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ABSTRACT: It has been demonstrated that sulfur-sulfur interactions can exist in various 

molecular systems. In this work we investigated sulfur-sulfur interactions in crystal structures of 

small molecules by analyzing geometric data from the Cambridge Structural Database (CSD) and 

by quantum chemical calculations. The analysis of cysteine residues (R-CH2SH) in the crystal 

structures from the CSD indicates that in the sulfur-sulfur interactions the preferred is parallel 

orientation of two C-S-H planes. Quantum chemical calculations were performed on model 

systems of methanethiol dimers. The most stable geometry of methanethiol dimer with parallel 

orientation of C-S-H planes is significantly strong; the interaction energy is -1.80 kcal/mol 

calculated at the very accurate CCSD(T)/CBS level. However, the strongest sulfur-sulfur 
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 2 

interaction in methanethiol dimer (-2.20 kcal/mol) is the geometry with σ-hole interaction, where  

the positive potential on one sulfur atom (σ-hole) interacts with negative potential on the sulfur 

atom of the second molecule.  SAPT decomposition of the interaction energies was performed in 

order to explain the nature of the interactions. This study point out importance of parallel 

interactions of cysteine residues and can be important for recognizing the sulfur-sulfur 

interactions in the crystal structures and biomolecules.  

 

INTRODUCTION: It has been observed experimentally, and studied computationally, that 

some divalently-bonded atoms of Group VI interact in a noncovalent but highly directional 

manner with nucleophiles.1-8,10-15 In numerous crystal structures chalcogen atoms interact with 

other chalcogen species with intermolecular distances significantly shorter than the sum of their 

van der Waals radii.5,6 The early studies showed that S…S interaction exist in crystal structures of 

sulfur compounds. Results of this work indicate that there are preferred directions of electrophilic 

and nucleophilic attack on one sulfur atom by another sulfur atom in crystals.16 Computational 

study of close S/Se…O contacts indicate that they are the result of an attractive electrostatic 

interaction.17  

The interactions of Group VI atoms are one type of σ-hole interactions; they are the 

consequence of the fact that chalcogen atoms can have regions of both positive (σ-hole) and 

negative electrostatic potentials on their surfaces. The positive regions tend to be along the 

extensions of the bonds to these atoms, and the origin of this can be explained by σ-hole 

concept.2-4,7-9 Theoretical studies of chalcogen-chalcogen σ-hole interactions10-15,18 showed that 

the strength of the interaction increases steadily from oxygen, via sulfur to selenium and reaches 

maximum for tellurium. With the increasing polarizability of the group VI elements when going 

from oxygen to tellurium, dispersion and inductive components become more important.1  
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 3 

The statistical analyses based on crystal structures have clearly demonstrated that S…X (X = O, 

N, S)  interactions are widely present in proteins.19,20 The three-dimensional structure and the 

function of a protein are controlled by a number of weak nonbonding interactions, such as 

hydrogen bond, van der Waals forces, hydrophobic interaction, but also S…X interactions. It had 

been previously considered that the sulfur-containing functional groups of cysteine and 

methionine are hydrophobic moieties in protein structures. However, studies showed that cysteine 

and methionine are able to form specific nonbonding interactions with nearby polar                  

non-hydrogen atoms (X = O, N, S). A large number of S…O, S…N, and S…S interactions exists in 

proteins. Most of close S…S contacts in proteins can be assigned to S–S…S–S interaction. 

Analysis of S…X interactions in four model proteins, phospholipase A2, ribonuclease A, insulin, 

and lysozyme, indicate that S…X interactions may be important factors that control not only the                      

three-dimensional structure of proteins but also their functions.21 S…X interactions are also of 

great importance for enzymatic reactions.22,23  

The S…S interaction is also one of the major forces that influence the structures of organic 

conductors.24,25 Namely, S…S interactions are responsible for the molecular structures and 

functions of many well-known examples of organic conducting materials such as different 

derivates of tetrathiofulvalene (TTF). In these structures S…S interactions support the 

supramolecular assembly in the absence of any strong hydrogen bonding interactions.26,27 

Investigation of the molecular packing in structures of a fused thiophene derivative reveals the 

important role of intermolecular S…S interaction in directing the 2D self-assembly.28 

Molecules containing divalent sulfur can also participate in S-H…S interactions. This type of 

interaction is studied on several systems including one with methanethiol which represent the 

side chain of the amino acid cysteine. Hydrogen-bonded methanethiol dimers have interaction 

energies of ∼3 kcal/mol.29  
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 4 

It is very well known that aromatic molecules can form parallel (stacking) interactions.30-35 

However, other molecules can be also involved in parallel non-covalent interactions. Parallel  

interactions between aromatic rings and water molecule were recognized by analyzing data in 

crystal structures from the Cambridge Structural Database (CSD).36,37 In parallel alignment 

interactions either the whole water molecule or one of its O–H bonds lie parallel to the aromatic 

ring. We found that the strongest energies of the water-benzene interactions are calculated for the 

water position with the large horizontal displacements, out of the aromatic ring and out of the    

C-H bond region, with one O–H bond parallel to the plane of the benzene ring. The energy of this 

interaction is -2.45 kcal/mol.37 The parallel interactions between water and benzene are quite 

important since it was shown that in proteins from PDB and crystal structures from the CSD 

water molecules form significantly larger number of parallel interactions than well-known, 

relatively strong OH–π interactions.38   

In this work, we present the detailed theoretical study of S…S interactions. The results are 

based on the analysis of data in the Cambridge Structural Database (CSD) and on quantum 

chemical calculations, including SAPT and very accurate CCSD(T)/CBS methods. To the best of 

our knowledge, this is the first study describing the preferred geometries of sulfur-sulfur 

interactions based on detailed statistical analysis of crystal structures data from the CSD 

combined with quantum chemical calculations. 
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 5 

METHODOLOGY 

In order to study the non-covalent S…S interactions, we used theoretical approach based on two 

methods: statistical analysis of the data obtained from the crystal structures and quantum 

chemical calculations.  

CSD search. The statistical study is based on the crystal structures archived in the Cambridge 

Structural Database (CSD, version 5.36).39-43 A CSD search was performed using the ConQuest 

1.17 program44 to extract all structures containing a cysteine residues and satisfying given 

geometric criteria. As a fragment for CSD search we used cysteine thiol residue which is bonded 

to any atom or group (X-CH2SH). The geometrical parameters used to search CSD and to 

characterize the S…S interactions are displayed in Figure 1.  

 

 

 

 

 

  

 

Figure 1. The cysteine structure and fragment used for the CSD search. Geometric parameters 

used for the description of S…S interaction: planes P1 and P2 contain C1, S1, H1 and C2, S2, H2 

atoms respectively; the distance between two sulfur atoms is d, and the distance between first 

sulfur atom (S1) and P2 plane represents the normal distance R.  
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 6 

We considered that the S…S interaction between two cysteine residues occurred if distance 

between two sulfur atoms, d, is smaller than 5.0 Å. For the statistical analysis, planes in the 

fragment were defined. The plane P1 is defined by the atoms H1-S1-C1, while plane P2 is defined 

by H2-S2-C2 atoms. Torsion angle define by atoms H1-S1
…S2-H2 was also used for the description 

of the interaction geometries.  

Additionally, we investigate intermolecular S-H…S and C-H…S contacts between studied X-

CH2SH fragments. To find these interactions, we used geometric criteria; distance between 

hydrogen and sulfur atom d(H…S) shorter than 3.3 Å and S-H-S i.e. C-H-S angle greater than 

90°.45  

 

 

Quantum chemical calculations.  

For calculating energies of S…S interactions, two different quantum chemical methods were 

employed: supramolecular method (up to CCSD(T)/CBS level) and symmetry-adapted 

perturbation theory (SAPT) method. Results from SAPT calculations were also used to analyze 

the nature of S…S interactions. 

Supramolecular calculations. All supramolecular calculations were performed using the 

Gaussian 09 program package.46 The geometry of an isolated methanethiol molecule was 

optimized (Figure S1 and Table S1, Supporting Information) and used for calculations of 

interaction energies in dimers. Geometry optimization was performed using the Møller–Plesset 

second-order perturbation method (MP2)47 and the cc-pVQZ basis set.48 Calculations of 

interaction energies for model systems with parallel orientation were done using TPSS-D349,50 

method and aug-cc-pVDZ51-53 basis set. For model system with normal orientation the interaction 

energy was calculated using the same functional but with Becke-Johnson54 damping (TPSS-
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 7 

D3BJ/aug-cc-pVDZ). Calculations of interaction energies for model system with maximized 

electrostatic interaction was done using MP2 method and cc-pVQZ basis set. These specified 

combinations of different methods and basis sets were used because they are in agreement with 

the results of CCSD(T)55 complete basis set limit for particular orientations. CCSD(T)/CBS 

interaction energies are calculated by applying the extrapolation scheme of Makie56 for different 

orientations of two methanethiol molecules (Table S2, Supporting Information). All calculated 

energies were corrected by the basis set superposition error (BSSE) using the Counterpoise 

method.64 

SAPT calculations. Perturbational SAPT method65 enables direct computation of interaction 

energy between monomers. Additionally, SAPT calculations can provide an interaction energy 

decomposition into four different, physically meaningful terms: electrostatic, exchange, induction 

and dispersion. Interaction energies for all studied model systems were calculated using SAPT 

method with density-fitting approximation (DF-SAPT2+3).66 It was shown previously that 

density fitting approximation can greatly reduce computational cost of SAPT calculations while 

introducing negligible errors.66,67 Standard aug-cc-PVTZ basis set was employed for all            

DF-SAPT2+3 calculations with aug-cc-PVTZ-JKFIT as auxiliary basis set for SCF density fitting 

computations and aug-cc-PVTZ-RI as auxiliary basis set for SAPT density fitting computations. 

Charge-transfer energy in SAPT analysis was obtained as the difference between induction term 

calculated in the dimer basis and in the monomer basis.68 DF-SAPT2+3 calculations were 

performed using PSI4 program.69 

Electrostatic potential map. Electrostatic potential map of methanethiol molecule was 

obtained by calculating the wave function in the program Gaussian 09 using MP2 method and    

cc-pVQZ basis set. Map was visualized using the Wavefunction Analysis Program               

(WFA-SAS).70 
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 8 

RESULTS AND DISCUSSION 

Analyses of the data from crystal structures. To find intermolecular S...S interactions 

between cysteine residues (X-CH2SH, Figure 1), a CSD search was performed. By searching the 

CSD 116 structures (Table S3, Supporting Information) and 290 S...S contacts with S-S distances 

d smaller than 5.0 Å were found. Statistical analysis of several geometrical parameters has been 

performed. 

The distribution of P1/P2 angle formed by the C-S-H planes P1 and P2 (Figure 1) shows a 

tendency for values in the range from 0 to 10˚, indicating parallel orientation of the P1 and P2 

planes of interacting cysteine fragments (Figure 2). In a set of 290 contacts with S…S distance 

shorter than 5.0 Å, we found that parallel orientation (P1/P2 angle less than 10°) exist in 200 

contacts, which is about 69% .  

 

 

 

 

 

 

 

Figure 2. Distribution of P1/P2 angle in interactions with S…S distance below 5.0 Å.  

Distribution of normal distance (R) in data set with parallel orientation (200 contacts) shows 

that the most of parallel contacts have a values of normal distance in the range from 1.5 to 2.0 Å 

(Figure 3). 
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 9 

 

 

 

 

 

 

Figure 3. Distribution of normal distance (R) in interactions with S…S distance below 5.0 Å and 

parallel orientations (P1/P2 angle below 10°).   

The mutual orientation of thiol groups can be defined by torsion angle H1-S1
…S2-H2 (Figure 1). 

The distribution of the torsion angle values for interactions with parallel orientations shows that 

the majority of contacts have H1-S1
…S2-H2 torsion angle in the range 170°- 180° (Figure 4). 

 

 

Figure 4. Distribution of H1-S1
…S2-H2 torsion angle in interactions with S…S distance below 5.0 

Å and parallel orientations (P1/P2 angle below 10°). 

By examining S-H…S interactions in set of 290 interactions, with S…S distance below 5.0 Å, 

we found 43 S-H…S interactions (d(H…S) < 3.3 Å and S-H-S > 90°). In the data set with parallel 

orientation (P1/P2 angle below 10°, 200 contacts), there are 12 of these interactions.  
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 10 

Distribution of H…S distances (Figure 5a) shows that there is no pronounced tendency toward 

certain values of d(H…S) distance. However, the most contacts have a distance value from 2.8 to 

3.2 Å. Distribution of S-H…S angle (Figure 5b) shows a pronounced peak for values from 130 to 

160°. 

                              

                                  a)                                                                               b) 

Figure 5. The distribution of H…S distance (a) and  distribution of S-H…S angle (b) in S-H…S 

interactions.  

In the data set with S-S distance below 5.0 Å, (290 contacts) we also searched for C-H…S 

interactions using criteria described in methodology (d(H…S) < 3.3 Å and C-H-S > 90°). We 

found 109 C-H…S interactions. In the data set with parallel orientation (P1/P2 angle below 10°, 

200 contacts), there are 82 C-H…S interactions.    

The distribution of H…S distances show two peaks from 2.9 to 3.1 Å and from 3.2 to 3.3 Å 

(Figure 6a), while the distribution of C-H…S angle show peak between 100 and 120° (Figure 6b). 

By searching for C-H…S interactions (d(H…S) < 3.3 Å and C-H-S > 90°) between cysteine 

residues in the CSD, without restriction of S…S distance less than 5.0 Å, the number of obtained 

structures was 104 with 210 C-H…S interactions. The distribution of H…S distance and C-H…S 

angle (Figure 7) are similar to the distributions in Figure 6, with somewhat less pronounced     
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 11 

peaks for H…S distance, and more pronounced peak for C-H…S angle (in the range from 110 to 

120°, Figure 7). 

 

 

  

 

                                  a)                                                                               b) 

 

Figure 6. Graphs of the: a) distribution of H…S distance b) distribution of C-H…S angle in C-

H…S interactions with S…S distance below 5.0 Å.  

 

 

 

 

 

 

 

                                  a)                                                                                     b) 

Figure 7. Graphs of the: a) distribution of H…S distance b) distribution of C-H…S angle in the C-

H…S interactions.  

Page 11 of 28

ACS Paragon Plus Environment

Crystal Growth & Design

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 12 

Quantum chemical calculations 

Electrostatic potential map. As was mentioned in the introduction, sulfur atom can have 

region of negative, as well as region of positive potential, enabling electrostatic attraction 

between two sulfur atoms.2,4,7,8 In order to determine distribution of charges in cysteine residue 

the electrostatic potential map was calculated on model system of methanethiol molecule.  

Electrostatic potential map shows negative region on the surface of the sulfur atom (Figure 8, 

blue color). However, in the direction of S-H bond, small area of positive potential on sulfur atom 

can be observed, more precisely the positive potential is above C-S bond (Figure 8, yellow color). 

The most positive potentials are on the hydrogen atoms (Figure 8, red color).  

 

 

Figure 8. Two views of electrostatic potential map of the methantiole molecule; Red: more 

positive than 10.35 kcal/mol, yellow: 0.00 to 10.35 kcal/mol, green: -0.125 to -10.54 kcal/mol, 

blue: more negative than -10.54 kcal/mol.  

The electrostatic potential map enabled to understand interactions in model systems. We also 

made one model systems, where negative potential on sulfur atom of one molecule is in contact 

with the positive potential on sulfur atom of the second molecule.  

Page 12 of 28

ACS Paragon Plus Environment

Crystal Growth & Design

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 13 

Energies of interactions. In order to determine whether interactions between cysteine residues 

in parallel orientations are attractive and not just the consequence of packing in the crystal 

structures, energies of interactions between two methanethiol molecules were calculated using 

quantum chemical calculations.  

Quantum chemical calculations were performed on five model systems (Figure 9). Model 

systems were based on the results obtained by analyzing data from the crystal structures, and on 

distribution of electron density in methanethiol molecule. Since in the crystal structures 

interactions with parallel orientation were observed (Figure 2), we made model systems A, B, and 

C. In model systems A, B, and C molecules are parallel (C-S-H planes of two molecules are 

parallel) and have H1-S1
…S2-H2 torsion angle value of 180°; the value that was observed in 

crystal structures (Figure 4). In model system A the sulfur atoms are one above the other, in 

model system B the sulfur atom of one molecule is above the middle of S-H bond of the other, 

while in model system C, the sulfur atom of one methanethiol molecule is located above the 

middle of the C-S bond of the other molecule (Figure 9).  

In model system D orientation of two methanethiol molecules is normal; the C-S-H planes of 

two molecules are perpendicular.  Model system E is based on the distribution of charge in 

methanethiol molecule. As was mentioned, the electrostatic potential map (Figure 8) shows 

positive and negative regions on sulfur atom. In the model system E orientation of the two 

molecules is such that the positive part of the sulfur atom of one methanethiol molecule is 

directed toward the negative part of the sulfur of other molecule. However, in this structure 

hydrogen of C-H bond is also involved in the interaction with the sulfur atom.   
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 Figure 9. Model systems of methanethiol dimers used for quantum chemical calculations of 

interaction energies. (The coordinates are given in Tables S4-S8, Supporting Information). 

For the geometries of the parallel orientation (model systems A to C) the monomer geometries 

were kept rigid, while the normal distance R was systematically varied to find the R with the 

strongest interaction (Figure S2, Supporting Information). In the model systems D and E the 

distance d between two sulfur atoms was systematically changed.  

The interactions energies calculated with CCSD(T)/CBS and SAPT methods were calculated 

for each model system and presented in Table 1. The SAPT interactions energies are in very god 

agreement with CCSD(T)/CBS energies. 

  The results of quantum chemical calculations show that the S…S interaction is strongest in the 

case of model system E that has orientation with maximized electrostatic interaction between two 

sulfur atoms. The CCSD(T)/CBS interactions energy is -2.20 kcal/mol. This interaction also has 

the shortest distance between sulfur atoms (d) of 3.6 Å, which is slightly less than the sum of 

their van der Waals radii71 which is 3.66 Å. Although, in this structure electrostatic interaction 
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between two sulfur atoms is maximized, there is also a C-H…S interaction with H…S distance of 

3.05 Å and C-H…S angle of 129.9°.   

All model systems with parallel orientations (A, B, and C) have significantly weaker 

interactions than model system E. Among parallel orientations the most stable is model system C, 

with sulfur above S-C bond; the interactions energy is -1.80 kcal/mol, and distance d is 4.0 Å. 

The relatively strong interaction energy for this model system can be explained by the 

electrostatic potential map. Methanethiol molecules are in such orientation that the negative 

region on the sulfur atom (Figure 8, blue color,) is located above the positive region along the    

C-S bond (Figure 8, yellow color) which contributes to the interaction energy in this model 

system. However, in this orientation, there is an additional stabilization by two C-H…S 

interactions. These interactions are formed between the sulfur  atom  in  one  molecule  and  a  

hydrogen  atom  from  the methyl  group  of  the  second  molecule (Figure 9) with H…S distance 

of 3.3 Å and C-H…S angle of 122.6°.  The model system C is very similar to model system used 

in previous the DFT-D study of C-H…S interactions in methanethiol dimer72 were at BLYP-D*, 

BLYP-D, and B3LYP-D level, the calculated binding energies were -2.28 kcal/mol, -2.68 

kcal/mol and -2.81 kcal/mol, respectively.   

The interaction energy for model system B (sulfur atom above S-H bond) is significantly 

weaker -0.72 kcal/mol, while the interaction energy for model system A, with the sulfur atoms 

one above the other, is the weakest -0.52 kcal/mol.  

For model system C, change of torsion angle H1-S1
…S2-H2 values was studied. The data from 

the crystal structures show that H1-S1
…S2-H2 torsion angle in most of the contacts has value of 

180° (Figure 4). The H1-S1
…S2-H2 torsion angle in the initial geometry of model system C has a 

value of 180°. To investigate whether the change of torsion angle influence strength of the 

interaction energy we decrease the value of H1-S1
…S2-H2 torsion angle from the initial 180° to 
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90°. For geometry with torsion angle of 90°, the interaction energy on TPSS-D3/aug-cc-pVDZ 

level is -1.36 kcal/mol, indicating that decreasing H1-S1
…S2-H2 torsion angle decreases 

interaction energy. Hence, the strength of interaction depends on the values of torsion angle.   

The energy for normal (model system D) orientation is rather weak and has a value of -0.37 

kcal/mol (Table 1) with the long distance d of 4.0Å.  

 

Table 1. The interaction energy values and the distance between the sulfur atoms for the model 

systems (Figure 9) 

Model system ∆E  
CCSD(T)/CBS 

(kcal/mol) 

∆E 
SAPT2+3 
(kcal/mol) 

d (Å) 

Parallel orientation     
 
A 

 
         -0.52                     

 
     -0.51 

 
       

 
       4.50 

B          -0.72      -0.73               4.15 
C          -1.80      -1.82               4.00 

  
Normal orientation 

 

    

D 
 

Electrostatic model 

         -0.37 
 
 

     -0.34         4.00 
 
 
 

E          -2.20      -2.23         3.60 
     

  

The results of quantum chemical calculations show some agreement with results of the CSD 

search. The data from the CSD show that parallel orientations are preferred in crystal structures 

(Figure 2), that is in agreement with calculated interaction energies for parallel and normal 

orientations; parallel orientation is more stable than normal orientation (Table 1).  Also, the 

distribution of the values of torsion angle shows that the preferred orientations are with torsion 

angle in the range 170°-180° (Figure 4), while the results of quantum chemical calculations on 
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model system C show that the geometry with torsion angle of 180° is more stable that geometry 

with torsion angle 90°.  

However, results of CSD search showed tendency toward parallel orientation of cysteine 

fragments, while the calculated most stable geometry is model system E, where molecules are not 

in parallel orientation (Table 1).  

A larger number of structures with parallel orientation observed in crystal structures can be 

explained by the influence of supramolecular structure. It seems that the parallel interactions 

enable better packing in crystals that could stabilize structures for more than 0.4 kcal/mol, what  

is the energy difference between the most stable model system E (-2.20 kcal/mol) and parallel 

model system C (-1.80 kcal/mol). 

It should be noted that most of the interactions we have studied in this paper are not of σ-hole 

type. The major point of our research is that the interactions between two cysteine residues have 

very frequently parallel C-S-H planes in crystal structures, while calculated interactions energy is 

significantly strong.  

 

Interaction energy decomposition. Results of the interaction energy decomposition obtained 

by DF-SAPT2+3 method are presented in Table 2. For model systems B, C and E electrostatic 

energy term is negative (i.e. attractive) and for model systems A and D slightly positive (i.e. 

repulsive). As expected, highest contribution of electrostatic energy term to total binding energy 

is in model system E and only for this model system electrostatic energy term is more negative 

than the total interaction energy indicating a net repulsive contribution from other energy terms 

(exchange, induction and dispersion).  
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Table 2. Results of the SAPT interaction energy decomposition for model systems (Figure 9) 

Model system Eelectrostatic 

(kcal/mol) 

Eexchange 

(kcal/mol) 

Einduction 

(kcal/mol) 

Edispersion 

(kcal/mol) 

Echarge-transfer 

(kcal/mol) 

E"net-dispersion"
a 

(kcal/mol) 

A 0.049 0.533 -0.118 -0.977 -0.027 -0.444 

B -0.327 1.420 -0.217 -1.605 -0.074 -0.185 

C  -1.642 3.059 -0.443 -2.797 -0.122 0.262 

D 0.081 0.770 -0.122 -1.067 -0.038 -0.297 

E -2.935 5.059 -0.794 -3.556 -0.480 1.503 

       

a 
"net dispersion" is calculated as the sum of exchange and dispersion terms. 

 

The exchange energy term, which arises due to electron exchange between the monomers when 

the molecules are close, have large positive values for all the model systems. Since most of the 

contribution in exchange energy term comes from orbital overlap between molecules this term 

will depend strongly on intermolecular distances and orientation of the molecules. This trend can 

be observed for model systems with parallel orientation (Table 2). Model system C with shortest 

intermolecular distances has the highest repulsive value for exchange energy term. Small value 

for exchange term in model system D can be explained with sulfur-sulfur distances longer than 

the sum of their van der Waals radii and normal orientation of the molecules, so very little orbital 

overlap between molecules will occur in this model system. Highest value for exchange energy 

term is calculated for model system E, where two sulfur atoms are at the distances shorter than 

the sum of their van der Waals radii, thus strong orbital overlap between those two atoms exists.  

In all investigated model systems the largest attractive contribution to the total binding energy 

comes from dispersion energy term (Table 2). For the model systems B and C dispersion energy 
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term is by 1.15 – 1.28 kcal/mol more negative than electrostatics, but for the model system E this 

difference is only 0.62 kcal/mol.  

The induction contribution to the binding energy is much smaller than dispersion energy 

component and is most favorable for model system E (Table 2). In SAPT analysis charge-transfer 

energy is hidden as the part of the induction energy term, and can be evaluated as the difference 

between induction energy terms calculated in the dimer basis and monomer basis. For model 

systems A, B, C and D charge-transfer energy is rather small contributing from 5.1 to 11.3 % tot 

total binding energy. On the other hand, charge-transfer energy for model system E is large, 

contributing 21.5 % to total binding energy and more than 60 % to induction energy term.  

Since dispersion and exchange energy terms are usually similar in magnitude and opposite in 

sign, interesting results of SAPT analysis can be obtained by introducing a new term called “net 

dispersion”73 as the sum of exchange and dispersion energy terms (Table 2). Data in Table 2 

show that values of the “net dispersion” term are negative for model systems A, B and D, slightly 

positive for model system C and large positive for model system E.  

Results of the SAPT energy decomposition clearly indicates that dispersion is the main 

attractive force in all model systems. Binding in model system E also has very strong electrostatic 

interactions between molecules and large contribution from charge-transfer energy.  

 

CONCLUSIONS 

The results of analyzing data on sulfur-sulfur interactions between cysteine fragments (R-

CH2SH) in the crystal structures from the Cambridge Structural Database showed that geometries 

with parallel C-S-H groups are preferred. The calculated CCSD(T)/CBS interaction energies 

show that the most stable geometry with parallel orientation has significant interaction energy of 

-1.80 kcal/mol. The model system with maximized electrostatic σ-hole interaction has the 
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strongest interaction energy, -2.20 kcal/mol. Although the energy of parallel orientation is less 

strong, the difference in energy is only 0.40 kcal/mol, indicating possibility for parallel 

orientation stabilization in  supramolecular structures.  

Results of the SAPT energy decomposition indicate that dispersion is the main attractive force 

in all model systems. As one can anticipate, SAPT data confirmed that binding in model system 

with σ-hole interaction has strong electrostatic interaction contribution.  

This study show preferred geometries of sulfur-sulfur interactions between cysteine fragments 

(R-CH2SH) that can be important for recognizing the sulfur-sulfur interactions in various 

molecular systems.   
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Preferred geometries and energies of sulfur-sulfur 

interactions in crystal structures 
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The S…S interactions between cysteine residues were studied by analyzing crystal structures from 

Cambridge Structural Database and by quantum chemical calculations. The parallel orientation of 

cysteine residues is the preferred orientation in crystal structures, with the strongest energy of -

1.80 kcal/mol. The strongest S…S interaction has energy of -2.20 kcal/mol and orientation with 

maximized electrostatic interaction.  
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