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Highlights 

 Thin-layer chromatographic methods for modeling soil-sorption are proposed 

 Methods performs equally well as typical in silico estimators 

 CN-silica and MeOH-water mixtures were selected as the most suitable systems 
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Abstract 

Soil-water partition coefficient normalized to the organic carbon content (KOC) is one of 

the crucial properties influencing the fate of organic compounds in the environment. 

Chromatographic methods are well established alternative for direct sorption techniques used 

for KOC determination. The present work proposes reversed-phase thin-layer chromatography 

(RP-TLC) as a simpler, yet equally accurate method as officially recommended HPLC 

technique.  

Several TLC systems were studied including octadecyl- (RP18) and cyano- (CN) 

modified silica layers in combination with methanol-water and acetonitrile-water mixtures as 

mobile phases. In total 50 compounds of different shape, molecular size, and various ability to 

establish specific interactions were selected (phenols, beznodiazepines, triazine herbicides, 

and polyaromatic hydrocarbons). Calibration set of 29 compounds with known logKOC values 

determined by sorption experiments was used to build simple univariate calibrations, 

Principal Component Regression (PCR) and Partial Least Squares (PLS) models between 

logKOC and TLC retention parameters. Models exhibit good statistical performance, indicating 

that CN-layers contribute better to logKOC modeling than RP18-silica. The most promising 

TLC methods, officially recommended HPLC method, and four in silico estimation 

approaches have been compared by non-parametric Sum of Ranking Differences approach 

(SRD). The best estimations of logKOC values were achieved by simple univariate calibration 

of TLC retention data involving CN-silica layers and moderate content of methanol (40 - 50% 

v/v). They were ranked far well compared to the officially recommended HPLC method 

which was ranked in the middle. The worst estimates have been obtained from in silico 

computation based on octanol-water partition coefficient.   
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Linear Solvation Energy Relationship study revealed that increased polarity of CN-layers 

over RP18 in combination with methanol-water mixtures through significant diminishing 

dipolar and proton accepting influence of the mobile phase as well as enhancing molar 

refractivity in excess of the chromatographic systems is the key to better modelling of logKOC. 

Keywords: Soil-water partition coefficient; Reversed-phase thin-layer chromatography (RP-

TLC); Benzodiazepines; Polycyclic aromatic hydrocarbons (PAHs); Multivariate regression 

methods; Sum of Ranking Differences (SRD) 
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1 Introduction 

Sorption in the soil-water compartment is one of the most important factors that 

determine the fate of organic compounds in the environment.  It controls their availability to 

transport and degradation processes in aqueous phase; involvement in catalytic reactions on 

the adsorption sites in the soil [1,2], influence volatilization, bioavailability, biodegradability, 

photolysis, and hydrolysis of pollutants [1]. It is one of the major factors considered in 

removal of toxic organic compounds in the waste water treatment facilities [3].   

At present, the concept based on the soil-water partition coefficient normalized to organic 

carbon content (KOC) has been widely used for the assessment of fate of compounds in the 

soil-water compartment including broad range of different soils and diverse classes of 

substances [1]. The reason for its widespread application lies in its direct link to the content of 

the soil organic matter (SOM) [2], and ability to account mostly for structural features of an 

analyte while significantly eliminating the effects of soil diversity.  

Measurement of KOC by direct sorption experiments in biphasic soil-water systems [4-6], 

is time and reagent consuming, tedious and subject to various difficulties and artifacts. 

Methods are inapplicable to compounds sparingly soluble in water, significant volatiles or 

those with strong sorption affinity towards soil organic matter or silicates [1,2]. Therefore, 

chromatographic methods have a central place in rapid indirect determination of KOC. Mostly 

typical reversed-phase (RP) modalities have been used so far, with different combination of 

sorbents such as: chemically bonded octadecyl silica (RP-18) [7-9], cyano-modified silica 

(CN) [7-15], tetramethylamonium- (TMA) [9], aminopropyl- [11], as well as humic acid-

modified silica [11,16-18]. In addition, soil materials have been used as sorbents with great 

success [19-21] providing valuable insights into mobility of analytes in different soils [22].  

Chromatographic methods provide much coherent results, work in wider logKOC range, and 
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are less time and reagent consuming. Therefore, they have been implemented in official 

guidelines for testing chemicals of the Organization for Economic Cooperation and 

Development (OECD) [23].  

In addition to experimental techniques, computational estimation methods have been 

frequently employed. Most of them are relying on  physicochemical properties such as 

octanol-water partition coefficient (KOW) [24-26], water solubility (logS) [24,27] or 

Quantitative Structure Property Relationships (QSPR) models based on structural, 

topological, electronic and other 1D molecular descriptors [10,28], as well as Linear Solvation 

Energy Relationships (LSER) [29,30].  While representing an efficient alternative for logKOC 

assessment, computational approaches have significant drawbacks. They often do not 

differentiate among various forms of structural isomers, nor account for the influence of pH 

on the sorption of weak bases and acids [28]. Models based on logS and logKOW are specific 

to compound subclass, while LSER models require experimental determination of 

solvatochromic parameters. 

The ever increasing concern for the fate of pollutants and pharmaceuticals in the 

environment put constant demands on development of novel, cheaper, faster and yet reliable 

ways for determination of logKOC.  In that sense TLC has much to offer. Being capable to 

process great number of samples in a short period of time, TLC does not require any advanced 

equipment, and consumes low amounts of solvents and reagents. Performed in a reversed-

phase mode, and relaying on the use of environmentally friendly mobile phases such as 

ethanol-water mixtures, TLC becomes favorable in terms of green chemistry. 

So far, with exception of our previous study [31], no TLC methods have been 

systematically assessed for the determination of logKOC. However, our previous work [31] 

was focused on limited number of phenolic compounds. In the meantime, diversity and 
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number of compounds that we have investigated have significantly increased providing us 

with new insights, and possibility to make more general conclusions related to: (i) 

applicability of RP-TLC to compounds with various abilities to exhibit specific interactions 

and (ii) establishing the application limit values of the logKOC. In that sense, the aim of the 

present work is: (i) the systematic assessment of RP-TLC in the logKOC modeling, including 

comparison with officially recommended HPLC method and in silico estimation approaches, 

and (ii) the determination of logKOC values for environmentally and pharmaceutically 

important compounds for which there are no KOC values determined yet. 

 

2 Material and methods 

2.1 Selection of the target set of compounds 

A representative set of 50 compounds of various molecular structures, shapes and 

sizes, of significant environmental and pharmaceutical importance have been selected (Table 

1). Out of that 29 being standard substances (5 phenols, 9 polyaromatic hydrocarbons (PAH), 

4 triazine herbicides, and other aromatic amines, ketones, and aldehydes) with known, 

experimentally determined logKOC values taken from the KOCWIN database (EPI Suite, 

EPA, USA) and 21 compounds with  unknown values, among them 9 benzodiazepines and 7 

phenols. Standard solutes have been chosen to cover a wide range of the soil-water sorption 

coefficient (1.10 - 6.22 log units), with diverse abilities to form hydrogen bonds, dipolar or 

polarizable interactions given as Abraham’s solvatochromic parameters: A - hydrogen bond 

acidity: 0.00 – 0.94; B – hydrogen bond basicity: 0.15 – 1.63, S – dipolar interactions: 0.79 – 

2.49, E – molar refractivity in excess: 0.80 – 3.43, and V – McGowan’s  molecular volume: 

0.78 to 2.19 (Table S1, Supplementary material). Experimentally determined solvatochromic 

parameters have been collected through freely available Absolve online calculation tool, part 
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of the ACD/I-Lab (https://ilab.acdlabs.com/iLab2/).  

All substances, with exceptions of 4-nitrophenol, 2,4,6-trichlorphenol, and 4-

aminobenzoic acid, are considered to be present in the neutral form under the studied 

chromatographic conditions, i.e. ionization degree α < 5.00% at pH = 6. The entire list of 

compounds followed by logKOC values, Abraham’s solvatochromic parameters, pKa values, 

and retention factors is given in the Supplementary material (Tables S1-S2) as well as in the 

Supplementary Excel data sheets.  

Table 1 

 

2.2 The TLC experiments 

Chromatographic experiments have been performed using commercially available RP18 

and CN silica coated on alumina sheets and glass plates (Art. Nos. 5559 and 16464 

respectively; Merck, Darmstadt, Germany). Methanol - water and acetonitrile - water binary 

mixtures were used as mobile phases, varying the content of organic solvents in the range 40 - 

80% v/v with an increment of 5%. Size of the plates was 10 × 10 cm. Approximately 0.2 – 0.3 

μL of freshly prepared solutions of target compounds in acetone (C ≈ 0.01 mol L
-1

) were 

manually applied at 5 mm distance from the lower edge of the plate. Chromatograms were 

developed in a horizontal HPTLC chamber (CAMAG, Mutenz, Switzerland). The 

development distance was about 4.5 cm and position of each single zone was detected under 

UV-light (254 nm). The zone distances were manually measured and retention mobility 

values, RM are calculated according to Eq. 1. All experiments were performed at ambient 

temperature (22 ± 2 
o
C). 

)1
1

log( 
F

M
R

R  (1) 

https://ilab.acdlabs.com/iLab2/
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where RF is so-called retardation factor, i.e. the ratio of the distance of a solute’s target zone 

and the solvent front. 

 

2.3 The HPLC experiment 

The HPLC experiments were conducted in accordance with the current OECD procedure 

[23], using the Waters 1525 HPLC dual pump system, equipped with the Alltech, Select™ 

degasser system and dual λ 2487 UV–VIS detector. A cyanopropyl column (Waters 

Spherisorb S10 CN, 4.6 × 150 mm analytical column, Ser. No. 0103141281K03) was used as 

the stationary phase. Isocratic elution with a mixture of methanol (HPLC grade, Merck) and 

citric buffer, C = 0.01 mol L
-1

, pH = 6 in a ratio of 30:70, v/v, was employed. Although the 

OECD guideline [23] recommends the usage of 40% or 45% v/v of organic modifier in the 

mobile phase, the studied compounds have been eluted with relatively short retention times 

under such conditions; therefore, the elution strength of the mobile phase was lowered, 

providing more reliable retention data. The flow rate was maintained at 1 mL min
-1

. Each run 

was performed at room temperature (22 ± 2 °C). Sample solutions were prepared by 

dissolving the pure substance in the mobile phase, in a concentration of 1.0 mmol L
-1

, with 

addition of 0.42 mmol L
-1

 of potassium bromide as the holdup volume marker (λ = 220 nm, 

separate detection channel) and injected through the injection loop of 10 µL. Dual wavelength 

mode was used for detection. The retention time, tR, and holdup time, t0, were determined for 

each compound as the mean values of triplicate measurements. Finally, the resulting retention 

factors were calculated according to the following equation: 

0

0

t

tt
k R             (2) 
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2.4 In silico estimation of logKOC values 

We have decided to use the four most commonly employed computational approaches 

for estimation of logKOC-s. Two are LSER models, one developed by Nguyen et al. [30] and 

the other reported by Poole and Poole [30] (Eqs. 3 and 4, respectively) 

logKOC = (0.14 ± 0.10) + (0.15 ± 0.15)A – (1.98 ± 0.14)B – (0.72 ± 0.14)S + (1.10 ± 0.10)E  

+ (2.28 ± 0.14)V   R
2
 =  0.98, error = 0.18, n = 75 points,  N = 356 measurments  (3) 

log KOC = (0.19 ± 0.10) – (0.23 ± 0.10)A – (2.33 ± 0.12)B + (0.72 ± 0.05)E  

+ (2.12 ± 0.11)V   R
2
 =  0.954, S.D. = 0.249, F = 585,  n = 119    (4) 

The other two approaches are implemented in the KOCWIN software which is part of the 

public database (EPI Sute, v. 4.1, U.S. EPA). The first one is based on the first order 

molecular connectivity indices (MCI) while the second one uses octanol-water partition 

coefficient (KOW). MCI based method relies on already described methodology by Meylan et 

al. [29], with a difference that significantly larger database was used in the present version of 

the software compared to the originally published data. Both methods use the primary 

(uncorrected) models for non-polar compounds (Eqs. 5 and 7). Estimations of logKOC for 

polar compounds require correction factors (Eqs. 6 and 8).  

logKOC  =  0.5213 MCI  +  0.60,  n = 69, r
2
 = 0.967, S.D. = 0.247      (5) 

logKOC =  0.5213 MCI  +  0.60 + ΣPfN         (6) 

logKOC =  0.8679 logKOW  -  0.0004, n = 68, r
2
 = 0.877, S.D. = 0.478    (7) 

logKOC =  0.55313 logKOW  +  0.9251 + ΣPfN       (8) 

where ΣPfN is the summation of the products of all applicable correction factor coefficients 

(Pf) multiplied by the number of times (N) that factor is counted for the structure. 
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2.5 Modeling and data analysis 

Linear modeling (Principal Component Regression – PCR, and Partial Least Squares 

regression – PLS) and Principal Component Analysis – PCA (part of exploratory data 

analysis) were done using PLS Tool Box (v. 7.02) for MATLAB (R2011). Prior to PCA, 

PCR, and PLS the data were standardized, i.e. mean-centered and expressed to the unit 

standard deviation. The number of principal components in PCA was decided based on the 

visual inspection of the scree plot (dependence between the data variance explained by each 

principal component and the number of component). A clear cut-off value that separates a 

region with steep decrease of variance from a rather flat part has been used as an indicator of 

the number of relevant PC-s that should be retained. The PCR and the PLS models 

accompanied with predictive performance parameters were built using double cross-validation 

(CV) approach as described by Varmuza and Filzmoser [34]. The entire data set has been split 

into four independent training and test sets as a part of the outer cross-validation loop using 

venetian blinds (VB) resampling strategy. Each training set has been further split into five 

calibration and validation sets as a part of the inner cross-validation loop, using the VB 

resampling. In that way each compound has been used as a part of the calibration, validation, 

and test set, however, never in the same time. The optimal model complexity was determined 

based on the model performance criteria obtained from the inner loop CV calculations, i.e., 

the number of latent variables that lead to models with minimum of the root mean square 

cross-validation errors (RMSECV). The performance parameters calculated from the outer loop 

were used as the estimates of prediction ability (RMSEPRED and R
2

PRED, respectively). 

Simple univariate and multivariate linear regressions were performed using Microsoft 

Excel 2010.   

Comparisons and ranking of chromatographic and computational approaches were done 
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with the Sum of Ranking Differences (SRD), an approach that compares methods fairly 

[35,36]. User friendly SRD algorithm was provided in a form of Microsoft Excel visual basic 

macros freely available at http://aki.ttk.mta.hu/srd/. In order for methods to be compared by 

SRD a reference is required. Variables, in this case logKOC determination approaches, and 

objects (compounds) are arranged in a form of a matrix, i.e. columns and rows, respectively. 

The objects are then ranked for each variable separately; ranks are subtracted from the 

reference ranks, and summed up giving unique SRD value for each variable. The SRD values 

are usually scaled to the range between 0 and 100, and variables are arranged in ascending 

order of SRD-s. The lower the SRD, the closer is the variable to the reference.  The reference 

can be a standard method, or row-wise calculated minimum, maximum, or arithmetic mean 

average. In the present case we have decided to use the average. Such consensus based 

approach is justified from the two main points: (i) the maximum likelihood principle which 

yields a choice of the estimator as the value for the parameter that makes the observed data 

most probable (the average) and (ii) all random and systematic errors of the methods are 

canceled out to some extent by averaging. 

 

3 Results and discussion 

3.1  Exploratory data analysis 

In order to reveal the presence of outlying effects in retention behavior of studied 

compounds, possible groupings and similarities among used chromatographic systems, as 

well as to illustrate representativeness of the selected sets of compounds, PCA has been 

performed on standardized retention data.  

A relatively heterogeneous nature of the entire set of compounds can be noticed (Figure 

1a). The PC1 vs. PC2 score plot show the presence of at least two groups. The first one is 

http://aki.ttk.mta.hu/srd/
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located at the right side of the plot consisting of mostly polyaromatic hydrocarbons 

(compounds 7, 18-25), while the benzodiazepines and the rest of phenols and aromatic 

compounds are located at the left side of the graph. Two compounds: p-aminobenzoic acid 

(17) and p-anisidine (11) fall outside of the Hotteling 95% confidence curve. Although the 

outlying effect is not severe, in the case of p-aminobenzoic acid it could be attributed to 

extensive dissociation under chromatographic conditions (α = 95.6%).   

Nevertheless, the standard compounds and unknowns are evenly distributed in the PC 

retention score space, which insures deduction of general conclusions applicable to entire data 

set. The loading plot of retention data (Figure 1b) reveals distinction in chromatographic 

conditions alongside the PC2 direction which accounts for fine data variability (4.23%). 

Chromatographic systems based on RP18 silica have positive loadings, while the cyano-

modified sorbents are negative. Obviously that different constellation of interactions alters the 

retention on stationary phase with polar moieties vs. hydrophobic long hydrocarbon chains.  

Figure 1 

3.2 Modeling of retention - logKOC relationships 

In order to build calibration models of logKOC vs. retention data, two directions were 

considered. One is a simple univariate approach that provides a single calibration model for 

each chromatographic system. The other assumes building multivariate models based on the 

overall information from all chromatographic experiments. Univariate approach is simpler; 

however, the multivariate calibration has more power provided by simultaneous treatment of 

multiple variables. Because of its simplicity, a linear modeling is of primary concern. Also, 

linear addition of RM values can be interpreted as a linear free energy relationship. When it 

comes to highly correlated chromatographic data PCR and PLS regressions are the most 

frequently applied methods [37-39]. Although, the methods are related to each other, they 
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have substantial differences. The PLS regression does not form latent variables only by 

maximizing variability of the scores in the independent variable domain, which is a key 

concept in PCR, but rather maximizing correlation between the projection scores in both, 

independent and dependent, variable domains. Therefore it was of particular interest to 

compare both approaches alongside with much simpler univariate calibration methods that do 

not require many chromatographic experiments. 

All 29 standard compounds were used for building up calibration models.  

In the case of PLS and PCR, a double cross-validation procedure resulted in two latent 

variable models (optimal complexity). A total of 19 univariate TLC calibrations are 

summarized in the Supplementary material (Table S3). Their prediction performance was 

estimated by 4 split cross-validation experiments in combination with VB resampling 

strategy. Only seven of them have satisfactory statistical parameters (errors 0.4 - 0.6 log units, 

and R
2

Cal and R
2

PRED > 0.8). They are included in the Table 2 (models 3 – 9) together with the 

HPLC calibration, PCR and PLS regression models.  

All chromatographic models (Table 2) demonstrate similar and fairly good predictive 

performance with the RMSE values in the following ranges: RMSECal = 0.401 – 0.537, 

RMSECV = 0.496 – 0.517; RMSEPRED = 0.441 - 0.608 and coefficients of determination: R
2

Cal = 

0.8340 – 0.9124, R
2

CV = 0.8640 – 0.8585; R
2

PRED = 0.8140 – 0.8878. All residual values are 

normally distributed without presence of any trends, (tested by Kolmogorv-Smirnov, Shapiro-

Wilk’s, and Lilliefors’ tests, p > 0.20 in all cases). This confirms that linear approach is able 

to correctly model the KOC data in approximate range of 1 – 6 log units, with the prediction 

error not exceeding 0.4 – 0.6 log units.  

Table 2 
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Statistical performance parameters show that TLC models perform equally well as the 

officially recommended HPLC method. Furthermore, the qualities of selected TLC models are 

comparable with HPLC univariate calibrations published by Koerdel and coworkers [18], 

Gawlik et al. [15], and Szabo and coworkers [11]. 

PCR and PLS variable diagnostic plots, i.e., regression vector plots, sensitivity ratio 

graphs and variable importance to projection (VIP) diagrams are included in the 

Supplementary material (Figures S1 and S2). They illustrate stronger contribution of CN-

silica layers over the RP18-modified ones to the overall modeling of logKOC. Short discussion 

is appended in the Supplementary material, page 8. 

 

3.3 Determination of logKOC values and comparison of chromatographic and in silico 

approaches 

The logKOC values for 31 compounds that lack experimental data as well as 29 standards 

were determined using chromatographic models presented in Table 2. The values are 

presented together with computationally estimated logKOC-s in the Table S4 (Supplementary 

material).  

In order to identify the best and the worst logKOC determination method non-parametric 

comparison by the SRD was applied on the entire set of logKOC values. The SRD method has 

been already successfully employed to rank and group variables, finding statistically 

significant differences even if the variables are highly correlated [40-45], which is the case 

with the present set of logKOC values.  

In a consensus based comparison methods are stacked in the narrow range of SRD scores (9 – 

22, out of 100). Validation of ranking done by comparison with random number distribution 

of SRD-s (CRRN) shows that all methods are positioned far from the 95% confidence range 
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of the bell-shaped random SRD distribution curve, which implies that all of them rank studied 

far better than a statistical chance.  

Two univariate calibration TLC models corresponding to CN-modified silica in 

combination with moderate methanol content of 40% and 50% v/v, are selected as the best 

logKOC estimates (closest to the average) (Figure 2a). They are followed by the LSER model 

proposed by Poole, univariate TLC calibrations obtained on RP18-silica using higher content 

of methanol (80% and 70% v/v) and CN-silica combined with moderate methanol content 

(60% v/v).  

Figure 2 

In order to assess statistical significance of differences in SRD-s, variability was 

introduced into dataset by the sevenfold jack-knife resampling procedure. Approximately 1/7 

of objects are removed and the ranking is performed on the remaining data set. Procedure is 

repeated seven times producing seven SRD values for each logKOC estimation method. 

Results are plotted in a form of a box-and-whisker diagram using median, maximum, 

minimum, and interquartile ranges of SRD values (Figure 2b). The median SRD values, with 

exception of the CN/MeOH-70, follow increasing order (Tables S5a and S5b, Supplementary 

material). Statistical difference among each pair of variables is then tested by applying the 

Wilcoxon’s matched pair test, and the sign test, which  are able to group (separate) methods 

into four distinct sections (denoted by vertical dashed lines). Univariate TLC calibration 

models obtained on CN-modified silica in combination with moderate content of methanol in 

the mobile phase (40% and 50% v/v, respectively) have the lowest and statistically 

indistinguishable SRD medians (the first group). From at least two points, these methods 

should be considered the best ones and the simplest to perform. First of all, by providing 

logKOC-s that are closest to the consensus values (the average arithmetic mean), they are the 
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most accurate. Second of all, they can efficiently substitute the rest of compared approaches. 

This is particularly important when it comes to PLS and PCR models that require several 

chromatographic experiments in order to increase the estimation accuracy and precision. The 

four methods that follow, i.e., LSER (Poole), TLC (RP18/MeOH 70), TLC (RP18/MeOH 80), 

and TLC (CN/MeOH 60), are placed together in the second group according to both 

significance tests. The recommended HPLC method is in the third group and performs equally 

well as the remaining TLC univariate and multivariate (PLS and PCR) calibrations, LSER 

(Nguyen) approach, and EPI Suite estimations based on MCI-s. Therefore, it can be 

effectively replaced with the simplest method to perform, e.g. TLC experiment involving CN-

modified silica in combination with higher content of methanol (70% v/v), or in silico 

method.  

 The lowest ranked is the EPI Suite method based on KOW estimations. The method differs 

statistically significantly from the rest of approaches, and should be considered as the least 

trusted. 

 

3.4 Impact of stationary and mobile phase on modeling logKOC (CN- vs. RP18-modified 

silica layers) 

According to the SRD ranking it is obvious that different chromatographic systems result 

in variously reliable logKOC estimates. Among them CN-modified silica in combination with 

moderate content of methanol provides the best estimates.  

In order to get insights into interactions governing retentions in the studied 

chromatographic systems LSER models using Abraham’s solvatochromic parameters of all 50 

compounds, as independent variables, and retention factors as dependent ones, were built for 

each TLC system by multiple linear regression. Models are expressed in the following form.  
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RM  = I + aA + bB + eE + sS + vV        (9) 

Intercept, and regression coefficients a, b, e, s, and v are summarized in the Table S6 

(Supplementary material) with accompanying statistics. They describe the overall effects of 

hydrogen bond basicity - a, hydrogen bond acidity - b, excess molar refractivity/polarizability 

- e, dipolarity - s, and ability to form of a vacant space -v in the chromatographic system.  

In all TLC systems regression coefficients follow pattern that is typical for reversed-phase 

environment, i.e. negative values of a, b, and s, positive values of e and v, and the highest 

absolute values of a, b, and v. [46,47] This clearly demonstrates the significant role of 

aqueous mobile phase and organic modifier, their strong contribution to formation of 

hydrogen bonds with solute molecules, and significant resistance to formation of an empty 

space for incorporation of a transferring molecule from stationary phase [30,46,47].   

Figure 3 

PCA score plot of LSER regression coefficients a, b, s, e, and v of all TLC systems, as 

well as Nguyen’s and Pool’s logKOC models indicates that TLC systems based on CN-silica, 

especially those with 40 - 60% v/v of methanol, as well as those involving RP18 in 

combination with higher content of methanol (70 - 80% v/v), are the closest to Nguyen’s and 

Pool’s logKOC models (Figure 3a). Diagram of loadings (Figure 3b) suggests that 

polarizability in excess, e, and proton basicity, a, are the most responsible factors for such 

disposition of LSER models. 

Dissimilarities and similarities among two contrasting LSER models i and j  are  further 

calculated using Euclidian distance [49] and Ishihama’s and Asakawa’s [48,49] cosine 

similarity measure (cos θ) (Eqs. 10 and 11, respectively).  

22222 )()()()()( jijijijiji vveessbbaad       (10) 

jijijijijiij vveessbbaa cos        (11) 
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Where vesba  ,,,, means regression coeffcients, each devided by the wector length (l = 

[a
2
 + b

2
 + s

2
 + e

2
 + v

2
]
1/2

).  

It is clear that the two parameters are interrelated by a simple trigonometry: 

 cos θij = cos (2arcsin(dij/2))         (12) 

Obviously, the closer the d is to zero and cos θ to unit, the more similar LSER models are. In 

this particular case chromatographic systems resulting in the LSER models the most similar to 

the general models of Nguyen and Poole, are governed with the same constellation of 

interactions responsible for the modeling of the soil-water partitioning (logKOC). Their values 

of d and cos θ are summarized in the Table 3.  According to Lazaro et al. [48] values of d 

lying in the range of 0 – 0.2 units suggest a negligible difference among LSER systems. 

TLC systems closest to the Poole’s general LSER model (d < 0.2) are those involving CN-

silica and methanol content of 40 and 50% v/v, as well as those based on RP18-silica and 

higher content of methanol (70 - 80%). In addition, CN-beds in combination with moderate 

content of acetonitrile 40 – 50% v/v are among the closest to the Nguyen’s general logKOC 

model (d = 0.144 and 0.177, respectively).  

Examination of LSER coefficients of above mentioned TLC systems indicates that 

polarizability in excess, e, makes these systems statistically significantly different from the 

others (with considerably higher values: 0.352, 0.349, and 0.313, respectively).  

Similar findings were reported by Poole and coworkers [50] who find a TLC system using 

CN-silica and methanol-water mixture (3:2 v/v), among several promising chromatographic 

candidates for modeling soil-water partition.  

 

4 Conclusions 
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Modeling of logKOC with TLC retention parameters by simple univariate calibration 

method, PCR and PLS regression resulted in statistically well established relationships with 

good predictive performance (prediction errors not exceeding the value of 0.6 log units). 

Comparing TLC models with officially recommended HPLC approach, as well as with the 

most frequently used in silico estimation approaches results in the highly coherent SRD 

values ranging from 9 to 22 (out of 100) units, and falling far away from the random 

distribution. The best approaches, resulting in the logKOC values the closest to the consensus 

values, are the simple univariate TLC calibrations involving CN-silica in combination with 

moderate methanol content (40 and 50% v/v). Being the closest to the average arithmetic 

mean, these methods have the lowest bias and can substitute all others, including officially 

recommended HPLC method, as well as in silico approaches.   

The main advantages of the proposed methods compared to HPLC method recommend by 

OECD are significantly reduced costs; possibility of high throughput sample analyzes; 

remarkably lower consumption of reagents and solvents which makes them much favorable in 

terms of green analytical chemistry. 

The methods are simple to perform and are applicable to small organic molecules that 

have logKOC values in the range of 1 – 6 log units. Compounds should not be present in 

ionized form (< 5%) under the chromatographic conditions (pH ≈ 5-6), and are supposed to be 

able to establish specific interactions within the following limits of the Abrham’s 

solvatochromic parameters: A = 0.00 – 1.00; B = 0.15 – 1.7; S = 0.80 – 2.50; E = 0.80 – 3.40; 

and V = 0.80 – 2.20.  

LSER analysis revealed that increased polarity of CN-modified layers over RP18 in 

combination with methanol-water mixtures, especially regarding the ability to significantly 

diminish dipolar and proton accepting influence of the mobile phase on the overall retention 
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process and enhances molar refractivity in excess of the chromatographic system, is most 

likely the key to better modelling of logKOC. 
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Figure captions 

Fig. 1 PCA of standardized retention data; Score plot of PC1 vs. PC2 (a) showing 

characteristic grouping of compounds and loading plot (b) illustrating similarities and 

differences among chromatographic systems 

Fig. 2 SRD comparison with random numbers (CRRN) of chromatographic and in silico 

approaches for determination of logKOC (a); x axis and left side y axis represent scaled SRD 

values (%), right side y axis represent relative frequencies of random numbers (%); Additional 

ranking and grouping based on sevenfold “jack knife like” SRD cross-validation procedure 

(b); Dashed lines denote statistically significant difference among variables (approaches) at p 

= 0.05. 

Fig. 3 PCA of LSER regression coefficients: a, b, s, e, and v; Score plot (a) and loading 

diagram (b) illustrating characteristic pattern of chromatographic systems vs. Nguyen’s and 

Poole’s general LSER logKOC model and influence of LSER coefficients on such disposition. 

Dashed circle line represent 95% confidence limit. 
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Tables 

Table 1 List of standard compounds and unknowns accompanied with the list of logKOC values 

directly measured by the soil-sorption experiments and recommended by U.S. EPA 

No Compound logKOC Ref. 
 

No Compound 

Standard compounds    Unknowns 

1 Phenol 1.43 [32]  30 3-Nitrophenol 

2 4-Nitrophenol 2.37 [32]  31 2-Naphthol 

3 Benzyl Alcohol 1.10 [28]  32 4-Hydroxybenzaldehyde 

4 1-Naphthylamine 3.51 [32]  33 2-Aminophenol 

5 1-Naphthol 3.10 [32]  34 4-t-Buthylphenol 

6 2.4-Dichlorophenol 2.81 [32]  35 2,6-Dimethylphenol 

7 Anthracene 4.31 [32]  36 4-Methoxyphenol 

8 Acetophenone 1.80 [28]  37 Methyl-p-hydroxybenzoate 

9 2,4,6-Trichlorophenol 3.03 [32]  38 2-Nitrobenzaldehyde 

10 Ethyl-p-hydroxybenzoate 2.21 [32]  39 3-Nitrobenzaldehyde 

11 p-Anisidine 1.93 [29]  40 Phthalimide 

12 1,2,3-Benzotriazole 1.69 [32]  41 Oxazepam 

13 Diphenylamine 2.78 [32]  42 Lorazepam 

14 2.2’-Dipiridyne 1.60 [32]  43 Clonazepam 

15 4-Bromoaniline 1.96 [32]  44 Bromazepam 

16 Benzophenone 2.63 [32]  45 Diazepam 

17 4-Aminobenzoic acid 1.70 [33]  46 Nitrazepam 

18 Pyrene 4.90 [32]  47 Chlordiazepoxide 

19 Benzo[a]pyrene 5.95 [28]  48 Clobazam 

20 Fluorene 3.70 [32]  49 Medazepam 

21 Acenaphthene 3.59 [32]  50 Chrysene 

22 Naphthalene 2.96 [32]    

23 Phenanthrene 4.35 [32]    

24 Dibenz[a,h]anthracene 6.22 [32]    

25 Benz[a]anthracene 5.30 [32]    

26 Simazine 2.10 [32]    

27 Propazine 2.40 [32]    

28 Ametryn 2.59 [32]    

29 Prometryn 2.85 [32]    
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Table 2 Selected chromatographic models for prediction of logKOC accompanied by statistical 

parameters 

No. Chrom. 

method 

Model 

type 

Statistical parameters 

1 TLC PCR n(PC) = 2; RMSECal = 0.433, RMSECV = 0.517,  

RMSEPRED = 0.494, maxRMSEPRED = 0.568; 

R
2

Cal = 0.8921, R
2
CV = 0.8460, R

2
PRED = 0.8596; 

Percent of variance captured by each principal component in the X 

and Y domain, respectively: 

PC1: 91.88%, and 86.40% 

PC2: 4.49%, and  2.70% 

2 PLS n(LV) = 2; RMSECal = 0.401, RMSECV = 0.496,  

RMSEPRED = 0.492, maxRMSEPRED = 0.608; 

R
2

Cal = 0.9124, R
2
CV = 0.8585, R

2
PRED = 0.8605; 

Percent of variance captured by each latent variable in the X and Y 

domain, respectively: 

PLS1: 91.92%, and 86.73% 

PLS2: 4.33%, and 3.94% 

3 OLS* 

 

RP18-silica, MeOH 70% v/v 

logKOC = (2.00±0.14) + (2.11±0.19) RM,  

RMSECal = 0.500, RMSEPRED = 0.527,  

R
2

Cal = 0.8557, F = 160.17, p < 1·10
-4

, R
2

PRED = 0.8397, n = 29 

4 RP18-silica, MeOH 80% v/v 

logKOC = (2.57±0.12) + (2.60±0.25) RM,  

RMSECal = 0.516, RMSEPRED = 0.557,  

R
2

Cal = 0.8465, F = 148.90, p < 1·10
-4

, R
2

PRED = 0.8210, n = 29 

5 CN-silica,  MeOH 40% v/v 

logKOC = (1.55±0.16) + (2.21±0.19) RM,  

RMSECal = 0.471, RMSEPRED = 0.506,  

R
2

Cal = 0.8722, F = 184.31, p < 1·10
-4

, R
2

PRED = 0.8522, n = 29 

6 CN-silica,  MeOH 50% v/v 

logKOC = (2.27±0.10) + (2.67±0.19) RM,  

RMSECal = 0.403, RMSEPRED = 0.441,  

R
2

Cal = 0.9062, F = 260.93, p < 1·10
-4

, R
2

PRED = 0.8878, n = 29 

7 CN-silica,  MeOH 60% v/v 

logKOC = (2.94±0.10) + (3.36±0.26) RM,  

RMSECal = 0.439, RMSEPRED = 0.474,  

R
2

Cal = 0.8892, F = 216.65, p < 1·10
-4

, R
2

PRED = 0.8716, n = 29 

8 CN-silica,  MeOH 70% v/v 

logKOC = (3.69±0.13) + (4.13±0.40) RM,  

RMSECal = 0.531, RMSEPRED = 0.556,  

R
2

Cal = 0.8373, F = 138.92, p < 1·10
-4

, R
2

PRED = 0.8220, n = 29 

9 CN-silica,  ACN 50% v/v 

logKOC = (2.72±0.12) + (4.43±0.44) RM,  

RMSECal = 0.537, RMSEPRED = 0.568,  

R
2

Cal = 0.8340, F = 135.68, p < 1·10
-4

, R
2

PRED = 0.8140, n = 29 

10 HPLC OLS* logk = -0.45 (±0.10) + 0.274 (±0.031) logKOC  
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R
2

Cal = 0.865, S.D. = 0.219, F = 80.18, P = 1.4·10
-9

, n = 29 

*Univariate ordinary least squares (OLS) regression 
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Table 3 Distances between LSER vectors (normalized to the unit length) of individual TLC systems 

and LSER logKOC models of Pool and Nguyen; D’ represents the absolute difference among two 

vector lengths. 

No.  

Chrom. system 
Distances from the Poole’s logKOC 

LSER model 

Distances from the Nguyen’s logKOC  

LSER model 

St. 

phase 
Mob. phase d D’ cosθ d D’ cosθ 

1 

R
P

1
8

 -
 s

il
ic

a 

MeOH 40 % v/v 0.406 1.61 0.797 0.283 1.67 0.858 

2 MeOH 50 % v/v 0.320 1.48 0.840 0.203 1.54 0.899 

3 MeOH 60 % v/v 0.218 1.58 0.891 0.140 1.64 0.930 

4 MeOH 70 % v/v 0.178 1.72 0.911 0.105 1.78 0.948 

5 MeOH 80 % v/v 0.175 2.01 0.913 0.117 2.07 0.941 

6 ACN 40 % v/v 0.254 1.64 0.873 0.217 1.70 0.892 

7 ACN 50 % v/v 0.396 1.79 0.802 0.329 1.85 0.836 

8 ACN 60 % v/v 0.374 1.82 0.813 0.325 1.88 0.837 

9 ACN 70 % v/v 0.398 1.89 0.801 0.334 1.94 0.833 

10 ACN 80 % v/v 0.459 1.94 0.770 0.376 2.00 0.812 

11 

C
N

 -
si

li
ca

 

MeOH 40 % v/v 0.153 1.81 0.924 0.125 1.87 0.938 

12 MeOH 50 % v/v 0.142 2.12 0.929 0.146 2.18 0.927 

13 MeOH 60 % v/v 0.220 2.39 0.890 0.203 2.44 0.898 

14 MeOH 70 % v/v 0.419 2.63 0.791 0.408 2.69 0.796 

15 ACN 40 % v/v 0.180 2.25 0.910 0.144 2.31 0.928 

16 ACN 45 % v/v 0.221 2.28 0.890 0.177 2.34 0.911 

17 ACN 50 % v/v 0.355 2.57 0.822 0.294 2.63 0.853 

18 ACN 55 % v/v 0.373 2.59 0.813 0.290 2.65 0.855 

19 ACN 60 % v/v 0.331 2.66 0.835 0.304 2.71 0.848 

 

 








