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Abstract 

Interactions of hydrogen sulfide (HS-/H2S), a reducing signaling species, with superoxide 

dimutases (SOD) are poorly understood. We applied low-T EPR spectroscopy to examine the 

effects of HS-/H2S and superoxide radical anion (O2
•-) on metallocenters of FeSOD, MnSOD, 

and CuZnSOD. HS-/H2S did not affect FeSOD, whereas active centers of MnSOD and 

CuZnSOD were open to this agent. Cu2+ was reduced to Cu1+, while manganese appears to be 

released from MnSOD active center. Untreated and O2
•--treated FeSOD and MnSOD 

predominantly show 5 d-electron systems, i.e. Fe3+ and Mn2+. Our study provides new details on 

the mechanisms of (patho)physiological effects of HS-/H2S.  

 

Keywords: Superoxide dismutase; EPR; H2S; Iron; Manganese, Copper 

 

Abbreviations: CuZnSOD, copper-zinc superoxide dismutase; EPR, electron paramagnetic 

resonance; FeSOD, iron superoxide dismutase; HS-/H2S, hydrogen sulfide; MnSOD, manganese 

superoxide dismutase, O2
•-, superoxide radical anion. 
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Highlights 

• FeSOD from E. coli and P. leiognathi are resistant to HS-/H2S-induced reduction 

• HS-/H2S appears to provoke a release of manganese from MnSOD 

• HS-/H2S reduced Cu2+ to Cu1+ in CuZnSOD 

• 5 d-electron systems predominate in MnSOD and FeSOD 
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1. Introduction 

Hydrogen sulfide (HS-/H2S) represents the third gaseous signaling molecule, in addition to nitric 

oxide and carbon monoxide [1]. H2S is a reducing agent and a weak acid with approximately 4:1 

HS-/H2S ratio at physiological pH [2]. Recent studies have underscored the fact that HS-/H2S and 

reactive oxygen species signaling systems are intertwined [3,4]. For example, superoxide radical 

anion (O2
•-) reacts very rapidly with H2S, whereas HS- can reduce metal centers which in some 

cases (such as cytochrome c) might lead to production of O2
•- from molecular oxygen [4]. 

Importantly, they share common targets, including superoxide dismutases (SOD). It has been 

shown that HS- enhances O2
•- scavenging activity of the bovine erythrocyte copper-zinc SOD 

(CuZnSOD) by about twofold [5]. Binding of HS- to the enzyme is rapid, with k > 107 M-1 s-1. 

These observations suggest that HS- binds to SOD at the catalytic Cu center and that it might 

represent a genuine substrate of the enzyme. It has been shown that NaHS increases the activity 

of CuZnSOD and manganese SOD (MnSOD) in vivo [6]. Further examination indicated that HS-

/H2S up-regulates the expression of MnSOD but not of CuZnSOD. Finally, using a cell-free 

system, it has been documented that HS-/H2S causes increased CuZnSOD activity. Other than 

this, the interactions between SODs and HS-/H2S are poorly understood. For example, H2S is 

converted in mitochondria to thiosulfate, followed by further conversion to sulfite, and finally to 

sulfate, the major end product of H2S metabolism [7], but a potential role of mitochondrial 

MnSOD in this process is still unknown. Gut bacteria release large amounts of hydrogen sulfide 

[8]. It is clearly of interest to elucidate the effects of such settings on MnSOD and CuZnSOD in 

colonic epithelium and on primitive iron SOD (FeSOD) that is present in bacteria and some 

parasites [9]. Finally, although SOD research begun almost a half century ago [10], not all the 

pieces of the puzzle of SODs' interactions with O2
•-, have been gathered. Pertinent to this, we 
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examined and compared the reactions of metallocenters of FeSOD (from E. coli and P. 

leiognathi), MnSOD (from E. coli), and CuZnSOD (from rat) with HS-/H2S (donor: Na2S) and 

O2
•- (donor: KO2), using low-T electron paramagnetic resonance (EPR) spectroscopy. The 

majority of studies on hydrogen sulfide utilize Na2S (and NaHS) as exogenous donors. HS-/H2S 

release is rapid upon reaction of Na2S with water, due to its high solubility.  

2. Materials and methods 

SODs were isolated and purified using previously established techniques [11]. The isolates were 

confirmed by gel electrophoresis. Specific activities were: 1500–1600 units/mg for E. coli and P. 

leiognathi FeSODs and E.Coli MnSOD, and 3000 NBT/riboflavin units/mg for rat CuZnSOD. 

SODs were dissolved in HEPES buffer (50 mM, pH = 7.4) to a final concentration of 100 µM. 

Enzymes were either untreated or exposed to Na2S (Merck, Darmstadt, Germany) or KO2 

(Sigma–Aldrich, St. Louis, MO, USA) at final concentrations of 2 mM and 1 mM, respectively. 

Of note, Na2S and KO2 release HS-/H2S and O2
•- in 1:1 ratio. KO2 is rapidly decomposed in 

water to give O2
•-. Pertinent to this, KO2 has to be prepared in an organic water-free solvent. 

Chlorinated/halogenated organic solvents should be avoided because they create settings for 

production of singlet oxygen [12]. The best choice was ultrapure water-dried DMSO (Sigma–

Aldrich, Product No. 34943), although KO2 shows a limited solubility in DMSO (< 2mM) [13]. 

In order to achieve the final concentration of 1 mM and to minimize the amount of DMSO in 

samples (5%), we prepared an oversaturated solution of KO2 (equivalent of 20 mM). The 

solution was freshly prepared before each set of experiments, and vortexed immediately before 

each pipetting (i.e. addition of aliquots to samples). It is important to note that the enzymatic O2
•-

-generating system (xanthine oxidase + (hypo)xanthine) could not be applied here, because 

xanthine oxidase contains EPR-active metals – Fe and Mo. Na2S stock was prepared in water and 
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used immediately. In all experiments bidistilled deionised ultrapure (18 MΩ) water was used. 

Samples were incubated for 30 s at room temperature, placed in quartz EPR tubes, and quickly 

frozen in cold isopentane.  

 EPR spectra were recorded at 20K on a Bruker Elexsys-II EPR spectrometer with an 

Oxford Instruments ESR900 helium cryostat, operating at X-band (9.4 GHz) under the following 

conditions: modulation amplitude, 5 G; modulation frequency, 100 kHz; microwave power, 3.2 

mW; scan time, 2 min; number of accumulations, 4 (E. coli FeSOD, MnSOD, and CuZnSOD) or 

8 (P. leiognathi FeSOD). All spectra were baseline corrected. All experiments were performed in 

triplicate. Characteristic spectra are presented. 

3. Results and discussion 

Fig. 1 shows characteristic spectra of high-spin Fe3+ with a distorted trigonal bipyramidal 

electronic structure in the active center of prokaryotic FeSOD [14,15], combined with the signal 

of non-specifically bound Fe3+ ('dirty iron'; g = 4.25). g-Values for E. coli FeSOD match 

perfectly with those previously reported [14]. Fe3+ in the active centers of both FeSOD enzymes 

showed to be resistant to HS-/H2S-provoked reduction. This is in line with the available data on 

redox potentials. Namely, redox midpoint potential of FeSOD (~100 mV) is lower compared to 

redox potential of HS- (920 mV at pH 7.4; reaction: HS- → HS• + e-; the same potential applies 

to H2S → HS• + H+ + e-) [9,16,17]. The resistance of FeSOD to reduction appears to be in line 

with its role in the early evolution of life that took place under the reducing conditions [9]. In a 

nutshell, the metallocenter of FeSOD had to be protected from reducing agents in order to 

maintain the function. On the other hand, there is no doubt that O2
•- can react with FeSOD active 

center. A modest decrease of the level of Fe3+SOD following exposure to O2
•- donor might be 

explained by the fact that the first half-reaction (Fe3+SOD → Fe2+SOD) in O2
•- dismutation is 
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faster compared to the second half-reaction (Fe2+SOD → Fe3+SOD) [18]. In this way, some 

quantity of the enzyme remains in the Fe2+SOD form. It is also important to address the effects 

of the examined agents on non-specifically bound Fe3+. Fe3+/Fe2+ redox pair has a redox potential 

of ~110 mV at pH 7. Hence it could not be reduced by hydrogen sulfide, but it can be reduced by 

O2
•-, because O2/O2

•- pair shows a lower redox potential (-330 mV) [19]. The fact that the 

exposure to O2
•- did not result in reduction of non-specifically bound Fe3+ might be explained by 

the binding of iron to highly negative domains on the surface of the protein, which could repulse 

agents of the same charge. It worth mentioning that some amount of H2O2 might have been 

present in the system either because of SOD activity or due to non-enzymatic dismutation of O2
•- 

. Fe2+ is oxidized by H2O2 (Fenton reaction) to produce Fe3+, so this might be an alternative 

explanation for the absence of changes in the level of non-specifically bound Fe3+ following the 

exposure to KO2. 

 In contrast to FeSOD, MnSOD active center underwent significant changes following the 

exposure to HS-/H2S and O2
•-. Fig. 2A shows characteristic six-line EPR spectra of high-spin 

Mn2+ in MnSOD active center [20,21]. In addition, there are five pairs of weak lines from 

forbidden ∆mI = ±1 transitions. The hyperfine splitting of the half-field and low-field transitions 

is also observed (data not shown). It appears that isolated MnSOD contains manganese in both 

Mn2+ and Mn3+ forms, and that O2
•- reduced (some of) Mn3+ to Mn2+ resulting in the increased 

intensity of MnSOD signal. In addition, it has been shown that O2
•- at high concentrations might 

cause inhibition of MnSOD via formation of a so called "dead-end" complex between Mn2+SOD 

and O2
•- [18,22]. Although FeSOD and MnSOD belong to the same SOD family, electronic 

configurations of their 3d orbitals undergo substantially different changes following the reaction 

with O2
•-. In FeSOD, 5 d-electron system (Fe3+) is converted to 6 d-electron system (Fe2+), 
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whereas Mn3+ reduction to Mn2+ corresponds to conversion of 4 to 5 d-electron system [9]. Our 

results imply that a 5 d-electron system, which has one electron in each d orbital, represents a 

more stable redox state of both of these enzymes. Taking into account that MnSOD redox 

midpoint potential is approximately 300 mV [9], it could be expected that HS-/H2S would not 

induce Mn3+SOD reduction and an increase of Mn2+SOD signal. However, a decrease was not 

expected as well. A plausible explanation for decreased Mn2+SOD signal might be that HS-/H2S 

caused a release of Mn2+ from the enzyme. Mn2+ in buffer solutions shows a very weak six-line 

signal centered at g ≈ 2 [23], which overlaps with the strong signal of MnSOD. This finding is in 

agreement with previously reported in vivo effects of NaHS. It upregulated the expression of 

MnSOD, which might be a consequence of HS-/H2S-provoked irreversible inhibition of MnSOD. 

The inhibition of MnSOD might at least partially account for previous 'paradoxical' findings that 

this reducing agent might induce oxidative stress in mammalian cells [24]. 

 Fig. 2B shows EPR spectra of Cu2+ in rat CuZnSOD [25,26]. Superoxide radical anion 

did not cause any EPR changes. According to Perry et al., the first half-reaction of superoxide 

dismutation begins with the O2
•- binding to Cu2+. Cu2+ is then reduced to Cu1+, while O2

•- is 

oxidized to O2 [27]. The Cu ion-bridging histidine (HsCu,ZnSODHis63) bond is broken, leaving 

His63Nɛ1 protonated. In the second half-reaction, a proton from His63Nɛ1 and an electron from 

Cu1+ are donated to O2
•-. Cu1+ is oxidized to Cu2+, and O2

•- is reduced to H2O2 or HO2-. The rates 

of two half-reactions at physiological pH are similar [18]. This balance can explain the same 

amount of Cu2+ZnSOD that was found here before and after the exposure to O2
•--generating 

system. It is important to point out that CuZnSOD and FeSOD are susceptible whereas MnSOD 

is resistant to H2O2-induced inhibition [28]. Apparently, small amounts of H2O2 that most likely 

emerged in our system did not affect CuZnSOD and FeSOD. Effects of H2O2 on CuZnSOD 
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encompass the oxidation of His residues involved in the coordination of Cu [29]. Pertinent to 

this, it has been shown using low-T EPR that H2O2 modifies the structure of catalytic center of 

CuZnSOD [30]. This was not the case here, since no changes in the shape of the low-T EPR 

spectrum of CuZnSOD (and FeSOD) were observed following the exposure to KO2.  

 HS-/H2S induced the reduction of Cu2+ to EPR 'silent' Cu1+, which is observed as the loss 

of the CuZnSOD signal. This clearly implies that the active center of CuZnSOD is open to the 

effects of HS-/H2S. It has been proposed previously that CuZnSOD catalyzes HS- oxidation via 

reaction: HS- + H+ + O2 → S0 + H2O2, with concomitant reduction of Cu2+ to Cu1+ [31]. 

Altogether this two electron transfer is a very slow process, but the first half-reaction in which 

HS- is bound to Cu2+ and Cu2+ is reduced to Cu1+ is fast with t1/2 = 6 s [5]. Our results speak in 

favor of this mechanism which includes two electron oxidation of HS-. A wide range of redox 

midpoint potentials (120–525 mV) has been reported for bovine CuZnSOD [32]. Although we 

could not find a reliable information on redox potential for rat CuZnSOD, it is unlikely to be 

higher than 920 mV, which is the redox potential for one electron oxidation of HS- [16]. On the 

other hand, two-electron redox potential of HS- (reaction: HS- → S0 + H+ + 2e-) at pH 7 is 170 

mV [33], which makes HS--induced reduction of Cu2+ZnSOD feasible. In addition, one-electron 

oxidation of HS- would result in the production of HS• radical, which we did not detect using 

EPR spin-trapping and DEPMPO spin-trap. Still, we cannot be absolutely sure that HS• radical is 

not produced in the system, because spin adduct (DEPMPO/SH) might show a very brief life-

time due to strongly reducing conditions. Such problem has been observed previously for 

cysteine thiyl radical [34]. Finally, a possibility that HS-/H2S could provoke a release of copper 

from CuZnSOD and to maintain it in 'free' Cu1+ form (Cu2+ in buffer solution shows a strong 

EPR signal [35]) can be excluded in accordance with findings that hydrogen sulfide promotes the 
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activity of this enzyme [5,6]. All relevant redox potentials and proposed mechanisms of reactions 

of HS-/H2S with SODs are sublimed in Fig. 3. It is worth mentioning that hydrogen sulfide might 

interfere with specific SOD activity assays (e.g. cytochrome c reduction) [4]. However, Searcy 

and colleagues applied a diverse selection of SOD activity assays with consistent outcome [5], 

whereas Sun and co-workers tested the effects of HS-/H2S on their assay (reduction of a 

tetrazolium salt) in the absence of SOD [6].  

 The concentration of free HS-/H2S in cells under physiological conditions is in the lower 

micromolar or higher nanomolar range [37]. However, there are two large pools of stored 

hydrogen sulfide: (i) acid-labile sulfur (40–160 µM) that is mainly localized in mitochondria; and 

(ii) bound sulfane sulfur (up to 450 µM) which is localized in the cytosol [38]. It has been 

proposed that HS-/H2S might be released from the stores in response to specific 

(patho)physiological stimuli, such as a decrease of pH in mitochondria, increase of cytosolic pH, 

changes in the redox conditions, and others [37]. For example, it has been shown that HS-/H2S is 

released from bound sulfane sulfur in astrocytes in response to the excitation of co-cultured 

neurons [38]. The concentration of CuZnSOD ranges between 1 and 20 µM in different human 

tissues [39], whereas the activity of MnSOD is generally 10–15% of total SOD activity in 

mammalian cells [40]. It can be observed that SOD/hydrogen sulfide concentration ratio applied 

here (1:20) reflects in vivo settings in which HS-/H2S is released from intracellular stores. 

Finally, our results might be important for understanding: (i) The interplay between reducing and 

oxidizing agents. E.g. MnSOD, which is affected by HS-/H2S, represents the main intracellular 

site of H2O2 generation [41]. (ii) Events in gut microflora that affect the population profile and 

dynamics. Gut bacteria produce large amounts of H2S [42]. Many bacterial species contain either 

FeSOD or MnSOD (although some, like E. coli, employ both) [40]. The former is not affected 
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whereas the latter is affected by HS-/H2S. (iii) Pathological processes in colon cancer. Human 

colon cancer specimens show 10-fold higher production of hydrogen sulfide and two-fold higher 

MnSOD expression compared to normal mucosa [43,44].  
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Figure legends 

 

Fig. 1. 20K EPR spectra of FeSOD. (A) FeSOD from E. coli; (B) FeSOD from P. leiognathi. 

The concentration of enzyme was 100 µM in HEPES buffer (50 mM, pH = 7.4). The 

concentrations of Na2S and KO2 were 2 mM and 1 mM. Signal of non-specifically bound Fe3+ is 

at g = 4.25. 

Fig. 2. 20K EPR spectra of MnSOD and CuZnSOD. (A) MnSOD from E. coli. Signal of non-

specifically bound Fe3+ is at g = 4.25. (B) CuZnSOD from rat. The concentration of enzyme was 

100 µM in HEPES buffer (50 mM, pH = 7.4). The concentrations of Na2S and KO2 were 2 mM 

and 1 mM, respectively. 

Fig. 3. Proposed mechanisms of reactions of HS-/H2S with SODs. (A) Redox potentials of 

interest. (B) The reaction of HS-/H2S with MnSOD. Mn2+ is released from the active center. 

Details, such as the products of HS-/H2S are not known. (C) The proposed reactions of HS- with 

CuZnSOD. HS- binds to Cu2+ in the active center and causes reduction. HS• is released and 

probably undergoes rapid deprotonation and reaction with another HS- [36]. 
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Highlights 

• FeSOD from E. coli and P. leiognathi are resistant to HS-/H2S-induced reduction 

• HS-/H2S appears to provoke a release of manganese from MnSOD 

• HS-/H2S reduced Cu2+ to Cu1+ in CuZnSOD 

• 5 d-electron systems predominate in MnSOD and FeSOD 


