
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=gcoo20

Download by: [University of Florida] Date: 14 November 2017, At: 07:40

Journal of Coordination Chemistry

ISSN: 0095-8972 (Print) 1029-0389 (Online) Journal homepage: http://www.tandfonline.com/loi/gcoo20

Synthesis, characterization, DFT calculations
and antimicrobial activity of Cd(II) complexes
with the condensation product of 2-
quinolinecarboxaldehyde and Girard’s T reagent

Mima Č. Romanović, Božidar Čobeljić, Andrej Pevec, Iztok Turel, Sonja
Grubišić, Dušanka Radanović, Katarina Anđelković, Marina Milenković &
Milica R.  Milenković

To cite this article: Mima Č. Romanović, Božidar Čobeljić, Andrej Pevec, Iztok Turel, Sonja
Grubišić, Dušanka Radanović, Katarina Anđelković, Marina Milenković & Milica R.  Milenković
(2017): Synthesis, characterization, DFT calculations and antimicrobial activity of Cd(II) complexes
with the condensation product of 2-quinolinecarboxaldehyde and Girard’s T reagent, Journal of
Coordination Chemistry, DOI: 10.1080/00958972.2017.1405262

To link to this article:  http://dx.doi.org/10.1080/00958972.2017.1405262

Accepted author version posted online: 13
Nov 2017.

Submit your article to this journal 

View related articles 

View Crossmark data

http://www.tandfonline.com/action/journalInformation?journalCode=gcoo20
http://www.tandfonline.com/loi/gcoo20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/00958972.2017.1405262
http://dx.doi.org/10.1080/00958972.2017.1405262
http://www.tandfonline.com/action/authorSubmission?journalCode=gcoo20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=gcoo20&show=instructions
http://www.tandfonline.com/doi/mlt/10.1080/00958972.2017.1405262
http://www.tandfonline.com/doi/mlt/10.1080/00958972.2017.1405262
http://crossmark.crossref.org/dialog/?doi=10.1080/00958972.2017.1405262&domain=pdf&date_stamp=2017-11-13
http://crossmark.crossref.org/dialog/?doi=10.1080/00958972.2017.1405262&domain=pdf&date_stamp=2017-11-13


Publisher: Taylor & Francis
Journal: Journal of Coordination Chemistry
DOI: http://doi.org/10.1080/00958972.2017.1405262

Synthesis, characterization, DFT calculations and antimicrobial activity of 
Cd(II) complexes with the condensation product of 
2-quinolinecarboxaldehyde and Girard’s T reagent

MIMA Č. ROMANOVIĆa, BOŽIDAR ČOBELJIĆa, ANDREJ PEVECb, IZTOK TURELb, SONJA GRUBIŠIĆc, 
DUŠANKA RADANOVIĆc, KATARINA ANĐELKOVIĆa, MARINA MILENKOVIĆd and 
MILICA R. MILENKOVIĆ*a

aFaculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
bFaculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
cInstitute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, P.O. Box 815, 
11000 Belgrade, Serbia
dFaculty of Pharmacy, Department of Microbiology and Immunology, University of Belgrade, 
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The chloro (1) and isocyanato (2) Cd(II) complexes with the condensation product of 

2-quinolinecarboxaldehyde and trimethylammonium acetohydrazide chloride (Girard's T 

reagent) (HLCl) have been synthesized and characterized by elemental analysis, IR and NMR 

spectroscopy. The crystal structure of chloro Cd(II) complex (1) was determined. In 1 and 2, 

coordination surrounding of Cd(II) consists of deprotonated hydrazone ligand coordinated 

through NNO-donor atoms and two monodentates at the rest of the coordination places. 

Quantum-chemical calculations of the molecular structures and the relative stabilities of linkage 

isomers of the Cd(II) complex showed that the isomer with N-Cd-N coordination of OCN- is the 

most stable. The investigated Cd(II) complexes showed lower activity than standard 

antimicrobial drugs.

Keywords: Cd(II) Complexes; Hydrazones; Crystal structure; Antimicrobial activity; DFT

1. Introduction

Pseudohalide Cd(II) complexes can exhibit a wide variety of coordination numbers and 

geometries in their mono-, di- and polynuclear complexes, due to the large radius and d10 

*Corresponding author. Email: mrm@chem.bg.ac.rs
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configuration of Cd(II) [1-4]. Not only interesting structures, but also luminescence and 

fluorescence properties, attracted the attention towards the research of this class of compounds 

[5-8]. Halides and pseudohalides are versatile building blocks which can bind as monodentate or 

as bridges between metal centers. Among them, azide is the most used for the synthesis of 

polynuclear complexes and their supramolecular frameworks due to its versatile bridging 

coordination modes, single and double: μ1,3-N3 (end-to-end, EE) and μ1,1-N3 (end-on, EO), 

μ1,1,3-N3, μ1,1,1-N3, μ1,1,1,1-N3, μ1,1,3,3-N3, and μ1,1,1,3,3,3-N3 [9]. Cyanato ligand can be coordinated 

as monodentate or bridging ligand (end-on μ1,1-κN and μ1,1-κO or end-to-end μ1,3) through oxygen 

or nitrogen donor atoms, although coordination through oxygen is rare [10].

Cadmium was recognized as a human carcinogen by the International Agency for 

Research on Cancer due to its known toxicity [11]. The toxicity of cadmium depends on the 

nature of anion in its salts and can be modulated by complexation [12]. Although cadmium is 

generally known to be extremely toxic to mammals, it is not true that it is not used by nature in 

any way. A unicellular microalga Thalassiosira weissflogii flourishes in environments with high 

cadmium [13]. If there is not enough zinc in the environment, the diatom uses cadmium instead 

of zinc as a cofactor of carbonic anhydrase enzyme [14]. Biological activity of Cd(II) complexes 

was not the subject of intensive research, but some studies which deal with DNA-binding ability, 

antibacterial and antitumor activity of Cd(II) complexes are reported [11, 12, 15, 16]. One part of 

our research deals with systematic investigation of coordination chemistry, magnetic properties 

and biological activity of hydrazone metal complexes with pseudohalide ligands. Recently, we 

systematically investigated pseudohalide complexes of Ni(II) and Zn(II) with the condensation 

product of 2-quinolinecarboxaldehyde and trimethylammonium acetohydrazide chloride 

(Girard's T reagent) (HLCl) [17, 18]. As a continuation of this research, reactions of Cd(II) with 

HLCl ligand and pseudohalides (azide, cyanate, thiocyanate) were performed in the present 

study. Mononuclear chloro [CdLCl2]·CH3OH (1) and isocyanato [CdL(NCO)2] (2) Cd(II) 

complexes were obtained, structurally characterized and their antimicrobial activity was tested.

2. Experimental

2.1. Materials and methods

2-Quinolinecarboxaldehyde (97%) Girard’s T reagent (99%), Cd(NO3)·4H2O (98%), NH4SCN 

(≥97.5%), NaOCN (≥99.5%) and NaN3 (96%) were obtained from Aldrich. IR spectra were 
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recorded on a Nicolet 6700 FT-IR spectrometer using the ATR technique from 4000-400 cm-1 

(vs = very strong, s = strong, m = medium and w = weak). 1H (500 MHz), 13C (125 MHz) and 

2-D NMR spectra of HLCl and Cd(II) complexes were recorded on a Bruker Avance 500 

spectrometer at room temperature using TMS as internal standard in methanol−d4 in the case of 

HLCl and DMSO−d6 in the case of Cd(II) complexes (see Supporting Information). Chemical 

shifts (δ) are expressed in ppm and coupling constants (J) in Hz. Elemental analyses (C, H and 

N) were performed by standard micro-methods using the ELEMENTARVario ELIII C.H.N.S.O 

analyzer. Molar conductivities were measured at room temperature (25 °C) on a digital 

conductivity-meter JENWAY-4009.

2.2. Synthesis

2.2.1. Synthesis of (E)-N,N,N-trimethyl-2-oxo-2-(2-(quinolin-2-ylmethylene)hydrazinyl)-

ethan-1-aminium chloride (HLCl). HLCl was synthesized in the reaction of 

2-quinolinecarboxaldehyde and Girard’s T reagent according to the previously described method 

[17]. IR (cm-1): 3414(m), 3062(m), 2970(m), 2939(m), 2831(m), 1699(s), 1595(m), 1562(w), 

1497(m), 1414(m), 1379(w), 1340(w), 1301(m), 1230(m), 1135(m), 989(w), 950(w), 916(w), 

868(w), 832(w), 758(m), 656(w), 633(w), 533(w). 1H NMR (500 MHz, CD3OD) (numbering of 

atoms according to scheme 1), δ (ppm): 3.47 (s, 9H, C12-H), 4.94 (s, 2H, C11-H), 8.17 (s, 1H, 

C9-H), 8.18 (d, 1H, 3JC3-H/C4-H = 10 Hz, C3-H), 8.36 (d, 1H, 3JC3-H/C4-H = 10 Hz, C4-H), 7.94 (d, 

1H, 3JC5-H/C6-H = 5 Hz, C5-H), 7.62 (t, 1H, 3JC5-H/C6-H/C7-H = 5 Hz, C6-H), 7.78 (t, 1H, 
3JC6-H/C7-H/C8-H = 5 Hz, C7-H), 8.03 (d, 1H, 3JC7-H/C8-H = 5 Hz, C8-H). 13C NMR (125 MHz, 

CD3OD) (numbering of atoms according to scheme 1), δ (ppm): 55.0 (C12), 64.4 (C11), 146.9 

(C9), 154.4 (C2), 119.2 (C3), 138.7 (C4), 130.1 (C4a), 129.3 (C5), 129.0 (C6), 131.7 (C7), 129.7 

(C8), 148.9 (C8a), 167.0 (C10).

2.2.2. Synthesis of dichloro (E)-N,N,N-trimethyl-2-oxo-2-(2-(quinolin-2-

ylmethylene)hydrazinyl)ethan-1-aminium cadmium(II) complex monomethanole 

[CdLCl2]·CH3OH (1). HLCl (90 mg, 0.30 mmol) was dissolved in methanol (20 mL) and solid 

Cd(NO3)2·4H2O (120 mg, 0.30 mmol) was added. After complete dissolution of Cd(NO3)2·4H2O 

in the reaction mixture, NaN3 (40 mg, 0.60 mmol) dissolved in water (10 mL) was added. The 

yellow reaction solution was stirred at 65 °C for 3 h. After slow evaporation of solvent in a 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
Fl

or
id

a]
 a

t 0
7:

40
 1

4 
N

ov
em

be
r 

20
17

 



refrigerator (~4 °C) for five days, yellow crystals were obtained. Yield: 57 mg (39%). Elemental 

analysis calcd. for C15H18N4OCl2Cd·CH3OH: C 39.57%, H 4.57%, N 11.54%; found: C 39.61%, 

H 4.65%, N 11.51%. IR (cm-1): 3282(m), 3077(w), 3019(w), 2934(w), 2814(w), 2042(w), 

1610(w), 1565(s), 1535(s), 1509(m), 1487(m), 1450(w), 1431(w), 1395(m), 1344(w), 1325(w), 

1295(s), 1229(w), 1204(w), 1128(w), 1083(s), 1034(m), 969(w), 919(m), 826(w), 784(w), 

760(w). 1H NMR (500 MHz, DMSO-d6) (numbering of atoms according to scheme 1), δ (ppm): 

3.25 (s, 9H, C12-H), 4.09 (s, 2H, C11-H), 8.60 (s, 1H, C9-H), 7.71 (t, 1H, 3JC3-H/C4-H = 10 Hz, 

C3-H), 8.09 (d, 1H, 3JC3-H/C4-H = 10 Hz, C4-H), 8.40 (d, 1H, 3JC5-H/C6-H = 10 Hz, C5-H), 7.89 (m, 

1H, C6-H), 7.89 (m, 1H, C7-H), 8.67 (d, 1H, 3JC7-H/C8-H = 10 Hz, C8-H). 13C NMR (125 MHz, 

DMSO-d6) (numbering of atoms according to scheme 1), δ (ppm): 53.7 (C12), 67.5 (C11), 143.2 

(C9), 149.6 (C2), 128.3 (C3), 128.6 (C4), 129.4 (C4a), 128.2 (C5), 123.5 (C6), 131.9 (C7), 140.3 

(C8), 146.0 (C8a), 171.9 (C10). ΛM (1 mM, DMSO): 14.3 Ω-1 cm2 mol-1.

2.2.3. Synthesis of diisocyanato (E)-N,N,N-trimethyl-2-oxo-2-(2-(quinolin-2-

ylmethylene)hydrazinyl)ethan-1-aminium cadmium(II) complex [CdL(NCO)2] (2). Into a 

solution of HLCl (90 mg, 0.30 mmol) in methanol (20 mL), solid Cd(NO3)2·4H2O (120 mg, 

0.30 mmol) was added. After complete dissolution of Cd(II) salt in reaction solution, NaOCN 

(80 mg, 1.20 mmol) dissolved in water (10 mL) was added. The reaction mixture was stirred for 

3 h at 100 °C. After slow evaporation of solvent in a refrigerator (~4 °C) for ten days yellow 

crystals were obtained. Yield: 41 mg (29%). Elemental analysis calcd. for C17H18N6O3Cd: C 

43.74%, H 3.89%, N 18.00%; found: C 43.86%, H 3.93%, N 17.98%. IR (cm-1): 3519(w), 

3460(w), 2197(vs), 1618(w), 1560(m), 1524(s), 1470(s), 1408(m), 1389(m), 1329(m), 1298(m), 

1227(w), 1196(w), 1111(w), 1074(m), 989(w), 970(w), 921(m), 835(w), 810(w), 782(w), 

752(m), 624(w). 1H NMR (500 MHz, DMSO-d6) (numbering of atoms according to scheme 1), 

δ (ppm): 3.26 (s, 9H, C12-H), 4.10 (s, 2H, C11-H), 8.62 (s, 1H, C9-H), 7.71 (d, 1H, 3JC3-H/C4-H = 

10 Hz, C3-H), 8.09 (d, 1H, 3JC3-H/C4-H = 10 Hz, C4-H), 8.28 (d, 1H, 3JC5-H/C6-H = 10 Hz, C5-H), 

7.92 (m, 1H, C6-H), 7.92 (m, 1H, C7-H), 8.68 (d, 1H, 3JC7-H/C8-H = 10 Hz, C8-H). 13C NMR 

(125 MHz, DMSO-d6) (numbering of atoms according to scheme 1), δ (ppm): 53.7 (C12), 67.4 

(C11), 143.8 (C9), 149.7 (C2), 128.2 (C3), 128.7 (C4), 129.4 (C4a), 127.6 (C5), 123.6 (C6), 

132.1 (C7), 140.4 (C8), 146.0 (C8a), 172.0 (C10), 127.8 (OCN−). ΛM (1 mM, DMSO): 10.6 Ω-1 

cm2 mol-1.
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2.3. X-ray structure determination

Crystal data and refinement parameters of 1 are listed in table 1. Selected bond distances and 

angles are listed in table 2. The X-ray intensity data were collected at room temperature with a 

Nonius Kappa CCD diffractometer equipped with graphite-monochromated Mo Kα radiation 

(λ = 0.71073 Å). The data were processed using DENZO [19]. The structure was solved by 

direct methods implemented in SHELXS-2013 [20] and refined by full-matrix least-squares 

based on F2 using SHELXL-2016 [20]. All non-hydrogen atoms were refined anisotropically. 

The C10- and O2-bound hydrogens were located in a difference map and refined with distance 

restraints (DFIX) of C-H = 0.98 or O-H = 0.82 Å and with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 

1.5Ueq(O), respectively. All other hydrogens were included in the model at geometrically 

calculated positions and refined using a riding model. ORTEP-3 for Windows was used to 

prepare drawings [21].

CCDC 1562578 contains the supplementary crystallographic data for 1. These data can 

be obtained free of charge from the Cambridge Crystallographic Data Center via 

www.ccdc.cam.ac.uk/data_request/cif.

2.4. Antimicrobial activity

Antimicrobial activity was investigated against seven laboratory control strains of bacteria i.e., 

gram-positive: Staphylococcus aureus (ATCC 6538), Staphylococcus epidermidis (ATCC 

12228), Bacillus subtilis (ATCC 6633); gram-negative: Escherichia coli (ATCC 10536), 

Klebsiella pneumoniae (ATCC 13883), Pseudomonas aeruginosa (ATCC 9027) and Salmonella 

enterica subsp. abony (ATCC 6017) and one strain of yeast Candida albicans (ATCC 10231). In 

order to determine minimum inhibitory concentration (MIC) of tested compounds, a broth 

microdilution method was used according to Clinical and Laboratory Standards Institute 

guidelines CLSI (2016) [22] with some modifications. Tests were performed in Müller-Hinton 

broth for the bacterial strains and in Sabouraud dextrose broth for Candida albicans. The tested 

compounds were dissolved in 1% dimethyl sulfoxide (DMSO) and then diluted to the highest 

concentration. Twofold serial concentrations of the compounds were prepared in a 96-well 

microtiter plate (ranging from 62.5-1000 µg/mL) with addition of 0.05% 2,3,5-triphenyl-2H-

tetrazolium chloride (TTC, Sigma-Aldrich, USA) as a growth indicator. All of the MIC 
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determinations were performed in duplicate, and two positive growth controls were included 

(wells containing only the microorganisms in the broth). Each test was repeated three times. 

Identical MIC values were obtained in all experiments for a particular substance and strain.

3. Results and discussion

3.1. Synthesis

The reaction of 2-quinolinecarboxaldehyde and Girard’s T reagent was performed according to 

the previously reported method [17] yielding the ligand (E)-N,N,N-trimethyl-2-oxo-2-(2-

(quinolin-2-ylmethylene)hydrazinyl)ethan-1-aminium chloride (HLCl), which was used for the 

synthesis of 1 and 2 (scheme 1). Complex 1 was obtained via the reaction of HLCl with 

Cd(NO3)2·4H2O and NaN3 in molar ratio 1:1:2 in methanol. In this reaction, the source of 

chloride anions was HLCl ligand itself, while azide anions deprotonated hydrazone ligand. The 

same reaction performed without NaN3 was unsuccessful since the products were unstable in 

reaction solution and decomposed to starting compounds. The synthesis of 

isothiocyanato/thiocyanato Cd(II) complexes in the reaction of HLCl with Cd(NO3)2·4H2O and 

SCN- were also unsuccessful regardless of the source of SCN- (KSCN or NH4SCN) and molar 

ratio of the reactants. The reaction of HLCl with Cd(NO3)2·4H2O and NaOCN in molar ratio 

1:1:4 in methanol results in formation of 2. The X-ray crystal structure of 1 showed that Cd(II) is 

five-coordinate with quinoline nitrogen, azomethine nitrogen and carbonyl oxygen atoms from 

hydrazone ligand and two monodentate chloro ligands. Tridentate NNO-coordination of 

hydrazone ligand in 2 is proposed from similarity of NMR spectral data for 1 and 2. The 

presence of OCN- in 2 is evidenced from its IR and 13C NMR spectra. The molar conductivity 

values of 1 and 2 in DMSO are 14.3 Ω-1 cm2 mol-1 and 10.6 Ω-1 cm2 mol-1, respectively. These 

values are lower than 35 Ω-1 cm2 mol-1 [23], so 1 and 2 are non-electrolytes and are stable in 

DMSO. Having all these facts in mind as well as the results of elemental analysis, in 2 

coordination environment of Cd(II) consists of quinoline nitrogen, azomethine nitrogen and 

carbonyl oxygen atoms from hydrazone ligand and two monodentate OCN- ligands.

3.2. Spectroscopy

3.2.1. IR spectra. On the basis of IR spectroscopy results, coordination of HLCl ligand in 

deprotonated α-oxyazine form in 1 and 2 was confirmed. The new band at 1535 cm-1 in the 
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spectrum of 1 and at 1524 cm-1 in the spectrum of 2 corresponding to ν(−O–C=N) vibration of 

deprotonated hydrazine moiety appeared instead of the band of carbonyl group of non-

coordinated hydrazonic form of HLCl at 1699 cm-1. In the IR spectrum of 2 a strong band at 

2197 cm-1 can be attributed to vibration of coordinated cyanate ions [24].

3.2.2. NMR spectra. The signal of hydrazide NH is absent in the 1H NMR spectra of 1 and 2, 

indicating that the ligand is coordinated in deprotonated zwitterionic form. Coordination of 

azomethine nitrogen in 1 and 2 can be confirmed from downfield shift of C9-H from 8.17 ppm in 

the spectrum of HLCl to 8.60 ppm and 8.62 ppm in spectra of 1 and 2, respectively. Due to 

coordination of carbonyl oxygen atom, signal of the carbonyl carbon (C10) is shifted downfield 

from 167.0 ppm in the spectrum of HLCl to 171.9 ppm and 172.0 ppm in the spectra of 1 and 2, 

respectively. Upfield shift of azomethine carbon atom (C9) signal from 146.9 ppm in the 

spectrum of HLCl to 143.2 ppm in the spectrum of 1 and 143.8 in the spectrum of 2 indicates 

coordination of azomethine nitrogen. Coordination of quinoline nitrogen atom caused upfield 

shift of C2 atom signal from 154.4 ppm in the spectrum of HLCl to 149.6 ppm and 149.7 ppm in 

the spectra of 1 and 2, respectively. In the 13C NMR spectrum of 2 the signal of coordinated 

OCN- ion was observed at 127.8 ppm.

3.3. Description of the crystal structure

The molecular structure (ORTEP) of 1 is depicted in figure 1. In 1, Cd1 has fivefold coordination 

with tridentate ligand L and two Cl- ligands (Cl1 and Cl2). L is coordinated to Cd1 in the 

zwitterionic form through NNO-set of donor atoms forming two fused five-membered chelate 

rings. The dihedral angle of nearly 11.1 between two five-membered chelate rings fused along 

Cd1-N2 junction during complexation shows the non-coplanar nature of metal-ligand system. 

The coordination polyhedron formed around Cd1 is irregular in shape with very bent trans bond 

angles of 138.03(7) and 135.68(7) for N2-Cd1-Cl1 and N1-Cd1-O1, respectively. The out-of-

plane cis bond angles span the range from 97.40(7) to 116.85(3) and the in-plane cis bond 

angles are 67.46(7) to 106.32(6). The smallest values of 67.46(7) and 70.31(8) have been 

observed for bite angles N2-Cd1-O1 and N1-Cd1-N2, respectively. Solvent molecule serving as 

H-bond donor is involved in discrete intermolecular hydrogen bond with deprotonated amide 

nitrogen which functions as an acceptor (figure 1, table S1, see Supporting Information).
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The distortion in the five coordinated systems is described by the trigonallity index,  = 

()/60, where  is the greatest basal angle and  is the second greatest angle [25]. The 

parameter  is 0 for regular square based pyramidal forms and 1 for trigonal bipyramidal forms. 

The  value of 0.04 in 1 indicates that the irregular coordination geometry about Cd1 is 4.0 

trigonally distorted square-based pyramidal. The Cd1 is lifted out of the plane of the four in-

plane ligand atoms (N1, N2, O1 and Cl1) by a distance  of 0.7024(2) Å. The axial Cd1-Cl2 

bond is slightly longer than the equatorial Cd1-Cl1 bond (2.466(1) versus 2.424(2) Å). The other 

metal-ligand bond distances are in the order Cd-Nheteroaromatic (2.408(2) Å)  Cd-Oamide 

(2.375(2) Å)  Cd-Nimine (2.278(2) Å). The angular structural parameter () of 1 has been 

compared with those of structurally related five-coordinate Cd(II) complexes with hydrazone 

ligands (table 3).

For the complexes listed, the value  varies from 0.03 to 0.12, indicating that these 

structures span the range of trigonally distorted square-pyramidal configurations. The Cd(II) ions 

of these complexes are displaced by distance  ( = 0.0359(4)-0.8459(3) Å) from the equatorial 

plane towards corresponding apical ligands. The angular structural parameter  of previously 

analyzed five-coordinate Zn(II) complexes with hydrazone ligands comprises the range from 

0.13 to 0.40 [18], indicating that these complexes also span the range of trigonally distorted 

square-pyramidal configurations. However, Zn(II) complexes show greater trigonal distortion of 

square-based pyramidal configuration than Cd(II) complexes analyzed here, as indicated by the 

values  listed in table 3 and those reported earlier [18].

In the crystals of 1, the complex molecules are linked along the b-axis through  

interactions between neighboring quinoline rings (figure 2, table 4).

3.4. Computational studies

The molecular structures of [CdL(NCO)2] (Cd-1), [CdL(OCN)2] (Cd-2) and [CdL(OCN)(NCO)] 

(Cd-3) have been optimized and analyzed by DFT computations. The initial geometries of 

investigated Cd(II) complexes were generated with completely linear OCN- and NCO- ligands. 

XRD structure of [CdLCl2]·CH3OH was used as reference for typical five-coordinate Cd(II) 

complexes. Optimizations were carried out within DFT/B3LYP/3-21G approach in gas-phase, 

without any restrictions. Optimized geometries are shown in figure 3. The preference for 

N-binding over O is found by comparing relative energies of Cd complexes: N-Cd-N 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
Fl

or
id

a]
 a

t 0
7:

40
 1

4 
N

ov
em

be
r 

20
17

 



coordination of OCN- is the most stable, the next in stability is N-Cd-O isomer (ΔE = 

8.37 kcal/mol) and the most destabilized is O-Cd-O isomer (ΔE = 14.55 kcal/mol). Selected bond 

lengths and angles of optimized structures are given in table 5.

Analysis of Cd(II) complexes containing two NCO- ligands in the Cambridge Structure 

Database [31] showed that, in majority of complexes, metal centers are bridged with NCO- 

ligands (9 out of 16). Only six mononuclear Cd(II) complexes containing two monodentate 

NCO− ligands were found. In all of them, NCO- ligands are coordinated through nitrogen atom.

HOMO and LUMO orbitals of Cd(II) complexes are shown in figure 4. The HOMOs of 

all complexes are delocalized mainly at the linear group and metal center, whereas the LUMOs 

are delocalized on the planar ring of Schiff base. The preference for N-binding over O is found in 

the investigated isostructural Cd(II) complexes. The frontier molecular orbitals of OCN- and 

NCO-, specifically the π (HOMO), both have primarily N-character in all complexes (figure 4), 

which explains large isomerism energy.

Influences of NCO- and OCN- ligands on LUMO and HOMO are estimated by 

comparing energies of frontier molecular orbitals (ELUMO, EHOMO) and their energy gap (Egap). 

Substitution of NCO- with OCN- ligand has the same influence on HOMO and LUMO energy 

levels (table S2). Energies of HOMO and LUMO orbitals are the highest for Cd-2 complex but 

the Egap does not differ much from Egap in Cd-1 complex.

3.5. Antimicrobial activity

Complexes 1 and 2 showed lower activity than the standard antimicrobial drugs (meropenem and 

amphotericin, table 6). Isocyanato 2 exhibited better activity than chloro 1 against all tested 

microbial strains. These results indicate that antimicrobial activity of the investigated Cd(II) 

complexes depends on the nature of monodentate ligands. Complex 2 possesses better activity 

than Cd(II) salt against S. aureus, E. coli, K. pneumoniae, P. aeruginosa, S. enterica and 

S. epidermidis, but the activity of Cd(II) salt was better in the case of C. albicans and B. subtilis 

strains. HLCl showed lower activity than 2 against all examined microbial strains.

4. Conclusion

The reaction of HLCl with Cd(NO3)2·4H2O and NaN3 in molar ratio 1:1:2 in methanol results in 

formation of chloro Cd(II) complex (1). The presence of excess of basic N3
- caused 
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deprotonation of HLCl, while Cl- originating from HLCl coordinates to Cd(II). In the case of 

reaction of HLCl with Cd(NO3)2·4H2O and NaOCN in molar ratio 1:1:4 in methanol basic OCN- 

facilitate deprotonation of HLCl and coordinates to Cd(II) resulting in formation of 2. In both 1 

and 2, coordination surrounding of Cd(II) consists of deprotonated hydrazone ligand coordinated 

through NNO-set of donor atoms and two monodentates at the remaining coordination places. 

Since the X-ray determined structure of 2 was not obtained, DFT calculations were performed to 

give theoretical evidence about the coordination of OCN- ligand. The results showed that 

N-Cd-N coordination of OCN- is the most stable, the next in stability is N-Cd-O isomer (ΔE = 

8.37 kcal/mol) and the most destabilized is O-Cd-O isomer (ΔE = 14.55 kcal/mol). The obtained 

MIC values for 1 and 2 are higher than the values for standard antimicrobial drugs. 

Antimicrobial activity of the investigated Cd(II) complexes depends on the nature of 

monodentate ligand, since isocyanato Cd(II) complex (2) showed better activity than chloro 

Cd(II) complex (1) against all tested microbial strains. Complexation of Cd(II) with NCO- and L 

generally results in improvement of its antimicrobial activity. This effect can be attributed to 

sharing of positive charge of cadmium(II) ion with donor atoms of ligands which improved its 

lipophilicity and penetration through cell membranes of microorganism.
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Table 1. Crystal data and structure refinement details for 1.

Formula C16H22CdCl2N4O2

Fw (g mol-1) 485.67
Crystal size (mm) 0.150.130.10
Crystal color Yellow
Crystal system Triclinic
Space group P –1
a (Å) 8.348(5)
b (Å) 8.698(5)
c (Å) 13.748(5)
α (°) 90.069(5)
β (°) 98.922(5)
γ (°) 98.376(5)
V (Å3) 975.4(9)
Z 2
Calcd density (g cm-3) 1.654
F(000) 488
No. of collected reflns. 5896
No. of independent reflns. 4403
Rint 0.0163
No. of reflns. observed 3769
No. parameters 236
R [I> 2σ (I)]a 0.0311
wR2 (all data)b 0.0689
Goof, Sc 1.063
Maximum / minimum residual 
electron density (e Å-3) 

+0.56 / -0.61

aR = ∑||Fo|–|Fc||/∑|Fo|. bwR2 = {∑[w(Fo
2–Fc

2)2]/∑[w(Fo
2)2]}1/2.  

cS = {∑[(Fo
2–Fc

2)2]/(n/p)}1/2 where n is the number of 
reflections and p is the total number of parameters refined.
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Table 2. Selected bond lengths (Å) and angles (°) for 1.

Bond Distance (Å) Angle (°)

Cd1-N1 2.408(2) N1-Cd1-N2 70.31(8)
Cd1-N2 2.278(2) N1-Cd1-O1 135.68(7)
Cd1-O1 2.375(2) N1-Cd1-Cl1 106.32(6)
Cd1-Cl1 2.4238(15) N1-Cd1-Cl2 105.13(6)
Cd1-Cl2 2.4662(12) N2-Cd1-Cl1 138.03(7)
N2-N3 1.375(3) N2-Cd1-Cl2 103.85(7)
N2-C10 1.275(3) Cl1-Cd1-Cl2 116.85(3)
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Table 3. Structural parameters correlating coordination geometry of structurally related five-
coordinated Cd(II) complexes.

Complex  ()  ()   (Å) References

[CdLCl2]CH3OH (1) 138.03(7) 135.68(7) 0.04 0.7024(2) This work

[Cd(L2)I2]a (2) 134.17(11) 132.24(8) 0.03 0.7701(3) [26]

[Cd(L3)Cl2]b (3) 133.61(10) 130.69(9) 0.05 0.7684(3) [27]

[Cd(L4)Br2]c (4) 135.1(2) 132.04(10) 0.05 0.0359(4) [28]

[Cd(L4)Cl2]c (5) 133.90(6) 129.49(6) 0.07 0.7691(2) [28]

[Cd(L5)I2]d (6) 138.93(7) 132.20(10) 0.11 0.7638(3) [29]

[Cd(L6)Br2]e (7) 134.55(8) 127.09(6) 0.12 0.8459(3) [30]
a L2 = 5-methyl-1-(pyridin-2-yl)-N-[pyridine-2-ylmethylidene]pyrazole-3-carbohydrazide
b L3 = N,N,O-di-2-pyridyl ketone thiophene-2-carboxylic acid hydrazone
c L4 = di-2-pyridyl ketone benzoylhydrazone
d L5 = 1-methyl-2-(2-pyridylmethylene)-hydrazino-1-methyl carbonic hydrazide
e L6 = methyl-2-pyridyl ketone picolinoyl hydrazone
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Table 4. Intermolecular  interaction parameters for 1.

Cg(I)a Cg(J)a Cg(I) Cg(J)b 
(Å) c () d () e 

()
Slippagef 
(Å)

Sym. code on 
(J)

Cg(1) Cg(1) 3.870(3) 0 28.3 28.3 1.833 2–x, 1–y, 2–z
Cg(1) Cg(2) 5.239(4) 0.99(14) 49.2 50.0 2–x, 1–y, 2–z
Cg(2) Cg(2) 3.508(3) 0 17.1 17.1 1.029 2–x, –y, 2–z
Cg(1) Cg(2) 3.674(3) 0.99(14) 23.7 24.4 2–x, –y, 2–z

a Labels of aromatic rings: (1) = N(1),C(1)C(4),C(9); (2) = C(4)C(9).
b Cg(I)Cg(J) = Distance between ring centroids (Ang.).
c  = Dihedral angle between planes (I) and (J) (Deg).
d  = Angle between Cg(I)Cg(J) vector and normal to plane (I) (Deg).
e  = Angle between Cg(I)Cg(J) vector and normal to plane (J) (Deg).
f Slippage = Distance between Cg(I) and perpendicular projection of Cg(J) on ring I (Ang).
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Table 5. Selected average bond lengths and angles obtained by 
DFT for Cd-1, Cd-2 and Cd-3.

Compound Cd-1 Cd-2 Cd-3

Distance, Å
Cd-NCO 2.150 2.197
Cd-OCN 2.170 2.150

Angle, 
Cd–N–C 155.5
Cd-O-C 118.3 121.0
N-C-O 178.2 178.7 179.0
OCN-Cd-NCO 124.5
OCN-Cd-OCN 118.6
NCO-Cd-OCN 114.2
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Table 6. Antimicrobial activity of HLCl, 1, 2, NaOCN and Cd(NO3)2·4H2O (MIC 
values are given in mM).

Microorganism
s

HLC
l 1 2 NaOC

N
Cd(NO3)2·4H2
O

Meropenem
*

Amphotericin
*

S. aureus
ATCC 6538

1.63
0

2.20
4

0.53
5

> 
15.385

3.241 0.004 n.t.

S. epidermidis
ATCC 12228

1.63
0

0.55
1

0.53
5

> 
15.385

3.241 0.003 n.t.

B. subtilis
ATCC 6633

3.26
0

1.10
2

0.53
5

> 
15.385

0.202 0.005 n.t.

E. coli
ATCC 10536

> 
3.26
0

1.10
2

0.26
8

> 
15.385

0.404 0.006 n.t.

K. pneumoniae
ATCC13883

1.63
0

2.20
4

0.53
5

> 
15.385

0.808 0.008 n.t.

P.aeruginosa
ATCC 9027

> 
3.26
0

> 
2.20
4

1.07
1

> 
15.385

3.241 0.010 n.t.

S.enterica
ATCC 6017

> 
3.26
0

2.20
4

0.53
5

> 
15.385

3.241 0.006 n.t.

C. albicans
ATCC 10231

> 
3.26
0

0.55
1

0.53
5

> 
15.385

0.202 n.t. 0.0005

n.t. not tested
* reference antimicrobial drugs
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