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ABSTRACT

The renewable silver-amalgam film electrode (Hg(Ag)FE) was applied for voltammetric characterization
and determination of semi-synthetic macrolide antibiotics azithromycin (AZI), clarithromycin (CLA) and
roxithromycin (ROX) in the Britton-Robinson buffer as supporting electrolyte ranging the pH from 4.0 to
11.9. All three macrolides showed reduction signals in fairly negative potential range.

During direct cathodic square wave voltammetric (SWV) investigations conducted over the potential
range from —0.75V to —2.00V vs SCE, either one or two reduction peaks were obtained in the potential
range from —1.5 to —1.9 V. The shapes and intensities of the signals depend on the applied pH values in
wider pH ranges. For analytical purposes concerning the development of direct cathodic SWV and
adsorptive stripping SWV (SW-AdSV) methods the neutral and slightly alkaline media were suitable as
pH 7.2, pH 7.4 and pH 7.0 for AZI, CLA and ROX, respectively. Based on the cyclic voltammograms recorded
at these pH values, adsorption-controlled electrode kinetics process can be proposed for all three
macrolides. Furthermore, the water suppressed 'H NMR measurements in the pH range between 6.0 and
10.5 indicated that the macrolide molecules at the optimal analytical conditions are predominantly in
protonated form via their tertiary amino groups which supported in all three cases their adsorption on
the appropriately polarized Hg(Ag)FE electrode. The optimized direct cathodic SWV methods showed
good linearity in concentration ranges 4.81-23.3 wgmL ', 1.96-28.6 pgmL~! and 1.48-25.9 pug mL ™! for
AZI, CLA and ROX, respectively. The development of the SW-AdSV methods resulted in the linear
responses at lower concentration ranges as 1.0-2.46 wg mL~,0.05-0.99 g mL~! and 0.10-0.99 g mL ™,
for AZI, CLA and ROX, respectively. The relative standard deviation for all developed methods was not
higher than 1.0% except the SWV method for AZI with 4.7%. In the case of all three investigated macrolide
antibiotics the protonated form of the tertiary amino group(s) at appropriate accumulation potential and
time favored the adsorption of the ionic form of the target molecules offering the opportunity for the
development of SW-AdSV methods for their trace level analysis on Hg(Ag)FE. Optimized SW-AdSV
method was applied for determination of ROX in pharmaceutical preparation Runac®.

© 2017 Elsevier Ltd. All rights reserved.
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1. Introduction

Macrolide antibiotics are a relatively new class of medications
[1], and they are widely used in human and veterinary medicine to
treat different infections caused by gram-positive and some gram-
negative bacteria [2] as well as less common pathogens [3]. They
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are lipophilic molecules consisting of a large lactone ring with 12-
16 carbon atoms to which one or more amino and/or neutral sugars
are linked via a glycoside bond [4]. Erythromycin (ERY), a naturally
occurring macrolide, is the first member of this group. It is
produced by Streptomyces erythreus during fermentation [5,6] and
is a precursor for the synthesis of semi-synthetic macrolide
antibiotics such as azithromycin (AZI, Fig. 1A), clarithromycin (CLA,
Fig. 1B) and roxithromycin (ROX, Fig. 1C) [7-11]. In the structure of
AZI, a methyl-substituted nitrogen atom is incorporated into the
lactone ring, thus creating a 15-member lactone ring [12]. CLA and
ROX belong to the group of macrolide antibiotics which contain a
14-member lactone ring [11,13]. CLA is synthesized by substituting
a methoxy group for the C-6 hydroxyl group of ERY [13], while in
the structure of ROX, the erithronolide A lactone ring has been
modified with an etheroxime side chain to prevent its deactivation
in the gastric environment [11]. Owing to such changes in their
structures, these three macrolide antibiotics are more stable under
acidic conditions than ERY is [11,14,15].

CLA and AZI have a similar spectrum of activity. They are used
for the treatment of upper and lower respiratory tract infections,
skin and soft tissue infections and for the prevention and
treatment of infections in HIV-positive patients [7], while ROX
has a similar antimicrobial spectrum to ERY and is usually used in
vivo for the treatment of respiratory infections [16,17]. ROX is
characterized by rapid absorption and a long elimination half-time
[18]. This antibiotic can be effective when applied in small doses,
which represents an advantage in clinical settings [19]. Adverse
effects reported in the case of all three macrolide antibiotics are
usually gastrointestinal disturbances, and they are mild and less
frequent compared with those reported for ERY [20].

Traditionally, the determination of macrolide antibiotic con-
centrations is performed via microbiological assays [21], but
because of their low sensitivity and specificity in some cases they
have been replaced with contemporary analytical techniques [22].
The most commonly used technique for the determination of
macrolide antibiotics is liquid chromatography combined with
coupled mass spectrometric detection [23]. The diode array
detector is not so powerful due to the lack of sensitive
chromophore(s) of these antibiotics, but chemical derivatization
can increase its sensitivity [24]. According to European Pharmaco-
peia 5.0, the determination of all three macrolide is based on liquid
chromatography with working wavelengths in the UV range - at
215nm for AZI and at 205nm for CLA and ROX. Based on the
proposed methods, gradient elution in the case of CLA and ROX and
isocratic elution for AZI on different types of octadecylsilyl
stationary phases are recommended [25].

Voltammetric measurements are suitable for the characteri-
zation and/or determination of selected macrolide antibiotics
either in the case of their oxidation [26-31] or reduction [32-35].
As far as oxidation is concerned, one oxidative peak was recorded

for AZI at a carbon paste electrode [26], glassy carbon electrode
[27], and polycrystalline gold electrode; the behavior of CLA was
similar in the case of the polycrystalline gold electrode [28]. For
ROX, an anodic signal was observed at a bare gold electrode [29],
poly(3,4-ethylenedioxythiophene)-modified gold electrode [30]
and at a glassy carbon electrode modified with single-wall carbon
nanotubes [31]. The above-mentioned methods utilized mainly
buffered solutions with a pH of 4.6 [26] or 7.0 [27,31] and the
reported peak potentials (E,) were between 0.6V and 0.9V
[26-31]. Beside of cyclic voltammetric characterizations this
technique was used for the analytical purposes in the sub and
lower mg mL~! ranges for AZI [28] and ROX [29], while the poly
(3,4-ethylenedioxythiophene) modified gold electrode is suitable
for ROX determination in lower concentration range from 0.067 to
16.74 g mL~! [30]. The lowest limit of quantitation (LOQ) as
1.544 ng mL~" was reported for AZI and it is related to a SW-AdSV
method [26]. For the reduction of ERY [32], its ethylsuccinate
(EES) [33] and CLA [34], the hanging mercury drop electrode
(HMDE) was applied. One reduction peak of ERY was obtained at
the HMDE at —1.20V when using adsorptive stripping voltam-
metry in a 0.025 mol L™! borate buffer with a pH of 11.6, and the
LOQ was 2-10~ " mol L' (0.15 wg mL~!) for 120 s of preconcentra-
tion at —0.9V [32]. Recently, a renewable silver-amalgam film
electrode (Hg(Ag)FE) was applied to study the reduction of EES,
the analytical signal of which appeared in a fairly negative
potential range, and a trace-level adsorptive stripping voltam-
metric method was used to determine its concentration in a
selected pharmaceutical preparation and in a spiked urine sample
[35].

It is well-known that the Hg(Ag)FE is a relatively new type of
amalgam-based electrodes [36-39], and provides an alternative to
the hanging mercury drop electrode due to their similar
electrochemical characteristics [40]; the Hg(Ag)FE enables the
determination of a wide range of analytes, including different
organic compounds [35,41-54]. For example, it was used for the
determination of the levels of some medications, such as EES [35],
doxorubicin [41], closantel [42], moroxydine [43], ambazone [44],
proguanil [45], prednisolone [46] in spiked urine samples
[35,41,43-45] and in pharmaceutical preparation [35,42,44-46].
The Hg(Ag)FE was also successfully applied for the quantitation of
some neonicotinoid insecticides [47-51] in various matrices, such
as spiked river water [48-50], commercial formulations [48,49],
corn seed [50], spiked honey [48] and carrot juice [51].
Furthermore, the herbicide aclonifen was determined in spiked
water samples and the fungicide fenoxanil in spiked river water
and spiked rice samples [52,53]. The ability to easily and quickly
refresh the electrode surface before each measurement allows the
Hg(Ag)FE to be applied in adsorptive stripping measurements [39],
as in the case of EES [35], doxorubicin [41], closantel [42] and
chlornitrofen [54].

Fig. 1. Molecular structure of azithromycin (A), clarithromycin (B) and roxithromycin (C).



336 0. Vajdle et al./Electrochimica Acta 229 (2017) 334-344

When considering the structure of EES and its affinity to the Hg
(Ag)FE under optimized measurement conditions [35] and the
three semi-synthetic macrolide antibiotic target analytes, it can be
noted that - beside of different possible electroactive centers — all
of them are amines, with pK, values between 8.1 and 9.5 (for more
details see Table 1) [55-68].

As a follow-up to the afore-mentioned research related to EES
[35], in the presented work the voltammetric behavior of AZI, ROX
and CLA at the Hg(Ag)FE was investigated by means of optimized
direct square wave voltammetric (SWV) and cyclic voltammetric
(CV) measurements. The influence of the pH of the supporting
electrolyte on the generation of the reduction signals in the case of
all three macrolides was studied in the pH range from 4.0 to 11.9.
Additionally, a detailed investigation concerning the adsorptive
stripping square wave voltammetric (SW-AdSV) determination of
trace levels of all three target analytes was performed. The possible
protonation of the tertiary amino groups was studied via '"H NMR
experiments, by measuring their chemical shifts (8¢y)(ppm)) for
different pH values of the Britton-Robinson buffer media/
supporting electrolyte, because the protonated form of the
molecules can significantly affect SW-AdSV measurements.

2. Experimental
2.1. Reagents and solutions

All chemicals used were of analytical reagent grade. Individual
stock solutions of AZI (from azithromycin dihydrate), CLA and ROX
with same concentration of 100.0 g mL~! were prepared in the
mixture of double distilled water: methanol in ratio 70%: 30% (V/V)
for AZI, and 80%: 20% (V/V) for CLA and ROX under ultrasound
treatment in 30 minutes. All three macrolide standards are from
Hemofarm a.d., Pharmaceutical-Chemical Industry, Vr3ac, Serbia.

Aqueous Britton-Robinson buffer solutions, as supporting
electrolyte in voltammetric measurements, were prepared from
a stock solution containing 0.04 mol L~! phosphoric acid (Merck,
Darmstadt, Germany), boric acid (Merck) and acetic acid (Merck),
respectively, by adding 0.2 mol L~! sodium hydroxide (Merck) to
obtain the required pH values, covering the pH range of 4.0-11.9.
These buffer solutions also served as one of the main components
of the media in the case of water-suppressed 'H NMR inves-
tigations.

For the 'H NMR measurements pharmaceutical preparations
manufactured by Hemofarm a.d., Pharmaceutical-Chemical Indus-
try, Vr3ac, Serbia (Hemomycin® (nominal AZI content — 250 mg per
capsule) and Clathrocyn® (nominal CLA content - 250 mg per
tablet)) and by Jugoremedija a.d., Pharmaceutical Industry
Zrenjanin, Serbia (Runac®™ (nominal ROX content — 150 mg per
tablet)) were applied. Appropriate amounts of the commercial
preparation of all three macrolide antibiotics were dissolved
individually in a mixture of D,O (Sigma Aldrich, 99% atom D,
without internal standard) and Britton-Robinson buffer in the ratio
of 50%: 50%, (V/V). Additionally, into every system 2 vol% of
methanol (Merck) was added. The applied Britton-Robinson buffer
pH values were all in the pH range between 6.0 to 10.5, with the
following specific values: 6.8, 7.0, 7.2, 7.4, 8.0, 8.2, 8.4, 8.6, and 8.8
for AZI, 6.0,7.2,7.4, 8.0, 8.4, 8.7,8.9, and 9.2 for CLA and 6.0, 7.0, 7.4,

Table 1

8.0, 8.2, 8.4,9.0, and 10.5 for ROX. The suspensions prepared in this
way were treated with ultrasound for 60 minutes and then filtered
by means of 0.22 pm syringe filters (Kinesis, Reg. Cellulose). The
concentration of each of the three macrolides in such solutions was
close to 24 mgmL~'. From the obtained liquid phases, aliquots of
600 pL were transferred using a micropipette into 5mm NMR
tubes (Aldrich®) and 'H NMR measurements were performed.
External calibration was performed using 4,4-dimethyl-4-silapen-
tane-sulfonic acid (DSS) by preparing blank samples for all applied
pH values. These blank samples were prepared by mixing the
Britton-Robinson buffer with the appropriate pH value, D,0 with
1% w/w DSS and D,0 (without DSS) in the ratio of 50%: 25%: 25%,
V/V. Into this solution 2 vol% of methanol (Merck) was added.

For the voltammetric analysis of the farmaceutical preparation
the appropriate mass of Runac® tablet was dissolved in the
mixture of double distilled water and methanol (65%: 35%, V[V) to
obtaining nominal ROX concentration of 150 ugmL~' These
samples were filtered by 0.22 um syringe filters (Kinesis, Reg.
Cellulose) before the voltammetric experiments.

2.2. Apparatus

Voltammetric measurements were performed on PalmSens
electrochemical analyzer operated via software program PSTrace
3.0. A three electrode system was applied with a renewable Hg(Ag)
FE (MTM Anko Instruments, Cracow, Poland [69]) of a 12-mm?
surface area as working, a saturated calomel electrode as reference,
and a platinum as auxiliary electrode.

'H NMR spectra were recorded on a Bruker AVANCE III HD
400 MHz spectrometer (Bruker), equipped with Prodigy cooled
probe head. For some measurements BBFO probe head was used.

The pH measurements were made by using a combined glass
electrode on a previously calibrated pH-meter (Radiometer).

The ultrasound supported macrolide dissolutions were per-
formed by Bandelin (Sonorex digitec) ultrasound bath.

2.3. Procedures
2.3.1. Voltammetry

2.3.1.1. Application of the Hg(Ag)FE. Before use, the surface of the
Hg(Ag)FE was chemically cleaned in a 2% HNOs solution for about
5 min and then covered with a new amalgam film by immersing it
in the internal amalgam pool of the electrode [47,48]. The Hg(Ag)FE
required electrochemical activation before initial measurements in
the chosen supporting electrolyte by cycling the potential in the
range from —0.20 to —1.60V over the course of around 20 cycles
[35,41,47]. Furthermore, in every set of measurements, subsequent
voltammetric curves were recorded for a renewed electrode
surface, which was achieved by simply dipping the silver amalgam
wire into the amalgam pool.

2.3.1.2. Voltammetric experimental conditions. The voltammetric
behavior of AZI, CLA and ROX was investigated by means of SWV
and CV measurements in Britton-Robinson buffer supporting
electrolytes with pH from 4.0 to 11.9. In all experiments, including
the characterization and determination of the target analytes, the

Values of the logarithm of dissociation constants (pK,) for azithromycin, clarithromycin and roxithromycin, according to literature data.

Macrolide antibiotic pK,

PKa PKay

Azithromycin [55-58]
Clarithromycin [56,59-62]
Roxithromycin [63-68]

8.9; 8.99; 9.0; 8.76
9.2; 917, 8.82+£0.04

8.6; 8.7;~8.7; 8.1 9.5;~9.3; 8.9
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appropriate volume of the stock solution of the target analyte was
added by micropipette into the voltammetric vessel, which
contained double-distilled water (5.0 mL) and the corresponding
Britton-Robinson buffer solution (5.0 mL). The solutions without
macrolides served as blank samples.

In the case of the experiments with the macrolides, SW and CV
voltammograms were recorded in the potential range from
—0.75V to —2.00V with negative ongoing polarization. The CV
experiments were performed for pH values of 7.2, 7.4 and pH 7.0
with scan rates (v) between 0.025Vs ! and 0.18 Vs, 0.025Vs™!
and 0.45Vs~1,0.01Vs~!and 0.20Vs~! in the case of AZI, CLA, and
ROX, respectively. The optimized SWV parameters were as follows:
a step potential of 5mV, a pulse amplitude of 20mV, and a
frequency of 50Hz. During the optimization of the SW-AdSV
procedure, the accumulation potential (E,..) was studied in the
potential range from —0.50V to —1.60V for AZI and from —0.5V to
—1.50V for CLA and ROX. The accumulation time (t,..) varied from
0s to 60s in 5s increments for all macrolides, while the selected
constant E,.. values were maintained. For the SW-AdSV measure-
ments, the SWV parameters were the same as in the case of direct
cathodic SWV measurements. The limit of detection (LOD) and the
LOQ were evaluated as the macrolide signal-to-baseline-noise
ratio of three and ten, respectively.

2.3.1.3. Voltammetric determination ROX in pharmaceutical
preparation. Standard addition method was used for the
determination of ROX content in Runac®™ tablet. Appropriate
volume of the dissolved and filtered sample made from adequate
amount of Runac® tablet was injected into the voltammetric vessel
contained 5.0 mL of Britton-Robinson buffer pH 7.0 and 5.0 mL of
double distilled water. In the next steps three standard additions of
ROX were performed with following final concentrations in the
voltammetric vessel: 0.10; 020 and 0.30wgmL~". The
measurement parameters of SW-AdSV method were as follows:
Eacc —1.05V, tyec 155, step potential 5mV, pulse amplitude 20 mV
and frequency 50 Hz.

2.3.2. 'TH NMR measurements

All 'TH NMR measurements were performed in water sup-
pressed working mode [35,70] with external calibrations by means
of DSS. The experimental conditions were as follows: the standard
Bruker pulse program (zgpr) was used for the water suppression,
spectral window was 6000 Hz, 90° pulse length 15 s, 32 scans,
sample temperature was 298 K.

3. Results and discussion

3.1. Voltammetric characterization of azithromycin, clarithromycin
and roxithromycin at Hg(Ag)FE

As first, direct cathodic SWV characterization of the three target
analytes were performed individually in a fairly negative potential
range from —0.75V to —2.00V in the Britton-Robinson buffers
ranging the pH values from 4.0 to 11.9. Based on the peak shapes of
obtained reduction signals, which are characterized by E, and peak
intensity (I,), they appeared between —1.5 and —1.9V vs SCE, and
in some cases were greatly affected by applied pHs. Fig. 2 illustrates
the selected characteristic responses concerning the appropriate
baselines (A) and target analytes AZI (B), CLA (C) and ROX (D). As it
can be seen, in the acidic media there are no remarkable signals
from the analytes, probably because of their overlapping character
with the hydrogen evaluation signals closing on such way the
potential window on Hg(Ag)FE. In the case of CLA and ROX the first
recognizable peaks appeared at pH 4.0, while in the case of AZI at
pH 6.0, in all cases they are hardly evaluable. By the increase of the
pH value of the supporting electrolyte up to pH 10.0, in the case of
all three investigated compounds, one main peak, convenient for
the analytical purpose, was formed nearly from —1.9V to —1.6V for
AZI, and very similarly between —1.7V and —1.5V for CLA and ROX.
In the case of CLA, a second peak is appeared in a very similar
potential range that characterizes the AZI main peak. The E; of the
main peak for all three target analyte was shifted to more positive
potential values as it is clearly visible on the appropriate sets of

Fig. 2. SWV signals of the investigated macrolides recorded at the Hg(Ag)FE for: A) Blank containing Britton-Robinson supporting electrolytes with pH ranging from 4.0 to
11.9; B) Britton-Robinson buffer solutions in the presence of 16.2 wgmL~! of azithromycin; C) Britton-Robinson buffer solutions in the presence of 23.1 wgmL™~' of
clarithromycin and D) Britton-Robinson buffer solutions in the presence of 23.1 wg mL~" of roxithromycin. Red curves represent SWV signals obtained for optimal pH values.
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SWV curves (Fig. 2), and elaborated on the E,-pH diagrams (Fig. 3,
insets) for AZI (A), CLA (B), and ROX (C). Such behavior is in
accordance with the recently reported behavior of EES on Hg(Ag)F
[35] and Hg [33] working electrodes. Furthermore, in the case of all
three macrolides the reduction signals with highest symmetry and
I, values appeared in neutral and slightly alkaline media, while at
pH upper then 8.0 the reduction signal decreased significantly as is
it presented in Fig. 2 by SWV signals and in numerical form as I,-pH
dependence on Fig. 3 for AZI (A), CLA (B) and ROX (C), respectively.

When the pH of the supporting electrolyte was modified in
0.2 pH steps, some signal characteristics of the target analytes at
the Hg(Ag)FE are clearly recognizable. Namely, at pH values
between pH 7.0 and pH 9.0, in some cases the AZI reduction peak
has a split character with measurable E, values close to —1.7 V and
—-1.8V. When the concentration of the target analyte was
increased, the peak at —1.8V showed proportional changes with
regard to its I, value while in the case of the peak with E, close to
—1.7V this was not the case. This signal became lower with

9
7.0 7.5 8.0 8.5 9.0 9.510.0
o pH ©-¢-@-@

5.0 6.0 7.0,,8.0 9.0 10.0

pH

50 6.0 7.0 80 90 10.0
pH
Z c —os
-6 Y °
7] / .0\...\. - ./.
< 61 .\. -1.52
o 51 -1.56 o .'.
- [ ]
4 2-1.60] S
-3 L|.|°' °
'1.64/
2 .. w4
-14 o 60 80 100 120
0 pH

60 80 100 120
pH

Fig. 3. Dependences of peak currents, I, (A, B, C), versus pH for the investigated
macrolide antibiotics: A) azithromycin (16.2 wgmL™!); B) clarithromycin (23.1 g
mL~") and C) roxithromycin (23.1 pgmL™"). Insets: appropriate dependences of
peak potential, E;,, versus pH. Supporting electrolyte: Britton-Robinson buffers.

increased AZI concentrations; at concentrations higher than
10 wgmL~", it was hardly recognizable on the SWV curves. At
pH values between 9.0 and 10.0 the peak did not have a split form.
Furthermore, between pH 10.0 and 11.9 the reduction signal was
almost non-distinguishable from the signal of the baseline and it
was not sufficient for analysis. This phenomenon can be explained
by a lack of protons, which can participate or promote the electron
exchange reduction step, but at the same time can be related to
some chemical changes in the structure of the macrolide, such as a
possible opening of the macrolide ring [71].

In the case of CLA, between pH 4.0 and 8.0 one reduction signal
was recorded, and this signal between the pHs 7.0 and 8.0 with E,,
close to —1.6V is fully distinguished from the proton evolution
signal, obtaining sharp and symmetrical shape. Additionally, likely
due to the broadening of the potential window of Hg(Ag)FE in
neutral and slightly alkaline media, a further reduction signal at a
maximum close to —1.9V was recognized, which can be attributed
maybe to the reduction of the lactonic carboxyl group in the system
or can be related to some effects related to protons on the tertiary
amino groups. At pH values higher than 8.5, the I, value of CLA
decreased, probably because of the deficiency of protons. When
the pH value increased from 8.5 to 10.0, the signal I, rapidly
decreased, and - as in the case of AZI - between 10.0 and 11.9 this
reduction peak was close to —1.5V and it was very close to the
baseline.

One reduction signal for ROX was observed in the investigated
pH range between pH 4.0 and 11.9. Its peak potential depends on
the pH in the pH range between 7.0 and 11.9, and the difference
between ROX and other investigated compounds (AZI and CLA) is
noticeable in alkaline solutions, since ROX signals are measurable
up to a pH of 11.9.

All the above-mentioned differences in reduction signals can
likely be explained by the diversity of the possible electroactive
centers recognized as the keto group for the CLA main signal, as in
the case of EES [35], imino group for ROX [72], and carboxylic keto
or protons on the tertiary amino groups for AZI. In any case, the
slope of the E, vs. pH plot changed at a pH of about 8 for all three
macrolide antibiotics and the appropriate linear dependences can
be described with two linear equations, as elaborated in Table 2 for
the selected pH ranges.

As for the selection of the pH of the supporting electrolyte for
the SWV procedure, the symmetry of the reduction peak and its I,
value (Fig. 3) were considered as the two crucial parameters. In the
case of SWV measurements, the most intensive signal of AZI
(Figs. 2B and 3A) was obtained for a pH of 7.2, while in more
alkaline media with a pH of up to 8.6, the intensity of the reduction
peak decreased significantly, probably due to its split character.
From pH 8.6 and up to 9.0, the AZI response increased, while
between 9.0 and 9.6 it was almost constant at around 60% of the I,
value for the pH of 7.2. Hence, for developing the direct cathodic
SWV method for AZI determination as the pH 7.2 was selected.

In the case of CLA (Figs. 2C and 3B), the most intensive
reduction signal was obtained for a pH close to 8, but this peak
exhibited very similar characteristics in a wider pH range, i.e. from
7.4 to 8.2. Based on the shape/symmetry of the reduction peak, the
pH of 7.4 was selected as the optimal value for the determination of
CLA, even though the signal is 3% lower in comparison to that for a
pH of 8.0.

Based on the results obtained for ROX (Figs. 2D and 3C), the
most intensive reduction peak of the target analyte was observed
in the pH range from 7.0 to 8.0. Thanks to the appropriate shape
and I, value of the ROX reduction signal, the pH of 7.0 was
determined to be the optimal value for direct SWV determination.
The SWV reduction peaks of AZI (Fig. 4A, 16.2 ugmL™!), CLA
(Fig. 4B, 23.1 pgmL~!) and ROX (Fig. 4C, 23.1 wgmL™!) recorded
under the optimized experimental conditions - including the
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Table 2
Selected parameters of the obtained linear dependences of E; vs. pH for azithromycin, clarithromycin and roxithromycin in the investigated pH ranges; r - correlation
coefficient.
Parameters Azithromycin Clarithromycin Roxithromycin
pH 7.0-8.4 pH 8.4-9.0 pH 5.0-8.4 pH 8.6-9.0 pH 7.0-8.4 pH 8.4-9.8
Intercept (V) -2.138 —2.955 -1.71 —2.446 —1.744 -2.222
Slope (V/pH) 0.040 0.137 0.010 0.095 0.011 0.067
r 0.937 0.995 0.955 0.975 0.980 0.979

08 -10 -12 -14 -16 -1.8 -20
E/V

0 ‘ ; ‘
-08 -1.0 1.2 14 16 -1.8 -2.0
E/V

-08 1.0 -12 14 16 -1.8 -2.0
E/V

Fig. 4. SW voltammograms of the target macrolide antibiotics obtained in Britton-
Robinson supporting electrolyte under optimized experimental conditions for A)
azithromycin at pH 7.2 (16.2 wgmL~', full line) and the blank (dashed line); B)
clarithromycin at pH 7.4 (23.1 pg mL~", full line) and the blank (dashed line) and C)
roxithromycin at pH 7.0 (23.1 wgmL~’, full line) and the blank (dashed line).

optimized voltammetric measurement parameters together with
the appropriate baseline signals — are presented in Fig. 4.
Additionally, beside the elaborated analytical signals in all cases
a broader reduction peak was observed at about —1.2 V. This signal
was recognized at the appropriate baselines with same character-
istics. As it was reported in our earlier papers [35,41,47-49] this

signal probably originates from the basic behavior of the Hg(Ag)FE
in Britton-Robinson supporting electrolyte. Its presence was
reported in acetate and phosphate buffer supporting electrolytes
as well [47]. Anyway, this signal has no significant overlapping
character with the analytical signals in the case of all three
macrolides till pH 10.

To investigate the possible reaction kinetics of all three analytes
at the Hg(Ag)FE, CV experiments were performed in potential
range from —0.75V to —2.00V at the optimal pH values. In all
measurements, one main irreversible reduction peak of the target
analytes was obtained. For all three investigated macrolides, the
linear dependences of the signal intensity of the target analyte vs
scan rate (v) were evaluated; the results are presented in Table 3.
Based on the numerical data, the I, vs v linear dependences have a
correlation coefficient close to 1, which can indicate that the
investigated processes are adsorption-controlled ones [73].

After reviewing the pKj, values of the target analytes given in
Table 1, it can be proposed that all three target analytes occur
predominantly in their protonated form at pH values considered
optimal for the application of a direct cathodic SWV method.

Based on our earlier experiences, in the case of the macrolide
antibiotic derivative EES, its tertiary amino group in protonated
form favors the adsorption of the target analyte at a negatively
polarized Hg(Ag)FE. This effect was exploited when designing an
adsorptive stripping SWV method for the determination of trace
levels of EES [35]. Because of the expected benefits of a positive
charge on the three target macrolides, extensive 'H NMR experi-
ments were performed to investigate the possible protonation of
the tertiary amino group of AZI, CLA and ROX at different pH values
via the chemical shift changes of the methyl protons of tertiary
amines. The measurements were performed by means of a water-
suppressed '"H NMR technique, using the commercially available
preparation of the medications (for details, see the experimental
protocol) with an external calibration of the spectra by DSS varying
the pH between 6.0 and 10.5. The obtained chemical shifts are
listed in Table 4. Furthermore, the full '"H NMR spectrum of CLA at a
pH of 7.4 is showed in Fig. 5A, and the proton signals of the
mentioned methyl groups at different pH values ranging from 7.2
to 9.2 are presented as Fig. 5B in the form of section plots. The
appropriate 'H NMR signals for AZI and ROX are enclosed as Fig. S1
and Fig. S2, respectively.

For all three macrolides - as in the case of EES [35] - the two
methyl groups connected to the tertiary amine have significantly
different chemical shifts in the protonated/positively charged and

Table 3
Some parameters of the obtained linear dependences I,vs v for azithromycin,
clarithromycin and roxithromycin; r — correlation coefficient.

Parameters I, vs v

Azithromycin
pH 7.2 74 7.0

Clarithromycin ~ Roxithromycin

Scan rate range (mVs~!)  25-175 25-450 10-200
Intercept (WA) —2.258 0.0714 -0.167
Slope (LA/mVs™1) —0.009 —0.008 —-0.013
r —0.995 -0.999 —0.996
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Table 4
TH chemical shifts of the signals for the N,N-dimethyl protons of azithromycin,
clarithromycin and roxithromycin at selected pH values.

Azithromycin Clarithromycin Roxithromycin

pH scn(ppm) pH scy(ppm) pH 5()(Ppm)
6.8 2.80 6.0 2.84 6.0 2.84
7.0 2.80 72 2.81 7.0 2.82
72 2.75 74 2.80 74 278
7.4 2.73 8.0 2.79 8.0 277
8.0 272 8.4 2.76 8.2 2.76
8.2 2.69 8.7 2.68 8.4 2.74
8.4 2.68 8.9 2.64 9.0 2.59
8.6 2.65 9.2 2.57 10.5 244
8.8 263
A

M\NW

B R N I N I N I I I T
5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 ppm

B

pH 8.9

pH 8.7

pH 8.4

pH 8.0

pH 7.4

AN
N
oy

T T T T T T
3.0 2.9 2.8 2.7 2.6 ppm

Fig. 5. 'H NMR spectra of clarithromycin at different pH values of Britton-Robinson
buffer with D,0: A) Full '"H NMR spectra of clarithromycin at a pH of 7.4 and B)
Section plots for N,N-dimethyl signals recorded for the following pH values: 7.2, 7.4,
8.0, 8.4, 8.7,8.9, and 9.2

deprotonated/uncharged form of the nitrogen atom. In the
protonated form for all three macrolides the nitrogen downfield
shifts of the target methyl signals were observed (shifted to higher
ppm values) because of the differences in the shielding effects of
the protonated and deprotonated nitrogen. Therefore, it can be

concluded that at pH 7.2, 7.4 and 7.0 the AZI, CLA, and ROX occur in
their protonated form, which is consistent with their pK, data from
the literature (see Table 1).

3.2. Optimization of the SW-AdSV analytical methods for the selected
macrolide antibiotics

In addition to the optimal selection of the pH for the target
macrolides, which provides well-shaped reduction signals in the
direct SWV measurements and allows the formation of
protonated amino groups at the same time, two additional
key parameters — accumulation potential (E;.c) and time (tacc) —
were considered. The adsorption behavior of the target analytes
was investigated for E,. ranging from —-0.50V to —1.50V for
ROX and CLA and from —0.50V to —1.60V for AZI; in all three
cases, the applied t,.. was increased from 0 to 60s in
increments of 5s while maintaining E,.. at constant values.
Between each measurement, the Hg(Ag)FE was renewed via
dipping in the amalgam pool. The I, vs t,.. dependences for the
selected E,.. values are presented in Fig. 6(A, C, E) together with
some SWV (curves marked Os in plots B, D, and F) and
SW-AdSV plots for AZI (B, curves marked 5, 10, 25, and 60s) and
for CLA and ROX (D and F, respectively, curves marked 5, 15, 25,
and 60s); the voltammograms recorded under the optimized
experimental conditions are marked in red.

Although for AZI the most intensive reduction signal was
obtained at an E,.. of —1.45V and a t,.. of 155, an accumulation
time of 10 s was selected as the optimal accumulation time for the
application of the SW-AdSV method because of the higher
symmetry of the peak shape. In the case of CLA, the reduction
signals obtained for an E,.. between —0.50V and —0.70V and a
tacc of 10 s were in some cases similar to those recorded for an E,¢c
between —1.0V and —1.25V, but, unfortunately, the repeatability
of these measurements was below the values required of reliable
analytical methods. The E .. of —1.05V and the accumulation time
of 15s were selected for CLA determination as the best
compromise between the desired signal shape, intensity and
reproducibility. During the optimization of the key parameters of
the SW-AdSV method for the determination of ROX, the most
intensive reduction signal was obtained for E,..=-1.00V and
tacc=20s, but — based on peak shape and the reproducibility of
the measurements - the E,..=—1.05V, and t,..= 15 s were chosen
as the optimal parameters. In any case, for all three macrolides
and the above-specified optimal E,. values, a t,.. ranging from 10
to 25s offered acceptable SW-AdSV measurement conditions.
Furthermore, it can be expected that the positively charged
macrolides should have a higher affinity for the Hg(Ag)FE with
more negative polarization, but — based on the obtained signals -
it can be proposed that at such potentials and generally in such
conditions, competitive hydrogen evolution occurs, which causes
the I, to decrease. The same effect was also observed when
increasing the t,.. up to 60s for the favored E,.. It should be
noted that the direct SWV reduction signals presented in Fig. 6
only serve as an illustration of the qualitative behavior of the
systems, because under such experimental conditions the
concentrations of all three macrolides are below the LOQ of
direct SWV methods.

3.3. Voltammetric determination of macrolide antibiotics by SWV and
SW-AdSV methods

Using the optimized experimental parameters, direct
cathodic SWV and SW-AdSV methods were developed for the
determination of all three macrolide antibiotics. The correlation
of the concentration of target analytes with the appropriate I,
values resulted in linear equations, as shown in Table 5 and
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Fig. 6. Influence of the accumulation potential (Ea.) and accumulation time (t,.) on the reduction signal of target macrolide antibiotics; peak intensity (I,) obtained at

different t,.: 0; 5; 10; 15; 20; 25; 30 and 60 s at selected E,. values: A) 1)
clarithromycin (c=0.79 wgmL~', pH 7.4) and E) 1) —1.00V; 2)

—1.30,2) —1.45,3) —1.50 V for azithromycin (c=1.98 wg mL~", pH 7.2); C) 1) —1.05V, 2) —1.25V for
—1.05V; 3) —1.25V for roxithromycin (c=0.79 pug mL~", pH 7.0). Some voltammetric signals obtained for the

following E.cc values (ti.c values are marked on the curves): B) —1.45V (azithromycin); D) —1.05V (clarithromycin) and F) —1.05V (roxithromycin).

Table 5

Analytical parameters for direct SWV and SW-AdSV methods obtained when using the Hg(Ag)FE for the determination of azithromycin (pH 7.2), clarithromycin (pH 7.4) and

roxithromycin (pH 7.0); LOD: limit of detection, LOQ: limit of quantitation.

Parameters Hg(Ag)FE/SWV Hg(Ag)FE/SW-AdSV

Azithromycin Clarithromycin Roxithromycin Azithromycin Clarithromycin Roxithromycin
Linear range (ugmL~') 4.81-23.3 1.96-28.6 1.48-25.9 1.0-2.46 0.05-0.99 0.10-0.99
Intercept (pA) 0.637 0.523 0.376 0.030 0.0879 0.085
Slope (WA/pwgmL™1) —0.405 -0.375 -0.391 —1.404 —5.262 -3.713
Correlation coefficient —0.994 —0.997 —0.998 —0.995 —0.999 —0.999
LOD (pgmL™") 144 0.59 0.44 0.30 0.015 0.03
LOQ (mgmL™1) 4.81 1.96 1.48 1.00 0.05 0.10

depicted for the CLA in Fig. 7. In all cases, the correlation
coefficients of linear equations were equal to or higher than
0.994. As for the direct SWV methods, the highest LOQ was
obtained for AZI, probably because of the fact that the analytical
signal appeared in a fairly negative potential range and was
relatively close to the end of the potential window of Hg(Ag)FE
at a pH of 7.2. When the pH of the supporting electrolyte
increased, the potential window expanded, but the sensitivity of

the method decreased due to the decreased concentration of
protons, which likely supported the electron exchange process.
The SWV methods proved to be suitable for the determination
of investigated antibiotics at concentrations ranging from
several wg mL~! to nearly 25 wgmL~" as the upper concentra-
tion range on the calibration curves. The reproducibility of
analytical signals was investigated in all three cases; based on
six consecutive measurements, the relative standard deviations
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Fig. 7. Characteristics of the elaborated analytical methods for clarithromycin at the Hg(Ag)FE in a Britton-Robinson buffer with a pH of 7.4: A) SWV signals recorded in the
concentration range of 1.96-28.6 g mL™! (inset: corresponding calibration curve), B) reproducibility of direct SWV analytical signals for 5.66 g mL™" (6 repetitions), C) SW-
AdSV signals in the concentration range of 0.05-0.99 g mL~" (inset: corresponding calibration curve), D) the reproducibility of SW-AdSV analytical signals (6 repetitions) for
0.40 pg mL~". Dashed lines represent the voltammograms of the corresponding baselines at pH 7.4. For SW-AdSV measurements E,.. —1.05V and t, 15s.

(RSD) were 4.7%, 0.44% and 0.88% for AZI, CLA and ROX,
respectively. As for the SW-AdSV methods, the one for CLA had
LOQ value of 0.05ugmL~!, the LOQ achieved for ROX was
0.10 g mL~!, while in the case of AZI the LOQ was higher and
amounted to 1.0ugmL~L For CLA and ROX the upper
concentration of the calibration curve was 0.99 wgmL~', while
in the case of AZI it was higher, i.e. 2.46 g mL~’. The RSD of the
SW-AdSV procedures did not exceed 1.0% based on six
consecutive measurements for AZI (1.39 wgmL~"), CLA (0.40 g
mL~!) and ROX (0.40 pgmL™1).

When comparing the outputs of direct SWV and SW-AdSV
methods, the LOQ of the adsorptive method is lower by ca. 5, 40,
and 15 times for AZI, CLA, and ROX, respectively. The obtained
results indicate that the most sensitive SW-AdSV method was
obtained for CLA, but in all cases the protonated macrolides
supported adsorptive measurements, significantly increasing the
sensitivity of the developed methods.

3.4. Voltammetric determination of roxithromycin in pharmaceutical
preparation

Using the optimized SW-AdSV method and the Hg(Ag)FE,
ROX was determined in an appropriately prepared solution of
the commercial formulation Runac® with pH 7.0 (Fig. 8). After
recording of baseline (curve 1) and voltammogram of commer-
cial formulation with nominal concentration of ROX 0.3 pgmL™!
(based on the declaration of the manufacturer, curve 2), three
consecutive standard additions were performed (curves 3-5), so
that the ROX concentration in voltammetric vessel, thanks to
the standard solution, was in the range of 0.10-0.30 p,gmL*],
which resulted in the found amount of 0.297 wgmL~' of ROX
(Fig. 8. inset). The content of ROX in the tablet based on three
repeated measurements was 148.8; 150.3 and 149.3mg per
tablet.

-8

61

I/ WA

E/V

Fig. 8. Determination of the concentration of roxithromycin in the pharmaceutical
preparation Runac® by means of the standard addition method. SW-AdSV s of
baseline (1), sample of Runac™ (2), three standard addition of roxithromycin (3-5,
with their final concentrations in the voltammetric vessel: 0.10; 0.20 and
0.30 pgmL ™). Eaec —1.05V and t,.. 155s. Inset: appropriate analytical curve.

The average content of ROX in the tablet form (Runac®),
obtained by determination of ROX by SW-AdSV method was
149.5 mg per tablet which is in good agreement with the declared
content (150 mg/tablet). The reproducibility of the analytical
signal, expressed as the RSD, was 0.5%. Having in mind the basic
requirement of European Pharmacopoeia in terms of errors in the
accuracy of the measurements, the developed analytical method
fulfilled these criteria, and confirmed that in the analyzed tablet
the declared amount of ROX was found.

Further investigations are planned concerning of the broaden-
ing of application area of the developed Hg(Ag)FE based method,
especially the SW-AdSV for the trace level determination of
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different physiologically important compounds with amino
functional group(s) and different electroactive centres because
in some cases the protonated form of the molecules thanks to their
ammonium group(s) could have enhanced adsorption affinity to
the appropriately polarized Hg(Ag)FE surface allowing the trace
level determination of target compound(s). Additionally, the
applicability of the elaborated SW-AdSV methods for CLA, ROX
and AZI can be tested for their trace level determination in samples
of different origin as samples of human and veterinary medicine,
waste-samples of environmental importance and various food-
stuffs.

4. Conclusions

In the presented work, SWV and SW-AdSV methods were
applied in conjunction with the renewable silver-amalgam film
electrode (Hg(Ag)FE) for characterization and determination of
three macrolide antibiotics - azithromycin (AZI), clarithromycin
(CLA) and roxithromycin (ROX) in a Britton-Robinson buffer as the
supporting electrolyte, with a pH ranging from 4.0 to 11.9. The
reduction peaks recorded for all investigated macrolides were in
the potential range between —1.5 and —1.9V vs SCE in a wider pH
range depending on the basic behavior of their electroactive
centers. With analytical peak symmetry and intensity (I,) as the
criteria, the pH values selected as optimal for the determination of
target analytes were 7.2, 7.4, and 7.0 for AZI, CLA, and ROX,
respectively. Based on water-suppressed '"H NMR measurements in
the Britton-Robinson buffered media with a pH between 6.0 and
10.5, it can be concluded that at the optimal pH values the target
analytes are present predominantly in their protonated form via
their tertiary amino group. Furthermore, the appropriately
polarized Hg(Ag)FE electrode favored the adsorption of target
analytes in the positive ionic form.

When the optimized direct SWV method was applied, linear
correlations between the concentration of the target analytes and
the I, values were obtained for all three macrolides in the
concentration ranges of 4.81-23.3 pgmL~!, 1.96-28.6 ugmL ',
and 148-259ugmL~' in the case of AZI, CLA, and ROX,
respectively. The relative standard deviation (RSD) was lower
than 5% in all cases. After the optimization of the accumulation
potential and accumulation time for all three macrolides, the
applied SW-AdSV methods exhibited linear I, responses in
concentration ranges lower than in the case of SWV, with the
following respective values for AZI, CLA and ROX: 1.0-2.46 pug
mL~", 0.05-0.99 pgmL ' and 0.10-0.99 wg mL~". The RSD of the
analytical signals was lower than 1.0% in all investigated cases.
Developed SW-AdSV method was applied for determination of
ROX in the pharmaceutical preparation Runac® and the obtained
average content of ROX (149.5 mg/tablet, with RSD of 0.5%) is in
good agreement with declared content which is 150 mg/tablet.

For the three investigated macrolide antibiotics, the protonated
form of the tertiary amino group(s) at the appropriate accumula-
tion potential and time supported the adsorption of target
molecules on the Hg(Ag)FE surface, allowing highly sensitive
SW-AdSV methods of their trace level analysis, especially in the
case of CLA and ROX. These findings are consistent with our recent
paper concerning the application of an Hg(Ag)FE-based SW-AdSV
method for the determination of another amino functional group
containing electroactive macrolide antibiotic derivative — eryth-
romycin ethylsuccinate [35].
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