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Abstract 

 

Surface modification of Al2O3 powders, prepared using reproducible sol-gel synthetic route with 

small colorless organic molecules, induces charge transfer complex formation and the appearance 

of absorption in the visible spectral region. Comprehensive microstructural characterization 

involving transmission electron microscopy, X-ray diffraction analysis, and nitrogen adsorption–

desorption isotherms, revealed that γ-crystalline alumina powders consist of mesoporous particles 
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in the size range from 0.1 to 0.3 µm, with specific surface area of 54.8 m2/g, and pore radius 

between 3 and 4 nm. The attachment of catecholate-type of ligands (catechol, caffeic acid, gallic 

acid, dopamine and 2,3-dihydroxy naphthalene), salicylate-type of ligands (salicylic acid and 5-

amino salicylic acid), and ascorbic acid, to the surface such γ-Al 2O3 particles leads to the 

formation of colored powders and activates their absorption in visible-light spectral region. To 

the best of our knowledge, similar transformation of an insulator (Al2O3), with the band gap 

energy of 8.7 eV, into a semiconductor-like hybrid material with tunable optical properties has 

not been reported in the literature before. The density functional theory (DFT) calculations with 

periodic boundary conditions were performed in order to estimate the energy gaps of various 

inorganic/organic hybrids. The calculated values compare well with the experimental data. The 

good agreement between the calculated and experimentally determined band gaps was found, 

thus demonstrating predictive ability of the theory when proper model is used.  

 

Keywords: Charge transfer complex, Al2O3, Bidentate Benzene Derivatives, Visible light 

responsive material, Density functional theory. 

 
1 Introduction 
 
 
Wide band gap metal-oxides (TiO2, ZnO2, CeO2 and SnO2) have been extensively studied for the 

range of diverse applications because they are abundant, chemically stable, biocompatible, and 

readily affordable. In particular, numerous photo-driven processes – heterogeneous 

photocatalysis for removal of inorganic and organic pollutants, water splitting reaction, solar 

cells, etc. – using metal oxides have been extensively investigated in order to achieve desired 

level of practical efficiency [1–7]. However, the main disincentive for the use of oxide materials 
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in such applications is their large band gap. For example, the most studied metal-oxide 

photocatalyst, TiO2, with the band gap of Eg=3.2 eV, absorbs less than 5% of the available solar 

photons, since only high-energy UV photons (λ<380 nm) are capable of generating electron-hole 

pairs that stimulate redox processes on the catalyst surface. Recently, considerable effort has been 

made to develop the visible-light responsive TiO2 based materials. Basically, three different 

methods to extend absorption of TiO2 into visible spectral region can be distinguished: dye 

sensitization [8, 9], doping with light and heavy elements [10, 11], and the use of plasmonic 

noble metal nanoparticles [12, 13].  

More recently, a new method of tailoring optical properties of TiO2, based on surface 

modification of this metal-oxide with small colorless organic molecules, has been developed. The 

use of ligand molecules, mainly benzene derivatives, leads to the formation of charge transfer 

complex (CTC) followed with the red-shift of absorption onset. It should be emphasized that 

there is a fundamental difference in photo-generation of charge carriers between the surface 

modification approach and sensitization with dye molecules. In the former case, electrons are in a 

single step directly injected from the ground state of the CTC, located in the semiconductor band 

gap, into the semiconductor conduction band, while the latter case involves two steps: first, the 

excitation of the dye molecules, and subsequent electron transfer from the excited state into the 

semiconductor conduction band. Until now, the CTC formation has been primarily studied using 

colloidal TiO2 nanoparticles surface-modified with either catecholate- or salicylate-type of 

ligands [14–25]. Recently, the CTC formation between surface Ti atoms and organic mono-

hydroxy compounds was reported [26, 27]. 

For many applications it is more convenient to use solid materials rather than colloidal solutions. 

To this end, spherical TiO2 powder particles, prepared by using ultrasonic spray pyrolysis [28, 
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29], TiO2 nano-powders prepared using sol-gel synthetic route, as well as commercial Degussa 

P25 powders [30], and polymer-supported TiO2 nanoparticles [31], were successfully surface 

modified with catecholate- and salicylate-type of ligands. However, only a small number of 

studies regarding photocatalytic performance of surface-modified TiO2 particles with extended 

absorption in visible spectral range were initiated. Thus far, hydrogen evolution over free-

standing and polymer supported surface-modified TiO2 particles has been reported [21, 31], as 

well as degradation of organic dyes using surface-modified TiO2 with ascorbic acid [24] and 

catecholate-type of ligands [30–32]. Additionally, the photovoltaic performance of hybrid solar 

cell fabricated using surface-modified TiO2 nanoparticles with 6-palmitate ascorbic acid as an 

electron acceptor embedded into the donor poly(3-hexyl)thiophene matrix was investigated [33]. 

Theoretical approaches via quantum chemical calculations based on density functional theory 

(DFT) have been used for determination of HOMO/LUMO gap values and infrared spectra of 

coordinated ligand molecules to metal-oxide surfaces [17–22, 25-27, 34–36].  Although the 

significant difference between theoretical and experimental values could frequently be observed, 

the calculated values followed the same general trend as experimental data.  

Up until now, almost all investigations concerning tunable optical properties as a consequence of 

CTC formation have been performed using either colloidal TiO2 nanoparticles or TiO2 nano-

powders. Very recent studies have shown that CTC formation is not exclusive of TiO2, and that 

the CTC formation, followed with the red-shift of optical absorption, can be achieved using 

commercial Na2Ti3O7 nanotubes [37], ZnO nanoparticles [22], Mg2TiO4 nano-powders [38], and 

BaTiO3 nanoparticles [39]. However, the possibility to bring optical absorption in visible spectral 

range of inorganic/organic hybrids, consisting of solar light non-absorbing materials, i.e., 

insulators, and small colorless organic molecules, has never been tested. Our preliminary results 
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demonstrate that CTC formation takes place between surface of alumina powders and model 

ligand molecules (catechol and 5-amino salicylic acid), and that the resulting composites can 

perform photocatalytically [40]. Motivated by the fact that mesoporous Al2O3 materials have 

already attracted great deal of interest from industry and academia due to wide range of their 

applications, including catalysis, sensing, adsorption and separation [41, 42], in this work we 

present comprehensive experimental and theoretical study that provides basic understanding of 

transformation of an insulator with band gap energy of 8.7 eV [43] into a semiconductor-like 

hybrid with new potential functionality.  

On the experimental side, thorough microstructural characterization of synthesized Al2O3 

particles, including transmission electron microscopy (TEM), X-ray diffraction (XRD) analysis, 

and nitrogen adsorption–desorption isotherms was performed. Also, optical properties of hybrids 

obtained by modifying Al2O3 particles with catecholate-type of ligands (catechol, caffeic acid, 

gallic acid, dopamine and 2,3-dihydroxy naphthalene), salycilate-type of ligands (salicylic acid 

and 5-amino salicylic acid) and ascorbic acid were studied using reflection spectroscopy, while 

mode of coordination of ligand molecules to the surface of Al2O3 was examined using FTIR. On 

theoretical side, the DFT calculations with periodic boundary conditions were performed using 

bridging mode of binding of ligands to the surface Al atoms. The description of the procedures 

used and the summary of our main results are given in the sections that follow.  

 
2 Experimental Procedures 
 
 
2.1 Synthesis of surface-modified Al2O3 powders  
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All chemicals used in our experiments were of the highest purity available and were utilized 

without further purification (Alfa Aesar, J.T. Baker). Milli-Q deionized water was used as a 

solvent (resistivity 18.2 MΩ cm-1).  

The Al2O3 powders were prepared in a manner similar to the method described elsewhere [44]. 

Briefly, the round bottom flask with 20 mol of distilled water was heated in oil bath up to 85 °C, 

and 0.20 mol of aluminium isopropoxide (Al[OCH(CH3)2]3) was added under vigorous stirring. 

After 15 minutes, 4.85 ml of nitric acid (HNO3, 69-70%) was added and the solution was stirred 

and kept uncovered for 2 hours at 85 °C, giving the adequate time for isopropanol, formed during 

the hydrolysis, to evaporate. The covered flask was heated and stirred continuously for additional 

4 hours. Then, 12.0 g of water soluble polymer Polyethylene glycol 12000 (H(OCH2CH2)nOH, 

M.W. range 11,000 - 13,000) was added into the cooled solution and gentle stirring was 

maintained overnight. The obtained sol was dried in air in open beaker, heated to 70 °C, until 

viscous white gel was formed. The gel was then transferred into porcelain crucible and finally 

calcinated either at 700 or 1100 °C for 24 hours in open-air furnace. 

Surface modification of Al2O3 powders was achieved by dispersing 0.1 g of powder in 10 ml of 

water containing adequate amount (1.53×10-5 mol) of dissolved ligands (L). It should be 

mentioned that the molar ratio between inorganic and organic components was the same for all 

prepared hybrids. For surface modification of γ-Al2O3 powders, catecholate-type of ligands 

(catechol (CAT), 2,3-dihydroxy naphthalene (DHN), caffeic acid (CA), dopamine (DOPA), gallic 

acid (GA)) and salicylate-type of ligands (salicylic acid (SA), 5-amino salicylic acid (5-ASA)) 

were used, as well as ascorbic acid (AA). After 2 days, the powders were separated by 

centrifugation, thoroughly washed three times with distilled water, and finally dried in the 

vacuum oven at 40 °C. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

7 

 

2.2 Structural characterization of surface-modified γ-Al2O3 powders 
 
The X-ray diffraction (XRD) powder patterns were recorded using Rigaku SmartLab instrument 

under the Cu Kα1,2 radiation. The intensity of diffraction was measured with continuous angular 

scanning at 2 °/min. The data were collected at 0.02° intervals. Transmission electron microscopy 

(TEM) imaging was performed using a JEOL JEM-2100 LaB6 instrument operated at 200 kV. 

TEM images were acquired with a Gatan Orius CCD camera at 2× binning. Nitrogen adsorption-

desorption isotherms were determined on Sorptomatic 1990 Thermo Finnigan automatic system 

using nitrogen physisorption at -196 °C. Before taking measurements, the samples were 

outgassed at 130 °C for 3 hours. Specific surface area of the samples was calculated from the 

nitrogen adsorption-desorption isotherms according to the BET method [45]. Pore size, pore 

volume distribution, and porosity were determined by mercury intrusion porosimetry on Pascal 

140/440, Thermo Scientific. The content of organic phase in hybrid samples was determined by 

TGA using a Setaram Setsys Evolution-1750 instrument. The measurements were performed in 

temperature range 25‒900 °C at a heating rate of 10 °C min-1, in dynamic air atmosphere (flow 

rate 20 cm3 min-1). 

Optical properties of surface-modified Al2O3 particles were studied in the wavelength range from 

300 nm to 1.3 µm by diffuse reflectance measurements (Shimadzu UV-Visible UV-2600 

spectrophotometer equipped with an integrated sphere ISR-2600 Plus). Infrared spectroscopy 

measurements were carried out using a Thermo Nicolet 6700 FTIR spectrometer at spectral 

resolution of 8 cm-1 in the region of 4000–400 cm-1.  

 
2.3 Computational details  
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The DFT calculations with periodic boundary conditions (PBC) were performed with the 

Gaussian 09 suite of programs [46]. The electronic exchange and correlation effects were 

included by means of the Heyd-Scuseria-Ernzerhof screened hybrid functional (HSE06) [47, 48]. 

We used the Pople 6-31G(d,p) valence double-zeta polarized basis set [49, 50], and the ultrafine 

integration grid was specified for all calculations. The unit cell, used for the periodic calculations, 

was constructed based on the defect-free crystal structure of γ-Al2O3 (7.887×7.887×7.887 Å). To 

model (1 0 1) Al2O3 surface, the appropriate slab model was employed that is partially 

hydroxylated, and includes capped oxygen atom on the bottom, in order to keep the Al2O3 

stoichiometry and charge neutrality of the unit cells. The rectangular five-layered unit cell 

consisting of 14 aluminums and 21 oxygen atoms was periodically repeated along the two 

orthogonal directions defined by translation vectors of 7.887 and 5.649 Å. To mimic the 

electronic structures of various interfacial L/Al2O3 complexes, the ligand molecules were 

anchored on the top side of unit cells that represent the (1 0 1) surface of γ-Al2O3. This model 

assumes infinite vacuum space along the directions that is orthogonal to the translation vectors. 

The surface Brillouin zone was sampled by 98 Monkhorst-Pack k-points [51]. The optimization 

of the atomic coordinates was carried out within the unit cell by using Berny’s algorithm, 

whereas the lattice parameters were fixed in all cases. 

 
3 Results and Discussion 
 
 
3.1 Microstructural and optical properties of surface-modified Al2O3 powders 
 
The wide-angle XRD patterns of Al2O3 particles, prepared by a sol-gel process via hydrolysis of 

aluminum isopropoxide, followed with calcination are shown in Figure 1. The diffractogram of 

samples calcinated at 700 0C (Figure 1A) displayed the presence of three distinct broad peaks at 
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37.5, 45.9, and 67.1° that belong to (311), (400), and (440) planes of the crystalline γ-Al2O3, 

respectively (JCPDS Card No. 00-010-0425). The crystallite size, calculated from the widths of 

the XRD peaks by using the Debye-Scherrer equation, was found to be 32 Ǻ. It should be noted 

that the presence of other coexisting alumina phases or impurities was not detected. On the other 

hand, calcinations at 1100 °C induced the appearance of sharp diffraction peaks (see Figure 1B) 

that belong to the corundum crystal structure (JCPDS Card No. 00-056-0457). This result is 

consistent with literature data indicating that above 1050 °C the γ-Al2O3 is being completely 

converted into α-Al2O3 [52]. 

The TEM characterization of γ-Al2O3 powders indicated the presence of fairly uniform 

spherically shaped particles in the size range from 0.1 to 0.3 µm. Dark-field TEM imaging, as 

well as closer inspection at higher magnifications, indicated that submicron-sized γ-Al2O3 

spheres resemble a “dandelion” shape (see Figure 2) due to the presence of many nano-

crystallites. Thus, there is a good agreement between the crystallite size obtained by the XRD 

measurements and by the TEM analysis of the γ-Al2O3 powders. Analysis of the selected area 

electron diffraction (SAED) pattern revealed the presence of the diffraction rings consistent with 

the crystalline γ-Al2O3 structure, including the (311), (400), and (440) planes. 

Nitrogen adsorption-desorption isotherm of synthesized γ-Al2O3 samples and pore size 

distribution are shown in Figure 3 (curves a and b, respectively). The specific surface area was 

calculated using BET method [45], and was found to be 54.8 m2/g. The pore radius was estimated 

using BJH method [53]. The determined pore radius in the size range from 3 to 4 nm clearly 

indicates that γ-Al2O3 samples are mesoporous. 

The surface-modification of Al2O3 samples calcinated at 700 °C (γ-phase) with catecholate- and 

salicylate-type of ligands, as well as with AA induce coloration of powders due to CTC 
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formation. Note that, under identical experimental condition, the CTC formation does not take 

place when Al2O3 powders, calcinated at higher temperature (1100 °C) and forming an α-phase 

were used. For clarity, it should be emphasized that all results described in this work are obtained 

using exclusively Al2O3 powders with the γ-crystalline phase. Based on TGA measurements the 

content of organic phase in all inorganic/organic hybrids was found to be slightly smaller than 10 

wt.-%.  

The Kubelka-Munk transformations of diffuse reflection data for series of inorganic/organic 

hybrids: CAT/Al2O3, DHN/Al2O3, CA/Al2O3, DOPA/Al2O3, GA/Al2O3, SA/Al2O3, 5-ASA/Al2O3 

and AA/Al2O3 are shown in Figure 4. The coordination of each of the above eight ligands, used 

to coat the surface of Al2O3 powder, induced the photon absorption in visible spectral range due 

to formation of CTCs as can be seen in Figure 4. Of course, depending on the ligands used, 

specific optical properties of obtained hybrids differ, and their effective band gap energies, 

determined from the absorption onset, are collected and listed in Table 1. Bearing in mind that 

the band gap value for pristine γ-Al2O3 is 8.7 eV [43], it is clear that CTC formation with any of 

the above ligands induces considerable red-shift in the onset of optical absorption. The largest 

shift was obtained for CAT (7.4 eV), while the smallest one was observed for SA (5.5 eV). The 

influence of functional side groups attached to the basic backbone structure of CAT is found to 

be relatively small. The largest difference in the effective band gap energies for inorganic/organic 

hybrids, prepared using catecholate-type of ligands, was found to be 200 meV (see Table 1 and 

compare data for CAT/Al2O3 and DHN/Al2O3) leaving limited ability to tune the optical 

properties by introducing different functional side groups to basic backbone structure of CAT. 

However, this is not the case with SA-type ligands: the difference between effective band gap 

energies of SA/Al2O3 and 5-ASA/Al2O3 is much larger (about 1.6 eV) in comparison to 
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differences observed among surface-modified Al2O3 powders with CAT-type of ligands. It 

should be stressed that, upon surface modification, accompanied by CTC formation, the optical 

properties of Al2O3, a typical insulator material, rank comparably with the optical properties of a 

semiconductor material. 

The coordination, or the manner of attachment, of ligands to the Al2O3 surface was studied using 

FTIR spectroscopy. The FTIR spectra of free and adsorbed CAT and SA – i.e., ligands from 

which all other catecholate- and salicylate-type of ligands can be derived – are shown in Figure 5. 

In addition, the FTIR spectra of AA are also included in Figure 5. The FTIR spectra of other 

ligands, free and adsorbed, used in this study (DHN, CA, DOPA, GA and 5-ASA) are provided in 

Supporting Information 1. The FTIR spectrum of dried Al2O3 displays its characteristic broad 

bands in 4000−400 cm-1 region, and, consequently, it is possible to compare spectra of free and 

adsorbed ligands (CAT, SA and AA) in the desired spectral region. To this we turn now. 

The fingerprint spectral region for CAT is from 1000 to 1700 cm-1, and the main vibration bands 

and their assignments for free ligand (Figure 5A, curve a) are: stretching vibrations of the 

aromatic ring ν(C−C)/ν(C=C) at 1625, 1606, 1530, and 1475 cm-1, stretching vibrations of the 

phenolic group ν(C−OH) at 1288, 1267, and 1250 cm-1, bending vibrations of the phenolic group 

δ(C−OH) at 1374, 1201, 1169, and 1150 cm-1, and bending δ(C−H) at 1100 and 1043 cm-1 [54–

56]. Upon adsorption of CAT onto Al2O3 (curve b), the difference between FTIR spectra of free 

and adsorbed modifier is observed, signaling the formation of surface complex. Bending 

δ(C−OH) vibrations in the region below 1200 cm-1 and pronounced band at 1374 cm-1 nearly 

disappeared. Three bands of stretching vibrations ν(C−OH) merged into one prominent band at 

1257 cm-1. The binding of CAT to Al2O3 via two adjacent phenolic groups even affected the 

stretching of the aromatic ring (bands above 1400 cm-1).  
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The FTIR spectra of SA, free and adsorbed on Al2O3 particles, are shown in Figure 5B. The main 

bands and their assignments in free SA (curve a) are well described in literature [57–61], and they 

are as follows: stretching vibrations of the aromatic ring ν(C−C)/ν(C=C) at 1621, 1583, 1492, 

1472, and 1453 cm-1, stretching vibrations of the phenolic group ν(C−OH) at 1265 cm-1, bending 

vibrations of the phenolic group δ(C-OH) at 1386, 1329, 1217, and 1196 cm-1, bending δ(C−H) at 

1161, 1090, and 1031 cm-1, stretching vibrations of CO in COOH ν(CO/COOH) at 1217 and 

1196 cm-1 (both bands are coupled with δ(C–OH)), bending vibrations of CO in COOH 

δ(CO/COOH) at 1312 cm-1, and pronounced stretching vibration of the carbonyl group ν(C=O) at 

1693 cm-1, existing only in the protonated form of acid. The adsorption of SA onto Al2O3 

particles (curve b) leads to complete disappearance of the bands at 1693, 1492, 1329, 1265, and 

1196 cm-1. Since these bands correspond to vibrations of phenolic −OH and carboxylic −COOH 

group, it is obvious that both groups are coordinated (attached) to the surface Al atoms. The 

disappearance of stretching vibration of the carbonyl group ν(C=O) at 1693 cm-1 affirms the 

deprotonation of COOH group as the consequence of its binding to the surface Al atoms with the 

formation of delocalized carboxylate group [62]. The appearance of new band at 1580 cm-1 can 

be attributed to carboxylate asymmetric and symmetric stretching vibrations [57, 58]. 

Surface modification of Al2O3 with AA induces disappearance of the four stretching vibrations of 

the −OH groups that belong to the 2,3 enediole in the region from 3000 to 3500 cm-1 and the 

stretching vibration of the lactone group ν(C=O) at 1755 cm-1 (compare curves a and b in Figure 

5C). On the other hand, the stretching vibration ν(C=C) at 1665 cm-1 was not affected, although 

its position was slightly shifted toward lower energies after the adsorption. Also, the complex 

semicircle stretch mode at 1380 cm-1, where the top half of the ring stretches while the bottom 

half is contracting [63],[63] shows a slight increase in the energy of vibration. These results 
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indicate that AA is coordinated to the surface of Al2O3 over two neighboring –OH groups of the 

five-membered ring. 

Based on the FTIR data, some general features can be readily recognized. First, upon 

coordination of ligands (CAT, SA, and AA) to the surface of Al2O3, the observed changes 

(disappearance, appearance, and shift of vibrational bands) are in agreement with published FTIR 

data concerning surface-modified TiO2 nanoparticles with the same set of ligands [14, 15]. 

Second, the vibrational bands of catecholate-type of ligands (DHN, CA, DOPA, and GA) and 5-

ASA changed in the same fashion as those of CAT and SA upon coordination to the Al2O3 

surface, respectively (see Supporting Information 1). Third, from the FTIR data it is not possible 

to discriminate with certainty whether chelating or bridging mode of coordination between 

ligands and surface of the Al2O3 actually occurs. The existence of bridging coordination between 

these ligands and the surface in the case of TiO2 nanoparticles was established by additional 

measurements that can only be performed with colloidal solutions [15–20], and, although 

bridging coordination is intuitively expected in our case, a more substantial evidence for this 

claim is needed.  

 
3.2 DFT Calculations 
 
On the theoretical side, the comprehensive DFT calculations were performed with periodic 

boundary conditions (PBC) in order to estimate the interfacial energy gaps of various L/Al2O3 

complexes considered in this work. The calculations were performed by using Heyd-Scuseria-

Ernzerhof screened-hybrid functional (HSE06) [47, 48], and the rationale for the choice of 

functional is discussed further below. It is known that the standard semi-local PBE functional 

underestimates the bandgaps for insulators and semiconductors [64, 65], although, this functional 
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describes with a high accuracy energy levels of interfacial charge-transfer between TiO2 and 

catecholate-type of ligands [21]. On the other hand, the screened-hybrid density functional (HSE) 

predicts band-gaps for semiconductors and solids more precisely with no significant increase of 

the computational burden [66, 67]. However, it should be noted that all standard LDA and GGA 

functionals are not able to reproduce the band gap of bulk γ-Al2O3, and a proper electronic 

description has been achieved by using the modified semi-local Becke-Johnson exchange 

potential (mBJ) [68]. 

Our preliminary results for L/Al2O3 hybrids indicated reasonably good agreement between 

experimental and calculated band-gap values obtained using HSE06 functional and model 

systems based on bidentate coordination of ligand to (1 0 1) crystal surface [40]. Therefore, 

sophisticated model associated with (1 0 1) plane, previously benchmarked against CAT/Al2O3 

system, at HSE06/6-31G(d,p) level, was used to calculate the position of electronic levels, as well 

as effective band gaps for the variety of L/Al2O3 complexes. The optimized structures of eight 

ligands anchored to the surface of γ-Al2O3 are shown in Figure 6, while the data concerning the 

relevant energy levels and band-gaps for these complexes are listed in Table 1. The data of the 

free ligands and unmodified γ-Al2O3 are also presented in Table 1. It should be noted that the 

valence band maximum (VBM) and the conduction band minimum (CBM) of unmodified γ-

Al 2O3 are located at -7.18 and -4.39 eV vs. AVS, respectively, yielding band-gap of 2.79 eV. 

Similar to other DFT-based methods (LDA[69] and GGA[70] functionals), HSE06 functional 

also failed to reproduce the band gap energy of bulk γ-Al2O3. It is evident that HOMO and 

HOMO-1 molecular levels of all ligands are positioned within the band gap region of γ-Al2O3 

with exception of ascorbic acid (see Table 1), thus defining the two types of donor levels (α, β). 

Accordingly, the origin of interfacial charge-transfer transitions can be ascribed to excitation 
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from the donor level (α) to CBM of γ-Al2O3. In the case of ascorbic acid, the HOMO-1 orbital of 

free ligand lies below VBM, while associated donor level of AA/Al2O3 complex is slightly 

destabilized and positioned inside the band gap region of γ-Al2O3. In addition, the position of 

calculated LUMO orbitals for all ligands is significantly higher than CBM of γ-Al2O3 (Table 1). 

The description of energy structures of L/Al2O3 complexes, and origin of interfacial charge-

transfer transitions, are in agreement with previous reports concerning surface-modified titanium 

dioxide with catecholate-type of ligands [21].    

The excellent agreement between the calculated and experimental band-gap values was found for 

DOPA/Al2O3, CA/Al2O3 and DHN/Al2O3 inorganic/organic hybrids with deviation smaller than 

5%. Practically, there is no difference between calculated and experimental band-gap values 

(compare, for example, 1.56 and 1.55 eV for DOPA/Al2O3). The small difference between 

calculated and experimental values was also found for AA/Al 2O3 system – the calculated band-

gap value is underestimated by only 0.06 eV compared with experimentally observed value. 

Larger discrepancies were found for two remaining members of studied catecholate’s ligand 

family (less than 10 and 20% for CAT/Al2O3 and GA/Al2O3, respectively). However, significant 

differences between the calculated and experimental band-gap values were found for hybrids 

prepared using salicylate-type of ligands. The calculated band-gap values were underestimated by 

31.6 and 18.7% compared to experimental ones for SA/Al2O3 and 5-ASA/Al2O3, respectively. It 

should be emphasized that all calculations were performed assuming bidentate bridging 

coordination of ligands. Most likely, the reason for significant discrepancies between calculated 

and experimental band gap data for SA/Al2O3 and 5-ASA/Al2O3 might be due to different 

coordination of salicylate-type of ligands onto the Al2O3 surface (chelating coordination and/or 

three points attachments including carboxylic functional group). Of course, the energies of 
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interfacial transitions are expected to be different for ligand molecules attached on different ways 

to the γ-Al2O3 surface.  

In addition, the calculated band-gap data correctly follow ascending/descending order of 

experimentally determined band-gap values with exception of SA/Al2O3 hybrid, whose calculated 

value for interfacial energy transition is significantly underestimated compared to experimental 

one. The ability of electron-donating and/or electron-withdrawing side functional groups to 

decrease/increase the band-gap energy of inorganic/organic hybrids is well-established in 

literature [21, 27]. In this particular case, calculated band-gap values for CAT/Al2O3 and 

CA/Al2O3 are very close to each other (1.38 and 1.34 eV, respectively), and only this pair of 

hybrids has inverse order of band-gap values compared to experimental ones (1.26 and 1.41 eV 

for CAT/Al2O3 and CA/Al2O3, respectively). At present, we do not have convincing argument to 

explain such findings. 

The spatial distribution of crystal orbitals of SA/Al2O3, AA/Al 2O3, CA/Al2O3, and unmodified γ-

Al 2O3, as well as frontier orbitals of the free SA molecule are shown in Figure 7, whereas the 

results concerning the orbital electron densities of other CTCs are presented in Supporting 

Information 2. It is evident from the Figure 7 that the VBM and CBM orbitals of unmodified γ-

Al 2O3 coincide with those of coordinated Al2O3 complexes. The ligand orbitals related with 

HOMO-1 and HOMO, which mostly consist of aromatic π-orbitals, are positioned between VBM 

and CBM. In the case of CAT/Al2O3, CA/Al2O3 and DOPA/Al2O3, the β-levels are not composed 

of only HOMO orbitals of ligands, but it is somewhat delocalized over the lattice atoms (see 

Figure 7 and Supporting Information 2), which may be the likely cause for their additional 

stabilization.  
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It is well-known that the efficient photocatalyst, in addition to its capability to harvest large 

portion of solar spectrum, determined by the band gap energy, must have a proper position of the 

valence and conduction bands, because the potentials of valence and conduction band are the 

measure of its oxidation and reduction ability, respectively. For this purpose, the DFT results 

obtained at the HSE06/6-31G(d,p) level of theory for donor level and CBM potentials are 

presented at electrochemical scale with respect to normal hydrogen electrode, as illustrated in 

Figure 8. Our preliminary results indicate that surface-modified Al2O3 particles with 5-ASA have 

the ability to induce photocatalytic degradation of organic dye methylene blue [40]. However, our 

attempt to produce hydrogen using synthesized inorganic/organic hybrids failed. These results 

support calculated energy alignment of studied CTCs. The obtained experimental results, 

supported with detailed DFT calculations, represent the solid basis to further extend these studies 

to a variety of photo-driven processes. 

 
4 Conclusions 
 
In conclusion, we have synthesized a number of Al2O3 organic/inorganic hybrids and thoroughly 

analyzed their optical properties by experimental and theoretical methods. Our results indicate 

that the CTC formation, accompanied with the red-shifted onset of optical absorption, is not 

exclusive to solar light absorbing oxides (TiO2, ZnO, Na2Ti3O7, Mg2TiO4 and BaTiO3). We have 

demonstrated that coordination of small colorless organic molecules with specific functionality 

(catecholate- and salicylate-type of ligands, as well as ascorbic acid) to solar light non-absorbing 

Al 2O3 insulator with proper structure and morphology leads to the formation of inorganic/organic 

hybrids whose optical properties can be tuned throughout Vis and even high-energy part of NIR 
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spectral region. The additional advantage of these novel low-cost hybrid materials is that the 

procedure needed for their synthesis is quite simple and reproducible.  

 

Supporting Information  

Supporting Information 1: Vibrational bands of catecholate-type of ligands (DHN, CA, DOPA, 

and GA) and 5-ASA changed upon coordination to the Al 2O3 surface, respectively (see Figure 

S1. FTIR spectra of free (a) and adsorbed (b) ligands on Al2O3 powders: (A) DHN, and (B) CA, 

(C) DOPA, (D) GA , and (E) 5-ASA). 

Supporting Information 2: The spatial distribution of crystal orbitals of CAT/Al2O3, GA/Al2O3, 

DOPA/Al2O3, DHN/Al2O3, and 5-ASA /Al2O3. (see Figure S2. The frontier crystal orbitals drawn 

over a single repeated unit for L/Al2O3 complexes (L = CAT, GA, DOPA, DHN, 5-ASA). HOCO 

and LUCO represent highest occupied and lowest unoccupied crystal orbitals. 
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Table 1. The energies of frontier orbitals (in eV) of eight different ligands, γ-Al 2O3 and L/Al2O3 
complexes calculated by DFT using PBC model, as well as energy gaps of free ligands and 
corresponding inorganic/organic hybrids. For comparison reasons experimentally determined 
optical gaps are included. (VBM ‒ valence band maximum; CBM ‒ conduction band minimum).  
 

 
STRUCTURE 

 
VBM 

Donor 
level 
(α) 

 
HOMO-

1 

Donor 
level 
(β) 

 
HOMO 

 
CBM 

 
LUMO 

 
Eg

calc 
 

Eg
exp 

CAT/Al2O3 -7.64 -6.39 - -6.14 - -5.01 - 1.38 1.26 
CAT - - -6.33 - -5.48 - 0.02 5.50*   

SA/Al2O3 -7.62 -7.21 - -6.72 - -5.00 - 2.21 3.23 
SA - - -7.20 - -6.39 - -1.57 4.82*   

AA/Al2O3 -7.45 -7.25 - -5.96 - -4.83 - 2.42 2.48 
AA - - -7.63 - -5.97 - -0.84 5.13*   

CA/Al2O3 -7.80 -6.62 - -6.50 - -5.28 - 1.34 1.41 
CA - - -6.64 - -5.89 - -2.04 3.85*   

GA/Al2O3 -7.24 -6.56 - -6.21 - -4.82 - 1.74 2.10 
GA - - -6.26 - -5.82 - -1.40 4.42*   

DOPA/Al2O3 -7.48 -6.61 - -6.18 - -5.05 - 1.56 1.55 
DOPA - - -6.22 - -5.41 - -0.26 5.15*   

DHN/Al2O3 -7.58 -6.57 - -6.49 - -5.14 - 1.43 1.45 
DHN - - -5.76 - -5.62 - -1.23 4.39*   

5-ASA/Al2O3 -7.51 -7.04 - -6.56 - -5.07 - 1.97 1.66 
5-ASA - - -6.80 - -6.21 - 1.53 4.68*   
γ-Al2O3 -7.18 - - - - -4.39 - 2.79 8.7**  

*HOMO‒LUMO gaps. 
** The band gap value for bulk Al2O3 was taken from reference [43]. 
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Figure Captions 
 
Figure 1. The wide-angle XRD patterns of Al2O3 particles prepared by a sol-gel process via 
hydrolysis of aluminum isopropoxide, followed with calcination at: (A) 700 °C, and (B) 1100 °C 
with the corresponding JCPDS cards.  
 
Figure 2. TEM data from γ-Al2O3 powders: typical bright- (A) and dark-field (B) TEM images of 
γ-Al 2O3 powders, high-magnification TEM image (C), and corresponding SAED pattern (D). 
 
Figure 3. The nitrogen adsorption-desorption isotherms (a), and pore size distribution (b) of γ-
Al 2O3 powders.  
 
Figure 4. Kubelka–Munk transformations of UV-Vis-NIR diffuse reflection data of 
inorganic/organic hybrids: CAT/Al2O3, DHN/Al2O3, CA/Al2O3, DOPA/Al2O3, GA/Al2O3, 
SA/Al2O3, 5-ASA/Al2O3 and AA/Al2O3. 
 
Figure 5. FTIR spectra of free (a) and adsorbed (b) ligands on Al2O3 powders: (A) CAT, and (B) 
SA, and (C) AA. 
 
Figure 6. The optimized geometries of eight different L/Al2O3 complexes used in periodic 
calculations. The alignment of molecular slabs for (101)-surface is also presented.  
 
Figure 7. The frontier crystal orbitals drawn over a single repeated unit for L/Al2O3 complexes (L 
= SA, AA, CA). The orbitals of free SA molecule, as well as VBM and CBM of unmodified γ-
Al 2O3 are also presented. HOCO and LUCO represent highest occupied and lowest unoccupied 
crystal orbitals. 
 
Figure 8. The donor level and CBM energy alignment for the considered CTCs with respect to 
the band gap redox potential for H2 and O2 evolution. 
 
Figure S1. FTIR spectra of free (a) and adsorbed (b) ligands on Al2O3 powders: (A) DHN, and 
(B) CA, (C) DOPA, (D) GA , and (E) 5-ASA. 
 
Figure S2. The frontier crystal orbitals drawn over a single repeated unit for L/Al2O3 complexes 
(L = CAT, GA, DOPA, DHN, 5-ASA). HOCO and LUCO represent highest occupied and lowest 
unoccupied crystal orbitals. 
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• Surface modification of mesoporous Al2O3 powder with benzene derivatives 
• Charge transfer complex formation between Al2O3 and small colorless organic 

molecules 
• Visible-light activity of surface-modified Al2O3 powders   
• Large-scale quantum chemical calculations based on density functional theory 

 
 


