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Abstract

Using first principle methodology, we investigate the stable structures of the non-

reactive and reactive clusters formed between Zn2+-triazoles ([Zn2+-Tz]) clusters and CO2 and 

/ or H2O. In sum, we characterized two modes of bonding of [Zn2+-Tz] with CO2/H2O: (i) The 

interaction is established through a covalent bond between Zn2+ of [Zn2+-Tz] and oxygen 

atoms of CO2 or H2O; and (ii) hydrogen bonds through N–H or C–H of [Zn2+-Tz] and oxygen 

atom of H2O or CO2, N–H---O. We also identified intramolecular proton transfer processes 

induced by complexation. Indeed, water changes drastically the shape of the energy profiles 

of the tautomeric phenomena, through a strong lowering of the potential barriers to 

tautomerism. The comparison to [Zn2+-Im] subunits formed with Zn2+ and imidazole shows 

that the efficiency of Tz based compounds for CO2 capture and uptake is due to the 

incorporation of more accessible nitrogen donor sites in Tzs compared to imidazoles. Since 

[Zn2+-Tz] clusters are subunits of organometallic nanoporous material and Zn-proteins, our 

data are useful for deriving force fields for macromolecular simulations of these materials. 

Our work suggests also the consideration of traces of water to better model the CO2 

sequestration and reactivity on these macromolecular entities pores or active sites. 
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I. Introduction

Metal-triazole or metal-triazole derivatives, such as those formed between triazoles 

and Zn(II), Cd(II) and Hg(II) ions, 1 are subunits of macromolecular porous materials and 

metalloenzymes and of promising pharmacological compounds. They are linked to diverse 

applications of primary importance in biology, medicine, industry, environment and material 

science. In biology and medicine, 1,2,3-triazole@Zn2+ complexes are potentially used to 

mimic histidine-carboxylate active site of metallopeptidases, 2 which is connected with the 

catalytic conversion of CO2 in biological media. 3 4 5 6 7 8 9 We can also find these entities in 

antibacterial drugs. Indeed, Amitrole (3-amino-1,2,4-triazole) is a widely used herbicide that 

inhibits an enzyme of histidine biosynthesis in Salmonella typhimurium. 10 Triazoles also 

have the highest potential for antifungal drugs. Indeed, they are confirmed as inhibitors of 

various hepatic CYP450 metabolic enzymes 11 and some of other triazole compounds, e.g., 3-

substituted-4-amino-5-mercapto-1,2,4-triazoles, were found to be active against some cancer 

cells. 12 Moreover, these organometallic entities are the backbones of metal organic 

frameworks (MOFs), 13 polynuclear metal complexes, 14 hybrid coordination polymers, highly 

hydrophobic porous organic polymers, 15 1D ring-like infinite chains polymers 16 

functionalized fluorescent polymer nanospheres, 17 functionalized podand triazole-linked gold 

nanoparticles, 18 mixed metal metal-organic polyhedra networks, colloids, highly porous 

(3,24)-connected framework NTU-105, 19 and advanced electrodes.

Nanopourous materials with various structures and properties can be obtained via 

different combinations of metal centers and organic ligands. The coordination number of the 

metal and the geometry around the metal have vital roles for applications. 20 21 For instance, 

they are on the origin of the 3D structure of the pore cavity in nanoporous materials (e.g. 

MOFs), which is essential to their use for the selective and specific gas (e.g. H2, CO2) 

adsorption capture, sequestration. In addition, the adsorption capacity of MOFs depends on 

the choice of the organic linkers and metals. Recent studies revealed that organic linkers 

containing N-rich heterocycles, such as triazoles, are very efficient for CO2 adsorption 22 23 24 

The triazoles exceptional capacity and selectivity for gas adsorption is attributed to the 

relatively strong van der Waals interactions between CO2 and amine functionalities. 25

Numerous investigations showed that the presence of water might affect the 

adsorption of CO2 on nanoporous materials. For instance, Joos et al. 26 showed that the 

presence of water reduces, by an order of magnitude, the adsorption capacity of CO2 in zeolite 

13X, which is the most common commercial adsorbent used for CO2 capture. Li et al. 27 28 

noticed also that the CO2 purity using zeolite 13X decreases from 95% to 59% in dry air CO2 

(10-12 % of CO2 ) and in wet CO2 flue gas steams containing 3.4% (vol), respectively. 

However, Yazaydin et al. 29 proved, through experiments and simulations, the opposite effect. 

Page 3 of 27

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



4

According to their results, the introduction of 4 wt % water molecules increases the 

coulombic interactions between water molecules and CO2, and thus favors the CO2 uptake by 

45% at 1 bar. These electrostatic interactions arise from the electric field generated by water 

molecules and quadrupole moment of CO2. In addition, Soubeyrand-Lenoir et al. 30 reported a 

remarkable increase of CO2 uptake in MIL-100(Fe) at low pressure (0.2 bar), whereas, further 

increasing of water loading may block the CO2 uptake.

Recent works showed that the decrease of CO2 uptake in the presence of water may 

be related to the change of the surface pores after their reaction with water, thus enhancing or 

decreasing locally their Brønsted acidity. 31 Generally, water stability in adsorbent depends on 

the steric effect around the ligand and coordination sites in materials 32. Such laboratory 

observations are closely connected with the industrial and catalytic applications of metal-

triazole or metal-triazole derivatives based macromolecular entities. Note that it is difficult to 

understand the phenomena occurring at the surface of the pores of these materials without 

simulations at the microscopic level. This is because the latters allow screening individual 

elementary processes of “ideal” systems, whereas experiments mostly probe integral or global 

information of “non-ideal” systems. The induced reactivity, binding and nano-confinement 

effects due to the introduction of ligands binding moieties in surface pores are still poorly 

understood.

Experimental and theoretical studies of the Zn-organic linker backbones interacting 

with water or CO2 remain very limited. Theoretically, we can cite, for instance, our recent 

work on CO2 interacting with Znq+–imidazole (q=0, 1, 2) complexes 33 or with imidazole 

attached on gold clusters and surface 34, that of Linder et al. 35 on [(H2O)@Zn–(imidazole)n]2+ 

complexes, and of Grauffel and Lim 36 on [(H2O)@Zn–(AA)n]2+ (AA: amino acid modeled by 

imidazole or methylimidazole) clusters. Experimentally, the review by Parkin 37 gives a 

detailed presentation on the synthesis and characterization of medium sized Zn(II) based 

motifs found in Zn enzymes. Other examples can be found in Ref. 38. For instance, a 

description of the determination of the binding energy of H2O@Zn–(Im)3
2+ by Peschke et al. 

39 is given there.

In a recent work we characterized the stable structures of the complexes formed 

between zinc II (Zn2+) and 1H-1,2,3-triazole, 2H-1,2,3-triazole, 1H-1,2,4-triazole and 4H-

1,2,4-triazole. 40 These clusters are denoted [Zn2+-Tz] and displayed in Figure 1, where we 

follow the denomination as given in Ref. 34. Briefly, we determined seven [Zn2+-Tz] 

complexes in which the bounding is ensured by σ-type bond formed after in-plane favorable 

interactions between Zn2+ and the unprotonated nitrogen atom of triazole or via out-of-plane 

interactions between C5 atom of Tz and Zn2+. These forms serve as starting point for the 

studies CO2@[Zn2+-Tz], H2O@[Zn2+-Tz] and of CO2@H2O@[Zn2+-Tz] clusters that we will 
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investigate herein. In this work, we identified their equilibrium structures, binding positions, 

binding energies, and relative stabilities in gas phase and in water solution. Although the 

metal ion (Zn2+) is able to form stable complexes with more than one Tz ligand, we only 

investigated complexes with 1:1 stoichiometric ratio (i.e., 1 Zn (II) : 1 Tz) in order to study in 

more detail the interactions between H2O/CO2 and [Zn2+-Tz] complexes at the molecular 

level. Mainly, we identified two major classes of complexes formed, which are: the weakly 

bound complexes, and the Zn-O covalently bonded complexes. For the former ones, the 

clustering occurs via van der Waals and H-bonding interactions between Tz and CO2 and/or 

H2O. For the complexes containing Zn-O bond, the CO2 and/or H2O reacts with the metallic 

center. For a tetra (or hexa)-coordination zinc will make the system larger and will be the 

subject of our future study.

The evaluation of solvent-solute interactions of CO2@[Zn2+-Tz] in the presence of 

water is important since water may affect the coordination sites and stability of [Zn2+-Tz] and 

their complexes with CO2. Thus, we identified the hydrophilic sites of [Zn2+-Tz] complexes 

and the coordination sites between [Zn2+-Tz] and CO2 in the presence of one water molecule 

in gas phase. Also, we investigated the 1,2 proton transfer mechanism, in gas phase and in 

water solution, of two CO2@[Zn2+-Tz] tautomers. Afterwards, we will use our findings to 

discuss the tautomeric equilibrium in solution and to propose an explanation for the observed 

features in the macromolecular entities. The new predicted complex isomers may be used for 

the design of new materials since only the structures of dominant tautomers are known 

experimentally.

II. Computational details

Experimental bond lengths, binding energies and deprotonation energies are not 

available for Zn(II) complexes investigated in this study. According to Truhlar and co-

workers 41 42 the M05-2X DFT 43 performs very well to predict energetics and geometric 

properties of Zn(II) organo complexes. Moreover and through systematic studies of 

complexes formed between Zn2+ and nitrogen rich five member ring heterocycles 40 44 33, we 

highlighted the ability of M05-2X and PBE0 density functionals with dispersion correction 

(+D3 45) to accurately describe both covalent and weak interactions (H- bonds and van der 

Waals) between Zn2+ and triazoles (Tz). Indeed, a close agreement with the costly ab initio 

CCSD(T) and CCSD(T)-F12 results is observed, whereas the cost of the computations is 

strongly reduced when using DFT(+D3). 40 Therefore, the present theoretical study is 

performed using M05-2X(+D3) functional to investigate the structures, the stability, and the 

bonding of CO2@[Zn2+-Tz], H2O@[Zn2+-Tz] and CO2@H2O@[Zn2+-Tz] complexes. These 

electronic structure computations were carried out using GAUSSIAN 09 (version D0.1) 
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package. 46 The choice of the basis set is based on previous reports dealing with metal–ligand 

complexes and CO2 adsorption on Zn complexes. 33 These works tested the suitability of 

extended basis set (6-311++G**) to describe metal-organic compounds at a relatively small 

computational cost. 

[Zn2+-1A]a [Zn2+-1A]b [Zn2+-1B]a [Zn2+-1B]b

[Zn2+-2A]a [Zn2+-2A]b [Zn2+-2B]

Figure 1: Equilibrium structures of [Zn2+-Tz] complexes as determined in Ref. 40. 1A is for 

1H-1,2,3-triazole, 1B is for 2H-1,2,3-triazole, 2A is for 1H-1,2,4-triazole and 2B is for 4H-

1,2,4-triazole. We give also the 3D electrostatic potential surface maps (3D MESP, isovalue 

0.01 e/au3 ) of [Zn2+-Tz] complexes as computed using GAUSSIAN. 

As a starting point, we considered the [Zn2+-Tz] clusters as identified in Ref. 40 i.e. 

[Zn2+-1A]a, [Zn2+-1A]b, [Zn2+-1B]a, [Zn2+-1B]b, [Zn2+-2A]a, [Zn2+-2A]b and [Zn2+-2B]. They 

are displayed in Figure 1. There would be a diversity of clusters in interaction with CO2 / 

H2O. This complicates the present study since a large number of CO2@[Zn2+-Tz], of 

H2O@[Zn2+-Tz] and of CO2@H2O@[Zn2+-Tz] complexes is expected. Firstly, a systematic 

search of the minimal structures formed by the [Zn2+-Tz] clusters with CO2 and/or H2O in gas 

phase at the M05-2X+D3/6-311++G** level of theory has been performed. Then we carried 

out polarizable continuum method (PCM, solvent=water) 47 48 simulations of the resulting 

CO2@[Zn2+-Tz] complexes at the same level of theory to account for implicit solvation 

effects on the coordination site, the bonding, and stability of these systems. Secondly, we 

computed the intracluster 1,2 proton transfer mechanism, in gas phase and in water solution, 

of two potential tautomers.
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We fully optimized the geometries without symmetry constraints, in the C1 point 

group. In each step of theoretical study, we have confirmed by vibrational analysis that all 

equilibrium structures (true minima) correspond to stationary points on the potential energy 

surfaces without any imaginary frequency. For transition states, we computed stationary 

points with one imaginary frequency. For each transition state existing on the potential energy 

surface, intrinsic reaction coordinate (IRC) 49 50 calculations were performed to ascertain that 

it connects the desired species. We followed reaction path in both directions (forward path: 

from TS to products and reverse path: from TS to reactants).

In order to evaluate the inter / intra molecular charge transfer within the complexes, 

we carried out Natural Bond Orbital analysis NBO6 51 at the M05-2X+D3/6-311++G** level 

of theory under Gaussian program package. Most of the details and results are given in the 

Supplementary Information. We further characterized these complexes by computing their 

binding energies (BEs). These calculations help evaluating their strength and stability. As the 

use of finite basis set in quantum chemical calculations leads to basis set superposition error 

(BSSE), i.e. either lowering energy of the dimer or unrealistic large stabilization, BEs were 

corrected for BSSE using the counterpoise procedure as suggested by Boys and Bernardi 52 

and expressed as follows: 

𝐵𝐸 = 𝐸𝐴𝐵 ― (𝐸𝐴 + 𝐸𝐵)

where  is the binding energy of complex AB at equilibrium;  is the total energy 𝐵𝐸 𝐸𝐴𝐵

of AB at equilibrium;  is the energy of A at equilibrium;  is the energy of B at 𝐸𝐴 𝐸𝐵

equilibrium. These three terms are evaluated in the AB complex basis set. For CO2@[Zn2+-

Tz] and CO2@H2O@[Zn2+-Tz], B is CO2 and for H2O@[Zn2+-Tz], B is H2O.

III. Results : Bonding and equilibrium structures

Figure 1 presents the equilibrium structures of [Zn2+-Tz] clusters as determined in Ref. 40. 

These structures served as starting point to bind CO2, H2O or both. We also give in Figure 1 

the 3D electrostatic potential surface maps (3D MESP) of [Zn2+-Tz] species. These 3D MESP 

correspond to the electrostatic potential of [Zn2+-Tz] complexes due to their electron charge 

densities extending around them. Their examination allows assessing the possible binding 

sites of these complexes using simple electrostatic considerations. Indeed, this figure shows 

that, as expected, the Zn atom exhibits a strong positive potential. Thus, it will be subject to 

nucleophilic attacks by O atoms of CO2 and of H2O. Whereas Tzs may be involved in 

nucleophilic attacks at the H bonded to N or C by the O of CO2 and H2O, or electrophilic 

attacks at the N lone pairs either by the C of CO2 or by the H of H2O. The optimized stable 

CO2@[Zn2+-Tz], H2O@[Zn2+-Tz] and CO2@H2O@[Zn2+-Tz] complexes are depicted in 

Figures 2, 3 and 4, respectively. All these structures correspond to minima in the 
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corresponding potential energy surface. The complexes between [Zn2+-Tz] and H2O or CO2 

are denoted as YY@XX,Si where XX stands for the [Zn2+-Tz] cluster used (cf. Figure 1), YY 

is for CO2 or H2O and “Si” (i = 1, 2, …) is the numbering of the complexes for their 

classification. For complexes involving CO2 and H2O and [Zn2+-Tz] we use the 

CO2@H2O@XX,Si notation. We give their coordinates in the Supplementary Information.

a. CO2@[Zn2+-Tz] complexes

Table 1: Intermonomer distances (in Å) of CO2@[Zn2+-Tz] complexes and their binding 

energies (BE, in kcal.mol-1) in gas phase and in water solution as computed at the M05-

2X+D3/-311++G** level of theory. See Figure 2 for the denomination of the clusters and for 

the definition of the quoted distances.

Gas Phase PCM Solvent model

Distances BE Distances BE

CO2@[Zn2+-1A]b,S1
R1

R2

2.505

2.768
-12.02

3.054

3.134
-7.61

CO2@[Zn2+-1A]a,S2 R 1.881 -56.42 2.099 -48.04

CO2@[Zn2+-1A]a,S3
R1

R2

2.447

2.523
-7.94

2.693

2.661
-6.70

CO2@[Zn2+-1A]a,S4 R 1.761 -12.04 2.078 -9.00

CO2@[Zn2+-1B]b,S1 R 1.897 -52.79 2.144 -43.23

CO2@[Zn2+-1B]b,S2 R 1.666 -14.32 2.069 -9.98

CO2@[Zn2+-1B]a,S3 R 1.878 -58.58 2.136 -47.74

CO2@[Zn2+-1B]a,S4
R1

R2

2.309

2.686
-8.16

2.332

2.761
-6.64

CO2@[Zn2+-2A]a,S1 R 1.880 -57.73 2.136 -46.86

CO2@[Zn2+-2A]b,S2 R 1.882 -56.83 2.129 -47.85

CO2@[Zn2+-2A]b,S3 R 1.756 -11.91 2.053 -9.74

CO2@[Zn2+-2B]S1 R 1.899 -51.74 2.139 a) -45.15

CO2@[Zn2+-2B]S2 R 1.750 -12.85 2.103 a) -9.71

a. With PCM solvation, the zinc ion is no more bonded to triazole through two 

nitrogens (CO2@[Zn2+-2B]) but through only one covalent bond.
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CO2@[Zn2+-1A]

CO2@[Zn2+-1A]b,S1 CO2@[Zn2+-1A]a,S2 CO2@[Zn2+-1A]a,S3 CO2@[Zn2+-1A]a,S4

BE= -12.02 BE= -56.42 BE=-7.94 BE=-12.04
CO2@[Zn2+-1B]

CO2@[Zn2+-1B]b,S1 CO2@[Zn2+-1B]b,S2 CO2@[Zn2+-1B]a,S3 CO2@[Zn2+-1B]a,S4

BE=-52.79 BE=-14.32 BE=-58.58 BE=-8.16
CO2@[Zn2+-2A]

CO2@[Zn2+-2A]a,S1 CO2@[Zn2+-2A]b,S2 CO2@[Zn2+-2A]b,S3

BE=-57.73 BE=-56.83 BE=-11.91
CO2@[Zn2+-2B]

CO2@[Zn2+-2B]S1 CO2@[Zn2+-2B]S2

BE=-51.74 BE=-12.85
Figure 2: M05-2X+D3/-311++G** optimized equilibrium structures between CO2 and [Zn2+-

Tz] complexes. We give also their intermonomer distances and their gas phase binding 

energies (BE, in kcal.mol-1).

We mapped the ground state potential energy surface (PES) of CO2@[Zn2+-Tz] to 

locate the possible coordination sites between [Zn2+-Tz] (Figure 1) and CO2, where a 

systematic search of all possible positions of CO2 around [Zn2+-Tz] was carried out. We give 

in Figure 2 the equilibrium structures of CO2 interacting with [Zn2+-Tz] complexes which are 
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identified using the M05-2X+D3 functional in conjunction with the 6-311++G** basis set. 

For CO2 interacting with [Zn2+-1A], four forms were obtained where CO2 binds to 1A 

Tz in CO2@[Zn2+-1A]b,S1, CO2@[Zn2+-1A]a,S3 and CO2@[Zn2+-1A]a,S4 and where CO2 is 

linked to zinc in CO2@[Zn2+-1A]a,S2. For CO2@[Zn2+-1B], two clusters (CO2@[Zn2+-1B]b,S1 

and CO2@[Zn2+-1B]a,S3) were found where CO2 interacts directly with zinc. For CO2@[Zn2+-

2A], we compute a weakly bond complex where CO2 interacts with 2A Tz and two clusters 

(CO2@[Zn2+-2A]a,S1 and CO2@[Zn2+-2A]b,S2) where CO2 is attached to zinc. When CO2 is 

approaching [Zn2+-2B], two isomers are formed: CO2 is linked either to zinc (CO2@[Zn2+-

2B]S1) or to 2B Tz (CO2@[Zn2+-2B]S2). All clusters are planar except CO2@[Zn2+-1A]b,S1, 

CO2@[Zn2+-1B]b,S1 and CO2@[Zn2+-1B]b,S2. Note that the majority of the structures in gas 

phase have similar complexes in water solution (see Table 1 for more details).

Figure 2 and Table 1 present the intermonomer distances between the oxygen atom of 

CO2 and the coordination site of [Zn2+-Tz] complexes and their binding energies BEs as 

computed at the M05-2X+D3/6-311++G** level of theory in gas phase and in water solution. 

This table shows that the CO2 -- [Zn2+-Tz] distances are longer in the solvent whereas the BEs 

are lowered by several kcal/mol. Moreover, Table 1 shows that the most stable structures are 

strong electron donor-acceptor complexes, in which a covalent Zn–O bond between CO2 and 

Zn2+ is established: CO2@[Zn2+-1A]a,S2, CO2@[Zn2+-1B]b,S1, CO2@[Zn2+-1B]a,S3, CO2@[Zn2+-

2A]a,S1, CO2@[Zn2+-2A]b,S2 and CO2@[Zn2+-2B]S1 with Zn–O distances amounting to 1.881, 

1.897, 1.878, 1.880, 1.882, and 1.899 (in Å), respectively. The order of stability of theses 

complexes, in the gas phase, is CO2@[Zn2+-1B]a,S3 > CO2@[Zn2+-2A]a,S1 > CO2@[Zn2+-

2A]b,S2 > CO2@[Zn2+-1A]a,S2 > CO2@[Zn2+-1B]b,S1 > CO2@[Zn2+-2B]S1 for which we 

compute the following M05-2X+D3/6-311++G** BEs (in kcal/mol) -58.58, -57.73, -56.83, -

56.42, -52.79 and -51.74, respectively. In PCM water solvent model, these BEs are in the 

range of -48 to -43 kcal/mol and their ordering in energy is slightly changed. Such BE 

reduction upon solvation is expected since in water solution the Zn–O bond is longer and thus 

weaker. They represent models, at the microscopic level, of the interaction of CO2 with Zn of 

Zn-enzymes at their active sites.

Second order perturbation energy (E2) and NBO analysis as given in the 

Supplementary Information, show that the Zn–O containing complexes are due to interaction 

through coordination bond between zinc of Tz and oxygen atom of CO2. Thus, CO2 forms a 

bond with Zn within these complexes. This is associated with intramolecular charge transfer 

within CO2 from the lone pair (LP) of O to the C-O 2-center antibond (BD*) (E2 > 90 

kcal.mol-1). Further stabilization of these complexes is due to intermonomer charge transfer 

from Tz to Zn (from LP(1) N →LV(1) Zn ) and from CO2 to Zn (from LP (1) O →LV(1) Zn). 

The other clusters depicted in Figure 2 are formed by van der Waals type of 
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11

interactions between CO2 and the organic part of [Zn2+-Tz] via σ-type H-bonds. These H- 

bonds are of two types: (i) interaction through N–H---O with BEs ranging from -11.9 

(CO2@[Zn2+-2A]b,S3) to -14.32 (CO2@[Zn2+-1B]b,S2) kcal/mol and (ii) C–H---O interactions 

with BEs much smaller (of ~ -8 kcal/mol). This type of interaction was only identified in 

1,2,3-triazole (isomer 1A and isomer 1B) since the double bond is localized between the two 

carbon atoms of these isomers which is not the case for 1,2,4-triazole. See Supplementary 

Information for in depth analysis of their bonding.

For σ H-bond (through N-H—O) noncovalently interacting complexes, we identified 

an intermolecular charge transfer from the LP of O to the N-H BD*. These interactions are 

weak. As expected, we computed relatively small E2 values of 17.52, 26.42, 17.50 and 18.72 

kcal.mol-1 for CO2@[Zn2+-1A]a,S4, CO2@[Zn2+-1B]b,S2, CO2@[Zn2+-2A]b,S3 and CO2@[Zn2+-

2B]S2, respectively. However, the stability of these complexes is ensured through 

intramolecular charge transfer within CO2 (E2 > 110 kcal.mol-1). For the π-stacking type of 

noncovalent interaction in CO2@[Zn2+-1A]a,S3 and CO2@[Zn2+-1B]a,S4, we identified a charge 

transfer from LP of O to C-H BD* with very low E2 (< 1 kcal.mol-1). Again, we observe 

intramolecular charge transfer within CO2 (E2 > 133 kcal.mol-1).

b. H2O@[Zn2+-Tz] complexes

We mapped the ground state potential energy surface (PES) of H2O@[Zn2+-Tz] to 

locate the possible coordination sites between [Zn2+-Tz] and H2O, to investigate their types of 

interactions and to identify the hydrophilic centers of [Zn2+-Tz] complexes. Figure 3 presents 

the M05-2X+D3/6-311++G** equilibrium structures of H2O@[Zn2+-Tz] complexes, their 

binding energies and H2O -- [Zn2+-Tz] intermonomer distances. In total, 16 complexes are 

found between H2O and [Zn2+-Tz]. All of them exhibit an interaction between the O atom of 

H2O and the [Zn2+-Tz] moiety. As for CO2@[Zn2+-Tz], there are either clusters where H2O is 

linked to Zn2+ or where H2O is bonded via -type H-bonds. See Figure 3 for more details. 

According to the values of BEs listed in Figure 3, the most stable monohydrated 

complexes have a Zn-O bond, which results from a covalent bonding between the unsaturated 

zinc metal ion of [Zn2+-Tz] and the oxygen atom of H2O. Within these complexes, the Zn-O 

distance amounts to ~1.9 Å. The order of stability of these complexes in gas phase is 

H2O@[Zn2+-1B]a,S4, H2O@[Zn2+-2A]a,S1, H2O@[Zn2+-2A]b,S3, H2O@[Zn2+-1A]a,S5, 

H2O@[Zn2+-1A]a,S4, H2O@[Zn2+-1B]b,S1, H2O@[Zn2+-2B]S1, for which we compute the 

following BEs (in kcal/mol) -80.77, -79.93, -78.94, -78.58, -78.48, -74.36, and -74.22, 

respectively. In absolute value, these BEs are distinctly larger (by > 20 kcal/mol) than those 

computed for CO2@[Zn2+-Tz]. The second class of complexes feature weak interactions 

where H-bonds are formed either through N–H---O as in H2O@[Zn2+-1A]a,S3 or H2O@[Zn2+-
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12

1A]a,S2; or through C–H---O as in H2O@[Zn2+-1A]a,S6 or H2O@[Zn2+-2A]a,S2. Note that the 

BEs of the latter complexes are smaller than the previous ones, but remain relatively large (in 

the range 40-17 kcal/mol, Figure 3), as signature of the large stability of water complexes 

with Zn-triazoles. This is accompanied by the shortening of the distances between H2O and 

Tz.

H2O@[Zn2+-1A]

H2O@[Zn2+-1A]b,S1 H2O@[Zn2+-1A]a,S2 H2O@[Zn2+-1A]a,S3
BE=-40.39 BE=-27.77 BE=-28.61

H2O@[Zn2+-1A]a,S4 H2O@[Zn2+-1A]a,S5 H2O@[Zn2+-1A]a,S6
BE=-78.48 BE=-78.58 BE=-17.24

H2O@[Zn2+-1B]

H2O@[Zn2+-1B]b,S1 H2O@[Zn2+-1B]b,S2 H2O@[Zn2+-1B]b,S3 H2O@[Zn2+-1B]a,S4
BE=-74.36 BE=-41.28 BE=-21.33 BE=-80.77

H2O@[Zn2+-2A]

H2O@[Zn2+-2A]a,S1 H2O@[Zn2+-2A]a,S2 H2O@[Zn2+-2A]b,S3 H2O@[Zn2+-2A]b,S4
BE=-79.93 BE=-17.18 BE=-78.94 BE=-28.58

H2O@[Zn2+-2B]

H2O@[Zn2+-2B]S1 H2O@[Zn2+-2B]S2
BE=-74.22 BE=-30.20

Figure 3: M05-2X+D3/-311++G** equilibrium structures of H2O@[Zn2+-Tz] complexes. 

We give also their intermonomer distances (in Å) and their binding energies (BE, in kcal.mol-

1) in gas phase.
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13

We give, in the Supplementary Information, the analysis of the types of interaction, as 

are evidenced from second-order perturbation energy (E2) values and NBO analysis. These 

data show the presence of three types of interactions between H2O and [Zn2+-Tz] complexes. 

The first one is a σ H-bond (through N-H—O) interaction, e.g., H2O@[Zn2+-1A]b,S1, 

H2O@[Zn2+-1A]a,S2, H2O@[Zn2+-1A]a,S3, H2O@[Zn2+-1B]b,S2, H2O@[Zn2+-2A]b,S4 and 

H2O@[Zn2+-2B]S2. These complexes are dominated by intermolecular charge transfer from 

the LP of the oxygen atom of H2O to the N-H BD* of [Zn2+-Tz]. Their E2 values are given as 

follows, 119.08, 64.61, 67.96, 132.07, 71.43 and 70.40 kcal.mol-1. For the complex with the 

highest E2 value, H2O@[Zn2+-1B]b,S2, we noted that the H2O is in the same plane as Tz which 

favors the charge transfer. The second type of interaction is a π-stacking type (e.g. 

H2O@[Zn2+-1A]a,S6). This complex is dominated by an intra molecular charge transfer within 

Tz (isomer 1A) from nitrogen LP to N–N BD* with E2 equals to 105.65 kcal.mol-1. 

Furthermore we identified a very weak charge transfer from the oxygen LP of H2O to C-H 

BD* of Tz with very low E2 value (< 1 kcal.mol-1). The third type of interaction is associated 

with intermolecular charge transfer from oxygen LP of H2O to Zn LV through coordination 

bond between O atom of H2O and Zn in e.g. H2O@[Zn2+-1A]a,S4, H2O@[Zn2+-1A]a,S5, 

H2O@[Zn2+-2A]a,S1 and H2O@[Zn2+-2B]S1 with E2 = 51.61, 51.80, 53.24 and 47.71 kcal.mol-

1, respectively. The stability of these complexes is ensured through intramolecular charge 

transfer within the Tz part of the complexes.

c. [Zn2+-Tz] interacting with H2O and CO2

We used the stable monohydrated [Zn2+-Tz] complexes as starting point, where a 

systematic search of all possible binding positions of CO2 was performed. The CO2 was 

turned around the H2O@[Zn2+-Tz] trimer and let free to converge to the stable positions. 

Figure 4 shows the 25 equilibrium structures of the CO2@H2O@[Zn2+-Tz] complexes as 

computed at the M05-2X+D3/ 6-311++G** level of theory. They correspond to CO2 or H2O 

linked to Zn2+ or Tz part of the molecule and in few cases to CO2 and H2O interacting 

mutually with Zn2+ or Tz. This figure lists also their BSSE corrected BEs computed as the 

difference between the energies of CO2 and H2O@[Zn2+-Tz] entities. Mostly, these clusters 

can be viewed as CO2 added to the H2O@[Zn2+-Tz] complexes, without altering the later part. 

For instance, we list in Table 2 the matching between both sets of clusters. 

Figure 3 shows that BEs for attaching CO2 to H2O@[Zn2+-Tz] are close to those 

computed above for CO2@[Zn2+-Tz]. The effect of H2O can be viewed as a reduction of the 

BEs of CO2 with [Zn2+-Tz]. Indeed, Table 2 shows that the differences between the BEs of 

CO2@H2O@[Zn2+-Tz] and of CO2@[Zn2+-Tz] are less than 3 kcal/mol, except for 

CO2@[Zn2+-1B]a,S3 in which the BE value is increased by 20.13 kcal/mol. For the latter, this 
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is expected since the best hydrophilic site of [Zn2+-1B]a corresponds to H2O linked to zinc via 

covalent bond (i.e. CO2@H2O@[Zn2+-1B]a,S4 and CO2@H2O@[Zn2+-1B]a,S5). 

Table 2: Matching between CO2@[Zn2+-Tz] and CO2@H2O@[Zn2+-Tz] complexes. We give 

also BE = |BECO2@[Zn2+-Tz]-BECO2@H2O@[Zn2+-Tz]| (in kcal.mol-1), which is the BE difference 

between the respective complexes.

CO2@[Zn2+-Tz] CO2@H2O@[Zn2+-Tz] BE

CO2@[Zn2+-1A]b,S1 No match found ----

CO2@[Zn2+-1A]a,S2 CO2@H2O@[Zn2+-1A]a,S2 2.39

CO2@H2O@[Zn2+-1A]a,S4 0.97
CO2@[Zn2+-1A]a,S3

CO2@H2O@[Zn2+-1A]a,S5 1.06

CO2@H2O@[Zn2+-1A]a,S6 1.36
CO2@[Zn2+-1A]a,S4

CO2@H2O@[Zn2+-1A]a,S7 0.96

CO2@H2O@[Zn2+-1B]b,S1 4.28
CO2@[Zn2+-1B]b,S1

CO2@H2O@[Zn2+-1B]b,S2 3.1

CO2@[Zn2+-1B]b,S2 CO2@H2O@[Zn2+-1B]b,S3 1.4

CO2@H2O@[Zn2+-1B]a,S4 20.13
CO2@[Zn2+-1B]a,S3

CO2@H2O@[Zn2+-1B]a,S5 20.14

CO2@[Zn2+-1B]a,S4 CO2@H2O@[Zn2+-1B]a,S6 1.05

CO2@[Zn2+-2A]a,S1 CO2@H2O@[Zn2+-2A]a,S1 1.66

CO2@[Zn2+-2A]b,S2 CO2@H2O@[Zn2+-2A]b,S6 2.46

CO2@[Zn2+-2A]b,S3 CO2@H2O@[Zn2+-2A]b,S7 1.36

CO2@[Zn2+-2B]S1 CO2@H2O@[Zn2+-2B]S1 2.54

CO2@[Zn2+-2B]S2 CO2@H2O@[Zn2+-2B]S4 1.46
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CO2@H2O@[Zn2+-1A]b,S1 CO2@H2O@[Zn2+-1A]a,S2 CO2@H2O@[Zn2+-1A]a,S3 CO2@H2O@[Zn2+-1A]a,S4

BE = -49.23 BE = -54.03 BE = -53.96 BE = -6.97

CO2@H2O@[Zn2+-1A]a,S5 CO2@H2O@[Zn2+-1A]a,S6 CO2@H2O@[Zn2+-1A]a,S7

C
O

2@
H

2O
@

[Z
n2+

-1
A

]

BE = -6.88 BE = -10.68 BE = -11.08

CO2@H2O@[Zn2+-1B]b,S1 CO2@H2O@[Zn2+-1B]b,S2 CO2@H2O@[Zn2+-1B]b,S3 CO2@H2O@[Zn2+-1B]a,S4

BE = -48.51 BE = -49.69 BE = -12.92 BE = -38.45

CO2@H2O@[Zn2+-1B]a,S5 CO2@H2O@[Zn2+-1B]a,S6 CO2@H2O@[Zn2+-1B]a,S7

C
O

2@
H

2O
@

[Z
n2+

-1
B

]

BE = -38.44 BE = -7.11 BE = -8.85

CO2@H2O@[Zn2+-2A]a,S1 CO2@H2O@[Zn2+-2A]a,S2 CO2@H2O@[Zn2+-2A]a,S3 CO2@H2O@[Zn2+-2A]b,S4

BE = -56.07 BE = -37.76 BE = -37.76 BE = -36.45

CO2@H2O@[Zn2+-2A]b,S5 CO2@H2O@[Zn2+-2A]b,S6 CO2@H2O@[Zn2+-2A]b,S7

C
O

2@
H

2O
@

[Z
n2+

-2
A

]

BE = -36.56 BE = -54.37 BE = -10.55

CO2@H2O@[Zn2+-2B]S1 CO2@H2O@[Zn2+-2B]S2 CO2@H2O@[Zn2+-2B]S3 CO2@H2O@[Zn2+-2B]S4

C
O

2@
H

2O
@

[Z
n2+

-
2B

]

BE = -49.20 BE = -7.10 BE = -7.18 BE = -11.39
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Figure 4: M05-2X+D3/-311++G** equilibrium structures of CO2@H2O@[Zn2+-Tz] 

complexes. We give also their intermonomer distances (in Å) and their binding energies (BE, 

in kcal.mol-1) in gas phase.

We performed an NBO analysis to identify the most important interactions, 

responsible for the stability of the identified complexes. We list in Table S3 of the 

Supplementary Information (SI) the most important inter- and intra- molecular charge transfer 

identified for these complexes. Mostly, we identified the same type of interactions with and 

without the presence of H2O: two non-covalently interacting complexes as σ H-bond (through 

N-H—O) and π-stacking and one covalent interaction through coordination bond between 

zinc attached to Tz and the oxygen atom of CO2. All complexes are dominated by 

intramolecular charge transfer within CO2 (with E2 > 90 kcal.mol-1). Further stabilization of 

these complexes is due to inter monomer charge transfer for each type of interaction. As for 

the complexes with covalent bond (such as CO2@H2O@[Zn2+-1A]a,S3 and CO2@H2O@[Zn2+-

2A]a,S1), the intermolecular charge transfer is established from the oxygen LP to zinc LV (E2 ~ 

42 kcal.mol-1). For σ H-bond, we identified an intermolecular charge transfer from oxygen LP 

of CO2 to N-H BD* of Tz. These interactions are relatively weak. For example the E2 value of 

CO2@H2O@[Zn2+-2B]S4 complex is ~ 15 kcal.mol-1.  For the π-stacking complexes, the 

intermolecular charge transfer from CO2 to Tz is very weak and the dominant one is from 

H2O to Tz (e.g. CO2@H2O@[Zn2+-1A]a,S4 and CO2@H2O@[Zn2+-1A]a,S5) with E2 values of 

51.76 and 60.01 kcal.mol-1 , respectively.
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Figure 5: M05-2X+D3/6-311++G** potential energy profiles for the tautomerization 

reaction pathway of CO2@[Zn2+-1A]a,S2 (left) – CO2@[Zn2+-1B]a,S3 (right) in gas phase (black 

lines) and water solution with (blue lines) and without (red lines) the presence of an explicit 

water molecule. The reference energy is the energy of the initial reactants.

For triazoles, Cox et al. 53 indicated that the 2H tautomer (2H-1,2,3-triazole) is the 

only species observed in the gas phase, whereas both 2H and 1H tautomers (1H-1,2,3-

triazole) are often observed in solution. Therefore, water, either explicitly and/or implicitly 

should influence the relative stability of the clusters we computed and their intramolecular 

tautomerisation. For illustration, we show in Figure 5 the mechanism of tautomerization 

between CO2@[Zn2+-1A]a,S2 and CO2@[Zn2+-1B]a,S3 in gas phase, and in water solution with 

and without the presence of a water molecule. In gas phase, CO2@[Zn2+-1A]a,S2 is distinctly 

more stable than CO2@[Zn2+-1B]a,S3, whereas in water environment both CO2@[Zn2+-1A]a,S2 

and CO2@[Zn2+-1B]a,S3 tautomers possess close relative energies (energy difference is very 

small, ~ 4.89 kcal/mol). Thus, we expect to have dominantly CO2@[Zn2+-1A]a,S2 in gas phase, 

whereas both CO2@[Zn2+-1A]a,S2 and CO2@[Zn2+-1B]a,S3 species should be present in 

aqueous solutions. Figure 5 shows however that both forms are separated by large potential 

barriers, which amount to 67.82 kcal/mol in gas phase, reduced to 59.56 kcal/mol in PCM 
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water solvent and, more interestingly, to 20.78 kcal/mol in the presence of an explicit water 

molecule. Thus, the presence of one water molecule decreases the activation barrier of proton 

transfer by a large amount of energy, facilitating the proton migration from nitrogen 1 to 

nitrogen 2 as discussed in Ref. 54 55. The covalent bond between zinc ion and nitrogen atom 

spreads the electronic charge from nitrogen atoms engaged in proton transfer into the rest of 

triazole ring. The bonding between nitrogen atoms and the hydrogen becomes weaker and the 

distance between hydrogen and water become smaller. However, the proton migrates first 

from triazole of CO2@[Zn2+-1A]a,S2 to water, forming an anion-like TS, and finally from 

water to triazole to form CO2@[Zn2+-1B]a,S3. Despite the decrease of activation energy of 1,2 

proton transfer in water solution, there is still a relatively high energy barrier to overcome, 

which could be explained by the simultaneous transfer of two protons. 

-13.60𝜟𝑬𝒊𝒏𝒕𝒆𝒓 =  -16.34𝜟𝑬𝒊𝒏𝒕𝒆𝒓 =  

S1 S2

Figure 6: M05-2X+D3/-311++G** equilibrium structures of reactive compounds of 

CO2@H2O@[Zn2+-Tz]. We give also their intermonomer distances (in Å) and their 

interaction energies ( , in kcal.mol-1) as computed at the M05-2X+D3/-311++G** level 𝛥𝐸𝑖𝑛𝑡𝑒𝑟

of theory. For S1,  = E(S1) - (E(H2O@[Zn2+-Tz]) + E(CO2)), where E stands for the 𝛥𝐸𝑖𝑛𝑡𝑒𝑟

total energy of the corresponding species. For S2,  = E(S2) - (E(H2O@[Zn2+-Tz]) + 𝛥𝐸𝑖𝑛𝑡𝑒𝑟

E(CO2)), where E stands for the total energy of the corresponding species.

In addition to the van der Waals complexes discussed above, we observed proton 

transfer between H2O and [Zn2+-Tz] in the presence of CO2. These reactive complexes are 

presented in Figure 6. Indeed, the presence of H2O disturbs the interaction between CO2 and 

[Zn2+-Tz] and leads to a proton transfer from [Zn2+-Tz] to H2O with the formation of H3O+. In 

fact Zn2+- 1H-1,2,3-Triazole and Zn2+- 2H-1,2,3-Triazole loose a proton in the presence of 

one water molecule, the proton migrates from the N atom of Tz to the O atom of H2O to form 

hydronium ion (H3O+). For instance, this was observed after the addition of CO2 around 

H2O@[Zn2+-1A]b,S1, which resulted into two reactive complexes. They are denoted as S1 and 

S2 in Figure 6. In contrast to the weekly bonded complexes described above, the formation of 
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such compounds is associated with large monomer deformations upon complexation. The 

energies associated with these complexes are computed as 13.60 and 16.34 kcal/mol (Figure 

6), i.e., much larger than the few kcal/mol described above for the non-reactive tetramer 

complexes formation. These strong modifications and stabilizations should influence the 

mutual interactions of water and CO2 with the subunits of MOFs and of Zn-proteins (see 

below).

IV. Discussion

As mention in the Introduction, several molecular modeling and simulation 

techniques have been used to predict the structure and macromolecular properties of porous 

nanomaterials and metalloenzymes. In the case of water and CO2 adsorbents present in a 

cavity of a porous Zn-triazole based material or in the active site of a Zn-enzyme, unsettled 

questions remain on how water molecule induces chemical transformation of the host sites 

pore surfaces to attract/repel CO2 guest molecules, and how the removed / added moieties will 

chemically unconfined / confine the pores, hence altering their storage and separation 

capacities. In sum, we found complexes where CO2 or water weakly binds to the organic-Zn 

moiety. This set of clusters is relevant to CO2 capture and sequestration since the metal 

(engaged in the 3D backbone of these materials) is not expected to be in contact with CO2 in 

these nanoporous materials. We also found a second class of clusters where either a covalent 

bond (Zn-O) is formed between Zn and O atom of CO2 or H2O or intramolecular proton 

transfer is induced upon complexations. This second class of compounds is of great 

importance to understand the physico- chemical processes occurring at the active sites of Zn-

proteins since Zn and CO2 and / or H2O are mutually present there. The presence of zinc ion 

is thus essential for CO2/H2O adsorption and the stability of MOF. For instance, Boulmene et 

al. 56 mapped the interaction potentials between Tz and CO2 without the presence of Zn2+ and 

they found three types of clusters which correspond to various  noncovalent interactions. The 

most stable one is H-bond and acid–base interaction between CO2 and the nitrogen of Tz (BE 

of ~ -4.5 kcal .mol-1). However, in the presence of zinc ion we identified strong electron 

donor-acceptor complexes, in which a covalent bond between O atom of CO2 and zinc of 

[Zn2+-Tz] is established (BE ~ -56 kcal .mol-1). Therefore, Zn ion stabilizes the complex with 

an intermolecular charge transfer from Zn2+ to Tz through the lone pair of nitrogen 40. For 

macromolecular structures, the zinc should play similar role and participate to their further 

stabilization. The remaining unsaturated zinc sites within these Zn-containing 

macromolecules should enhance the interaction with adsorbents (H2O, CO2).

Firstly, we compare the efficiency of the bonding between CO2 and [Zn2+-Tz] and 

CO2 and [Zn2+-Im] complexes (Im = imidazole). 33 For the most stable complexes, the 
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identified type of interactions in CO2@[Zn2+-Tz] complexes is similar to that found for 

CO2@[Zn2+-Im] complexes. Indeed, we compute in both cases a strong covalent bond 

between CO2 and Zn with similar Zn---O distances (of ~1.9 Å). Nevertheless, we compute 

here much more stable CO2@[Zn2+-Tz] clusters compared to CO2@[Zn2+-Im] clusters. 

Therefore, the well-established greater efficiency of [Zn2+-Tz] subunits containing 

macromolecular compounds to CO2 capture and sequestration compared to those formed by 

[Zn2+-Im] may be related to the greater number of sites for favorable interactions within 

[Zn2+-Tz] compared to [Zn2+-Im] and to the relatively larger BEs, in absolute value, between 

CO2 and [Zn2+-Tz]. Indeed, the triaozole is bidentate with more unsaturated nitrogen.

Secondly, our NBO analysis reveals that there are two inter molecular charge 

transfers that contribute to the stability of the complexes between CO2/H2O and [Zn2+-Tz]. 

Indeed, zinc centers in these systems typically act as Lewis acids that form complexes with 

small molecules, such as CO2 or H2O. The strong bonding between Zn2+ / N atom of triazole 

or Zn2+ / O atom of CO2 /H2O may be explained qualitatively by Hard Soft Acid Base 

(HSAB) model 57 due to the electron lone pair donation from N and O (acting like Lewis 

bases) to the metal ion Zn2+ (acting like a Lewis acid). Hard acids and bases possess large 

HOMO-LUMO gaps favoring ionic bonding and soft acids and bases have however small 

HOMO-LUMO gaps favoring covalent bonding. 58 Here, we compute rather large HOMO-

LUMO gaps (e.g. ELUMO - EHOMO = 7.07 and 7.67 eV for CO2@[Zn2+-1B]a,S3 and for 

CO2@[Zn2+-2A]a,S1, respectively). Our microscopic first principles investigations validate the 

use of this simple model to explain the bonding at the interfaces of macromolecular 

nonporous materials and Zn-proteins with CO2 or H2O. 

Thirdly, our computations reveal that when the metal ion Zn2+ is fixed on carbon atom 

of Tz, [Zn2+-1H-1,2,3-triazole] and [Zn2+-2H-1,2,3-triazole] act as Arrhenius acids. Indeed, 

upon addition of a water molecule, these complexes release a proton (from N---H of Tz) to 

form hydronium (H3O+). Note that we didn't observe this phenomenon in [Zn2+-Tz] clusters 

where the zinc ion is linked to nitrogen atom of Tz, which we could explain by the large 

stability of these complexes compared to the ones where the zinc ion is fixed on carbon atom 

of Tz. So the presence of water could change the acidity of [Zn2+-Tz] complexes. For 

instance, soft base often does not bind the proton at all in water, H3O+ being formed instead. 
46 Moreover, the interaction between water and metal site could result in modified Bronsted 

acidity. 59 Indeed, the most stable type of interaction in H2O@[Zn2+-Tz], in the absence of 

CO2, results from a covalent bond between O atom of H2O and zinc atom of [Zn2+- Tz] which 

may decrease locally their Bronsted acidity. This leads to a reduction of the binding energies 

between the H2O@[Zn2+-Tz] complexes and CO2 (cf. BE given in Table 2). Thus, either 

implicitly including the solvent effect by PCM or explicitly adding one water molecule in the 
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Zn2+-Tz complex, point to a reduction of CO2 uptake. On the other hand, pre-adsorbing small 

amount of water molecules at low pressure may enhance the capacity of the nanoporous 

materials (e.g. MOFs) for CO2 uptake, since the electrostatic interactions (quadrupole moment 

of CO2 and the electric field created by water molecules) may help for that purposes. 

Consequently, the influence of the presence of water molecule on the framework stability and 

CO2 uptake depends on different parameters like pressure, quantity of added water and 

coordination site. Indeed the presence of cations in MOFs is expected to create a large electric 

field and help binding polar molecules. However the opposite effect could also be possible 

since the interaction between quadrupole moment of CO2 and the electric field created by 

water molecules is in favor of an increase of the CO2 uptake. 60.

V. Conclusions

The equilibrium structures, bonding, and stability of CO2@[Zn2+-Tz] complexes in 

gas phase and water solution have been studied by DFT with inclusion of dispersion 

correction (M05-2X+D3). The most stable structures correspond to strong electron donor-

acceptor complexes, in which a covalent bond between O atom of CO2 / H2O and Zn2+ of 

[Zn2+-Tz] is established. Besides, the bonding between Tzs and CO2 / H2O is due to non-

covalent interactions such as σ type H-bond. In addition, we identified the presence of 

intramolecular tautomeric equilibria converting these clusters.

Solvent effects were studied implicitly (PCM/M05-2X+D3 calculations) or explicitly 

via the consideration of a water molecule. The effects of the presence of one water molecule 

in solvent on the activation barrier of proton transfer between adjacent nitrogens of 

CO2@[Zn2+-Tz] are hence investigated. Results indicate that there are no significant changes 

in the protonation pathways during the transition from gas phase to solution, but the 

difference of energy between tautomers may be reduced from ~20 kcal/mol in gas phase, to 

~5 kcal/mol in aqueous solution. This behavior could be explained by the correlation effects, 

which reduce the energy separation between the tautomers to a small extent but do not reverse 

the general stability. In addition, the intramolecular potential barrier of tautomerism is also 

deceased by ~50 kcal/mol. Thus, the tautomeric conversion is easier in water solution. By 

adding one H2O molecule, we get indeed better delocalization of electronic charge, which 

facilitates the proton migration from N1 to N2 through the water molecule. 

The findings of our theoretical study are important for understanding, at the 

microscopic level, of the structure and bonding within triazolate based macromolecular 

porous materials and Zn-enzymes. Through our study we confirmed that triazole porous 

materials present an exceptional capacity and selectivity for gas adsorption 61 because of the 

incorporation of more accessible nitrogen donor sites (compared to imidazoles), which 
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increases the gas uptake.

Supporting Information. Details of Natural Bond Orbital analysis and Optimized 

Coordinates of all identified structures are available in the Supporting Information (PDF).
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