegradable, biocompatible, flexible, semipermeable,
easily made and sterilized, and be amenable to long-term storage.
A composite of the ESM with lycopene meets all of these
requirements. There are many benefits of using an ESM channel,
including low cost and flexibility. Moreover, ESM is strong
enough to maintain a suture. In addition, the dimensions of
the channel are easily controlled. At the same time, the ESM is
not merely a “guiding structure.” As was mentioned above, it
contains several types of collagen, hyaluronic acid, and laminin.
These biologically active compounds are important in nerve
regeneration (Farjah et al., 2020).

Another example of using the ESM as a framework for a
biologically active composite is to use it as a porogen of the
chitosan-based macroparticles, which are used to immobilize
protease. Chitosan-based macroparticles are a common carrier
for enzyme immobilization that is applied in the food industry.
Driven by the requirement of large carrier pores for the
biomacromolecular substrates, such as a protein, the eggshell
membrane powder (ESMP) was employed as a multifunctional
porogen to improve the physicochemical structure of chitosan-
based macroparticles. The results showed that an increase of
ESMP percentage could improve the porosity of macroholes
in macroparticles, and it also enlarged the size of mesopores.
Moreover, the ESMP significantly increased the amount of papain
immobilization, whereas the specific activity of immobilized
papain went through amaximumwith the increase of ESMP. The
inclusion of 20%ESMP in chitosan-basedmacroparticles gave the
highest activity of its immobilized protease (Liu et al., 2020b).
The ESM-chitosan blend films were also used as wound-care
dressings (Li et al., 2019c).

Composites of ESM with nanoparticles of biologically active
compounds, such as metal oxides or metals, were successfully
applied for wound healing. CdO/ZnO-ESM nanocomposites
were shown to have an exceptional antimicrobial activity
against both Gram-positive and Gram-negative bacteria (Selvam
et al., 2020). A copper-containing bioactive glass (Cu-BG)
nanocoating (40–50 nm) with a uniform nanostructure was
formed on a natural eggshell membrane (Cu-BG/ESM) by
pulsed laser deposition (PLD). It was characterized by improved
angiogenesis, antibacterial activity, and wound healing. The
surface physicochemical properties, including the hydrophilicity
and the hardness of ESM, were significantly improved after
depositing Cu-BG nanocoatings. The 5Cu-BG/ESM films
(containing 5 mol% Cu) could maintain a sustained release
of Cu2+ ions and distinctly inhibit the viability of bacteria
(Escherichia coli) (Li et al., 2016).

An antibacterial nanobiomaterial for wound-care based on
the absorption of silver nanoparticles (Ag NPs) on the ESM was
proposed in Raz et al. (2019), Li et al. (2019b), and Krishnan
et al. (2020). The addition of Ag NPs changed the ESM from
hydrophobic to hydrophilic, which is important for the wound-
healing process. The Ag NPs/ESM composites had a higher
surface area (159.08 m2/g), than the natural ESM (24.32 m2/g)
and a suitable average pore size (10.92 nm). Hence, Ag NPs/ESM
composites displayed better absorption and antibacterial abilities
(Krishnan et al., 2020). Several techniques to produce composite
materials based on ESM and Ag NPs have been reported.
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One of them includes pre-treating the eggshell membrane with
procyanidin to reduce silver ions into nanoparticles, which are
then incorporated into the membrane structure. Such materials
showed antibacterial activity against S. aureus, S. albus, and E.
coli when tested on bacterial plates (Krishnan et al., 2020).

Some ESM-based antibacterial materials for wound healing
contain both metal and metal oxide nanoparticles. A challenge
in fabricating such materials is to produce an effective carrier
or delivery matrix to achieve a sustained release profile with
high bactericidal efficacy along with good cytocompatibility.
A facile route has been proposed to fabricate a hierarchical
nanobiocomposite with effective loading of ZnO/silver
nanoparticles (Ag NPs) to attain excellent bactericidal efficacy
with a good and sustainable release profile. In the mentioned
study, surface-functionalized eggshell membranes (ESM)
were deployed as three-dimensional loading matrices for
efficient loading of ZnO/Ag NPs (Raz et al., 2019). A simple
sonochemically guided approach was adopted to synthesize
ZnO nanoflakes in situ onto the microfibrous ESM and decorate
them with Ag NPs, thereby forming a nanobiocomposite. The
microstructural analysis confirmed the successful anchorage
of ZnO nanoflakes and Ag NPs on microfibrous eggshell
membrane, thus reinstating the hierarchical morphology of the
nanobiocomposites. Owing to the synergistic activity of ZnO
and Ag NPs, the nanobiocomposites demonstrated exceptional
bactericidal activity against Gram-negative, E. coli or P.
aeruginosa, and Gram-positive, S. aureus or B. subtilis, bacterial
cells. Furthermore, direct exposure of nanobiocomposites with
NIH 3T3 cells revealed the biocompatible nature of developed
matrices. Prolonged exposure also indicated that the 3T3
cells tend to adhere onto the microfibrous nanobiocomposite

without any observable deformation in cellular morphology. The
architectural tribology and excellent bactericidal performance of
the nanobiocomposites along with their cytocompatible nature
manifested its potential as an alternative platform for various
biomedical applications.

There are also examples when ESM is embedded into
another matrix. For example, ethanol-lubricated expanded-
polytetrafluoroethylene vascular grafts loaded with an
eggshell membrane extract and heparin were applied for
rapid endothelialization and anticoagulation (Yan et al., 2020b).
This novel ethanol-water lubricant not only evenly dispersed
the ESM extract but also dissolved the heparin sodium.
The as-fabricated synthetic expanded polytetrafluorethylene
(ePTFE) grafts, which are routinely used for vascular repair and
reconstruction, showed the classic node-fiber structure suitable
for cell adhesion and migration. The embedded ESM extract
and heparin improved the hydrophilicity and cytocompatibility,
resulting in enhanced cell viability and proliferation of human
umbilical vein endothelial cells (HUVECs) (Yan et al., 2020b).

Chitosan films enriched with the ESM powder were produced
in Santos et al. (2019), Li et al. (2019c), and Liu et al. (2020b).
Their thermal, chemical, biological, and mechanical properties
were studied and the films were shown to be suitable for
biomedical applications (Santos et al., 2019).

An example of a complex composite containing ESM is
provided by a biodegradable dual porous PLA-PVA core-
shell fiber, enriched with ESM, into which a connective
tissue growth factor (CTGF) is also incorporated (Augustine
et al., 2019). CTGF is a signaling molecule with several roles
in tissue repair and regeneration including promoting cell
adhesion, cell migration, cell proliferation, and angiogenesis. The

FIGURE 9 | Schematic illustration of the procedure leading to the production of Li2FeSiO4/C composite with good electrical properties (Karuppiah et al., 2020).
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incorporation of CTGF into a fiber facilitates its sustained release.
The membranes were fabricated by a core-shell electrospinning
technique. CTGF was entrapped within the PVA core which was
coated by a thin layer of PLA. This biomaterial can be used to
treat diabetic wounds (Augustine et al., 2019).

As another example, one can mention the nanofibrous
scaffolds composed of a blend of poly(ε-caprolactone) (PCL),
silk fibroin (SF), soluble eggshell membrane (SESM), and
Aloe vera (AV) gel (Mohammadzadeh et al., 2019). Such
composites were also developed by electrospinning. These
scaffolds were applied for cutaneous tissue engineering. The
artificial scaffolds were modulated with natural biopolymers,
including the ESM as one of them. In the natural ESM,
cross-linked disulfide bonds limit the solubility of ESM and
its use in biomedical engineering as the nanofibrous scaffold.
Soluble ESM (SESM) can be prepared, but it has poor
mechanical properties because of its low molecular weight and
wide molecular weight dispersion. Therefore, it is difficult to
obtain a nanofibre or film from pure ESM. Adding poly(ε-
caprolactone) (PCL) to the composite materials improves the
mechanical properties, without deterioration of biocompatibility
(Mohammadzadeh et al., 2019).

Limitations

Summing up, one can note that most publications on the
biomedical applications of the ES and ESM either report the
preparative techniques of producing a material, or document the
results of its in vitro and in vivo testing. Despite many impressive
examples of successful applications of these materials, little
remains known about the underlying mechanisms of action. This
field looks like a terra incognita for solid-state physical chemists
and can promise many exciting fundamental discoveries, if
biochemical, medical, and solid-state research is carried out
jointly by interdisciplinary teams.

One of the technological challenges when producing an ESM-
based material is to separate ESM from the shell. The poor
solubility of ESM limits the bioavailability of its constituents
and reduces the expression of their potential bioactivity. This
problem can be overcome, for example by cryo-grinding and
homogenization. This reduces the particle size and produces a
particalized eggshell membrane (PEM) approaching submicron
dimensions, with enhanced anti-inflammatory and antimicrobial
activity against skin-associated pathogens (Kulshreshtha et al.,
2020).

USING TOOLS OF MECHANOCHEMISTRY
TO BOOST THE APPLICATION POTENTIAL
OF EGGSHELL WASTE: AN UPDATE

Mechanochemistry is already an established method in various
research fields and is gaining more and more interest in the
research world (Boldyrev and Avvakumov, 1971; Butyagin, 1971,
1994; Heinicke, 1984; Tkáčová, 1989; Gutman, 1998; Avvakumov
et al., 2001; Boldyrev, 2006, 2018; Baláž, 2008; Zyryanov, 2008;
Declerck et al., 2009; Guo et al., 2010; James et al., 2012; Baláž
et al., 2013; Boldyreva, 2013; Braga et al., 2013; Groote et al.,

2013; Huot et al., 2013; Šepelák et al., 2013; Stolle and Ranu, 2014;
Cagnetta et al., 2016; Andre et al., 2017; Colacino et al., 2018;
Bolm and Hernandez, 2019; Bychkov et al., 2019; Gomollón-Bel,
2019; Rogachev, 2019; Suryanarayana, 2019; Tan and García,
2019; De Oliveira et al., 2020a,b), has recently been awarded on a
European level by a COST project (Baláž et al., 2019b; Hernández
et al., 2020; www.mechsustind.eu)3 and is also recognized by
IUPAC (Mcnaught and Wilkinson, 1997; Gomollón-Bel, 2019).
International Mechanochemical Association is IUPAC-affiliated
since 1988 (www.imamechanochemical.com/about-us/)4.
The area of waste treatment is also interesting for the
mechanochemical community (Lomovsky and Boldyrev,
2006; Guo et al., 2010; Tan and Li, 2015; Cagnetta et al., 2016;
Bychkov et al., 2019; Li et al., 2019a; Piras et al., 2019). There
are several papers that applied tools of mechanochemistry for
the treatment of eggshell waste. A review paper on this topic
was published in 2018 (Baláž, 2018). Ball milling was applied
for four main purposes- formation of nanophase, synthesis of
bioceramics, composite materials synthesis, and improvement
in sorption properties. The broad application fields upon
application of ball milling of eggshell waste can be well-seen
from the graphical abstract of that paper (Figure 6).

Since the publication of the review article mentioned above, a
couple of new works have appeared. The most important ones
with their main findings are briefly reviewed in Table 1. As
follows from the table, the authors targeted different application
fields, however, the majority of them fall into the categories
outlined in Figure 6. The works on bioceramics preparation and
the preparation of nano-eggshell dominate. Nevertheless, some
new application spheres have emerged, e.g., biogas production
(Sari et al., 2020), filtration (Seeharaj et al., 2019), dentistry
(Onwubu et al., 2019a,b), and electrochemistry (Cherdchom
et al., 2019; Senthil et al., 2019; Karuppiah et al., 2020). A
reference to the study using ball milling of eggshell for the
application in catalysis (Mosaddegh and Hassankhani, 2014) has
been already mentioned earlier. A few interesting reports are
summarized in more detail below.

The idea of dechlorinating PVC waste using eggshell
(containing both shell and membranes) was scaled up to a semi-
industrial level and compared to a lab-scale process in Baláž et al.
(2019a). The laboratory-scale experiment was more efficient,
as complete dechlorination was observed upon 4 h of milling,
whereas only 56% was reached after 12 h of treatment in a semi-
industrial vibratory ball mill. However, the milling conditions in
the vibratory mill were not optimized. The rate constant obtained
using the best-fitting zero-order kinetic model for the scaled-up
processing was also significantly lower. Chlorine originating from
waste PVC was successfully bound to a deliquescent CaCl2. The
idea, scale, and dechlorination result can be well-seen in Figure 7.

From the papers focusing on the bioceramics production,
the report (Ferro and Guedes, 2019) is of particular interest,

3www.mechsustind.eu CA18112: Mechanochemistry for Sustainable Industry.
Available online at: www.mechsustind.eu (accessed September 30, 2020).
4www.Imamechanochemical.Com/About-Us/ International Mechanochemical
Association. Available online at: www.imamechanochemical.com/about-us/
(accessed September 30, 2020).
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as the authors succeeded in the preparation of hydroxyapatite
just by using ball milling without the need of subsequent
sintering. As calcium sources either eggshell or cuttlefish bones
(containing Ca in the form of calcite or aragonite, respectively),
have been applied. The reaction progress was found to be a
function of energy input and was different for each precursor.
The final product was formed easier when using an aragonite-
containing precursor.

Eggshell was co-milled with rice straw and subsequently
heated at 800◦C in order to obtain effective adsorbent of
phosphate ions in Liu et al. (2019). The kinetics of the adsorption
process can be well-described by a pseudo-second-order kinetics
and the maximum adsorption capacity calculated from the
adsorption isotherm using Langmuir model was 231 mg/g
(evidenced for eggshell: rice straw 1:1 ratio). The adsorption
ability of all three phosphate ions (including the hydrogenated
ones) has been investigated, yielding the best results for
hydrogen-free PO3−

4 ones, as the presence of hydrogen hampers
the efficient complexation of Ca and P. The elevated temperature
improved the outcome, which, together with other results in the
paper confirmed the chemical character of adsorption.

The hydrophobic eggshell waste was prepared by mechanical
activation and subsequent modification with stearic acid mixed
with polymer binder in Seeharaj et al. (2019). The obtained
material was then dip-coated on glass and cotton fabric. As
the resulting material exhibited the water contact angle values
above 150◦, it can be considered superhydrophobic. As a proof
of the applicability, the separation of diesel/water mixture by
filtration on the preparedmaterial is shown in Figure 8.Whereas,
diesel easily goes through to the filtrate, water remains on
the filter.

Three different biogenic sources, namely eggshell (ES),
cuttlefish bone (CB) and mussel shells (MS) have been used
as sources of calcium to produce hydroxyapatite in Cestari
et al. (2020). As a source of phosphates, mainly ammonium
phosphate dibasic (APD) has been used. The XRD results
showed that ES and MS contain mostly calcite and CB contains
aragonite. On the contrary to Ferro and Guedes (2019), just
milling did not yield the desired phases, however, a subsequent
low-temperature treatment did. The temperatures in the range
120–150◦C were sufficient to get the hydroxyapatite and the
process seems to be the most straightforward (no intermediate
phases) for the aragonite-containing CB precursors. Calcite phase
could still be detected when using ES and MS, whereas pure
HA was formed in the case of CB. Nevertheless, performing
the reaction at low pH using phosphoric acid instead of APD
yielded phase-pure hydroxyapatite also in the case of ES and MS
precursors.

An interesting study showing the acid-resistant properties of
the eggshell waste, which can be potentially applied in dentistry
has been reported in Onwubu et al. (2019b). Enamels collected
from bovine were exposed to the action of HCl in the presence
of various toothpaste solutions and also to pure eggshell and
eggshell-TiO2 composite. The acid-resistant properties could be
well-traced from the SEM images of the enamels taken after the
action of the corresponding solutions.Whereas, the enamels after
the action of Colgate toothpaste, eggshell and eggshell/TiO2 is

smooth, it contains fractures and roughness, being the result of
acid action in the other cases.

Lithium iron orthosilicate Li2FeSiO4 (LFS) was prepared
using the polyol method and subsequently co-milled with
eggshell membrane serving as a carbon source in Karuppiah
et al. (2020). The complete carbonization of ESM was achieved
during the post-milling calcination in Ar atmosphere and the
successful coating with iron was proven by TEM. The as-received
LFS/C composite exhibited excellent electrical properties with
high coulombic efficiency of 98.5% which can be maintained for
more cycles. The main message of the paper is demonstrated in
Figure 9.

The calcined eggshell was used to produce biogas from palm
oil mill effluent and cow manure mixture in Sari et al. (2020).
Namely, the effect of the particle size reduction achieved by
ball milling was investigated. The increasing amount of nano-
Ca led to the improvement of the performance, however, the
excessive amount of calcium has a detrimental effect on the
biogas production, as when Ca concentration is 10 g/L, the result
is even worse than in the case of the control experiment.

Mechanochemical processing of eggshell waste still finds new
applications spheres and as both mechanochemistry and eggshell
waste can be considered sustainable and applicable for the
protection of the environment, it is highly probable that this area
will further expand in the future.

Limitations
Although the ball milling process is very beneficial in broadening
the application scope of eggshell waste, it suffers from the
traditional disadvantages of mechanochemistry, namely the
contamination of the treated material with small fragments from
milling balls and chambers and large temperature elevation at
the contact points between the milled material and the milling
balls. The latter phenomenon can lead to partial decarbonation
of eggshell (it was already shown before that the decomposition
temperature decreases with milling; Petkova et al., 2017), which
might significantly alter the properties of the final product.
However, in many cases, the production of CaO is necessary
anyway, so it might also be beneficial.With regards to the eggshell
membrane, the intensive milling degrades the soft fiber structure
and can deteriorate adsorption properties (Baláž et al., 2016).
However, upon proper tuning of the milling conditions (e.g., by
using mild conditions when treating eggshell membrane), it is
possible to avoid this undesirable phenomenon.

CONCLUSION

Nature provides us with a lot of useful materials and despite the
fact that some of themmight seem to be without further use, their
hidden application potential is always being discovered. This
also accounts for the eggshell waste, one of the most common
food wastes. Rather than being discarded on the landfills, it can
be very useful in a rich plethora of applications. This review
aimed to show its applications in catalysis, electrochemistry,
therapeutics and after proper treatment by an environmentally
harmless mechanochemistry, the scope of its applications can be
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further broadened. A large number of publications on this topic
has been published in the last 2–3 years, which clearly shows that
eggshell waste has recently become a very interesting material for
various research groups around the world.
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LIST OF ABBREVIATIONS

APD, ammonium phosphate dibasic
API, active pharmaceutical ingredient
4-AP, 4-aminophenol
AV, Aloe vera
BG, bioactive glass
BMD, bone mineral density
CB, cuttlefish bone
CESM, carbonized eggshell membrane
CN, carbon nanostructure
CNC, cellulose nanocrystal
CREMP, cysteine-rich eggshell membrane protein
CTGF, connective tissue growth factor
2D, two-dimensional
3D, three-dimensional
ePTFE, expanded polytetrafluorethylene
ES, eggshell
ESM, eggshell membrane
ESMP, eggshell membrane powder
ESP, eggshell powder
FTIR, Fourier-transform infra-red
GEM, graphene-layered ESM
HA, hydroxyapatite
HUVEC, human umbilical vein endothelial cells
IL-1β, α-interleukin-1 beta
LFS, Lithium iron orthosilicate, Li2FeSiO4

MC, mineral composite
MS, mussel shell
NGC, nerve guidance channel
NIR, near infra-red
NP, nanoparticles
4-NP, 4-nitrophenol
OM, organic matrix
OPG, osteoprotegerin
ORR, oxygen reduction reaction
PCL, poly (ε-caprolactone)
PEM, particalized eggshell membrane
PEI, polyethyleneimine
PEP, processed eggshell membrane powder
PLA, poly(lactic) acid
PLD, pulsed laser deposition
PMN, polymorphonuclear
PTH, parathyroid hormone
PVA, polyvinyl alcohol
PVC, polyvinyl chloride
RANK, Receptor activator of nuclear factor kappa-β
RANKL, Receptor activator of nuclear factor kappa-β ligand
SC, supercapacitor
SESM, soluble eggshell membrane
SF, silk fibroin
TCNF, (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO)-
oxidized cellulose nanofibrils
TEM, transition electron microscopy
TEMPO, (2,2,6,6-tetramethylpiperidin-1-yl)oxyl
TNF, tumor necrosis factor

VOC, volatile organic compound
XRD, X-ray diffraction.
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