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Abstract 

Oscillatory dynamic states as one form of selforganization of nonlinear systems can be found in 
almost all sciences, like mechanics, physical chemistry or biomedicine. Although origin of 
these oscillations is different, computational challenges in modelling oscillatory phenomena 
remain similar in all fields. Since 1979 researchers from Belgrade’s group perform systematic 
examinations of oscillatory reactions. As stability of steady states is the central point in 
modelling oscillatory reactions, in last 10 years they have adapted and improved powerful tool 
of the Stoichiometric Network Analysis for this goal. Moreover, bifurcations of few types were 
identified in several models of oscillatory reactions. Even very complex chaotic motions in 
phase space were characterized and quantified by several numerical techniques. Multiple time 
scale behaviour is found within the core of the complex dynamic behaviour of mixed-mode 
oscillations. Analytical applications were developed, too. 

Keywords: Oscillatory reactions, Nonlinear dynamics, Stoichiometric Network Analysis, 
Numerical techniques for detection of periodic and aperiodic dynamic states, Analytical 
determination 

1. Introduction 

Some nonlinear reaction systems, when they are far from thermodynamic equilibrium, can be in 
an oscillatory dynamic state. These oscillations can be detected and monitored in time through 
the concentrations, temperature, electrochemical, spectroscopic or any other measurable 
properties of investigated reaction system. Such oscillatory reaction systems in which 
spontaneous periodic changes in the concentration of intermediates are observed were 
discovered accidentally. The detailed description of oscillatory reactions discovery can be found 
in several papers (Winfree 1984; Zhabotinskii 1991; Stávek et al. 2002; Epstein et al. 2006; 
Field et al. 1985; Kolar-Anić et al. 2017a; Kolar-Anić et al. 2017b; Kolar-Anić et al. 2017c; 
Kolar-Anić et al. 2017d), and books related to this subject (Nicolis et al. 1977; Epstein et al. 
1998; Field et al. 1985). Investigations of such systems essentially changed our understanding 
of reaction systems in general and the way that contemporary scientists were thinking about 
them. It was found that these phenomena can be explained only by the main relations of 
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nonlinear dynamics and basic statements of Nonequilibrium thermodynamics, two compatible 
sciences that investigate general phenomena of self-organization.  

1.1. Discovery of homogenous oscillatory reactions - The short overview 

The first study of experimentally controlled oscillatory dynamic states in a homogeneous 
reaction system was published in 1921 (Bray 1921). In this paper William C. Bray investigated 
the dual role of hydrogen peroxide during its decomposition in an acid solution of iodate ions. 

 2
D

2 2 2
3

k2 H O 2H O O
IO , H− + +→  (D) 

Since in the considered solution the global reaction (D) is the result of presence of two 
parallel processes where the reduction of iodate to iodine (R) and the oxidation of iodine to 
iodate (O) are performed, 

 R
3 2 2 2 2 2

k2IO 2H 5H O I 6H O 5O− ++ + + +→  (R) 

 O
2 2 2 3 2

kI 5H O 2IO 2H 4H O− ++ + +→ , (O) 

he concluded that the periodic domination of one of them can cause the oscillations of 
intermediate iodine species concentrations. Bray continued these investigations with his student 
Herman Liebhafsky (Bray et al. 1931; Liebhafsky 1931a; Liebhafsky 1931b; Liebhafsky 1932a; 
Liebhafsky 1932b; Liebhafsky et al. 1933; Liebhafsky 1934) and the aforementioned reaction 
was subsequently named the Bray-Liebhafsky (BL) oscillatory reaction. 

Around 1950, Boris Pavlovich Belousov discovered independently the second 
homogeneous oscillatory reaction. (Field et al. 1985) He observed similar dynamic behaviour in 
a solution of citric acid, bromate and ceric ions (Ce4+), where the yellow solution periodically 
cleared and became yellow again. However, he had serious troubles to publish these results. His 
attempt to publish them in 1951 did not succeed, since general opinion at that time was that this 
kind of dynamic behaviour is not in accordance with the second law of thermodynamics. After 
several years, in 1958, he published his work in the Book of abstracts at the Conference of 
radiation biology. (Belousov 1958) Later, posthumously, his original manuscript from 1951 was 
published in Russian (Belousov 1981) and in English (Belousov 1985). Anatol M. Zhabotinskii, 
a graduate student in biophysics, continued Belousov´s initial work during the 1960´s. He 
replaced the citric acid by malonic acid (Zhabotinskii 1964) and created the chemical system in 
which various concentration oscillations have been observed. Moreover, he added the redox 
indicator ferroin, to enable visualisation of the oscillation through periodical colour changes 
from red to blue and gave rise to spatio-temporal waves in a thin layer. This reaction, named the 
Belousov-Zhabotinskii (BZ) oscillatory reaction, became a very popular model system and 
attracted the attention of many scientists working in the fields of Nonequilibrium 
thermodynamics and Nonlinear dynamics. 

The first explanation showing that this kind of dynamic behaviour is possible in 
homogeneous isothermal reaction systems came from Ilya Prigogine1 who introduced the 
concept of nonequilibrium thermodynamics and clearly distinguished entropy production in 
closed and open systems. Thus, it was demonstrated that nonequilibrium stationary states are 
not equal to the equilibrium ones, and that selforganization phenomena under these conditions 
differ from one another. Finally, dissipative structures are introduced to distinguish 

                                                 
1 Prof. Ilya Prigogine was the Nobel Prize winner for chemistry in 1977. 
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nonequilibrium selforganization phenomena from the ones found in an equilibrium (Prigogine 
1977; Nicolis et al. 1989; Nicolis 1995). 

The basic theoretical foundations for modelling the homogeneous oscillatory processes 
originate from Alfred Lotka who already at that time (1910-1925) postulated the mathematical 
model appropriate to simulate oscillatory evolution in reaction and population systems (Lotka 
1910; Lotka 1920a; Lotka 1920b; Lotka 1925). His investigations together with those 
performed by Vito Voltera (1926) to explain ecological problems, comprise the Lotka-Voltera 
model which is the preferred model for describing predator-pray interactions. This model also 
formed the basis for several famous models, such as Brussellator, (Lefever et al. 1988) 
Oregonator (Field et al. 1974) and autocatalator, (Gray et al. 1986; Scott 1987; Gray et al. 1990) 
which were proposed to explain self-organized phenomena obtained experimentally in several 
complex nonlinear reaction systems (Belousov 1958; Zhabotinskii 1964; Briggs et al. 1973). 
Although these models had an important role in explaining the existence of stable and unstable 
nonequilibrium stationary states in nonlinear reaction systems, as well as the possible self-
organizing phenomena in these states, a straightforward correlation between reaction species 
and mathematical variables was not established for a long time. The main problem was in the 
fact that direct autocatalytic reactions, necessary in the model to simulate oscillatory dynamics, 
do not appear in real reaction systems. The first model where a direct autocatalytic step was 
successfully substituted by a realistic autocatalytic loop was proposed in 1987 by Guy Schmitz 
who was working on the modelling of the Bray-Liebhafsky oscillatory reaction (Schmitz 1987). 
Building on the original model proposed by Schmitz, a more powerful variant of the model was 
developed (Kolar-Anić et al. 1992; Kolar-Anić et al. 1995a) that could simulate complex 
dynamical structures such as mixed-mode oscillations, period doubling and deterministic chaos 
(Kolar-Anić et al. 2004a; Kolar-Anić et al. 2004b; Ivanović et al. 2008; Ivanović et al. 2009; 
Kolar-Anić et al. 2010; Ivanović et al. 2011; Čupić et al. 2013). Thus, the connection between 
experimental and theoretical investigations was established and proved by numerical 
investigations. 

1.2. The investigations of Belgrade’s group - historical background 

Since 1979 the Belgrade’s group emerged with systematic examinations of oscillatory reactions. 
The first of our results were related to the phenomenological studies of their dynamic 
behaviours and reaction kinetics (Anić et al. 1985; Anić et al. 1986a; Anić et al. 1986b; Anić et 
al. 1987; Anić et al. 1988; Anić et al. 1989a; Anić et al. 1989b; Anić et al. 1991; Anić et al.  
1996; Anić. 1997a; Anić et al. 1997b; Anić et al. 1998; Anić et al. 2007; Anić et al. 2009; 
Blagojević 2000; Blagojević et al. 2008; Blagojević et al. 2009; Ćirić et al. 2000; Milenković et 
al. 2012; Radenković 1997; Stanisavljev et al. 1995; Stanisavljev 1997; Stanisavljev et al. 
1998a; Stanisavljev et al. 1998b; Stanisavljev et al. 2002; Stanisavljev et al. 2011; Vukojević et 
al. 2000; Vukojević et al. 2002). Furthermore, various methods were developed for formal 
kinetics of homogenous oscillatory process (Anić et al. 1986a; Anić et al. 1987; Anić et al. 
1988; Anić et al.  1996; Anić et al.  2007), as well as for the stability analysis of the postulated 
models (Kolar-Anić et al. 1995b; Schmitz et al. 2000). All investigations were used for different 
purposes, starting with the development of new analytical methods (Pejić et al. 2001; Pejić et al. 
2003; Pejić et al. 2005; Pejić et al. 2006; Pejić et al. 2007a; Pejić et al. 2007b; Pejić et al. 2007c; 
Pejić et al. 2009; Pejić et al. 2011; Pejić et al. 2012; Pejić et al. 2013; Pejić et al. 2014a; Pejić et 
al. 2014b; Pejić et al. 2016; Vukojević et al. 1999; Vukojević et al. 2001) and the methods for 
determining the catalyst’s activity (Čupić et al. 1995; Terlecki-Baričević et al. 1995; Pejić et al. 
2001; Anić et al. 2009; Maksimović et al. 2011), as well as the influence of external fields on 
the evolution of the chemical oscillator (Stanisavljev et al. 2004; Stanisavljev et al. 2005; 
Stanisavljev et al. 2006; Stanisavljev et al. 2014) to modelling of biochemical processes (Jelić et 
al. 2008; Jelić et al. 2009; Čupić et al. 2016b; Čupić et al. in press; Kolar-Anić 2017d; 
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Marković at. al 2011a; Čupić et al. in press; Marković et al. 2011b; Marković et al. 2016;) etc. 
(Anić et al. 1994; Čupić et al. 1996; Begović et al.2004). 

Main contributions of the Belgrade group to the research of oscillatory reactions with 
emphasis on the results from the latest 10 years are given in the Section 2. The Belgrade group 
gave its contribution to both experimental investigation and theoretical description of several 
oscillatory systems including BL, BZ, Briggs-Rauscher (BR), hypothalamic–pituitary–adrenal 
(HPA), and others. In Subsection 2.1 the experimental investigations related to controlled 
generation of various dynamical states and bifurcations between them including precise 
quantification of their complexity using several methods, such as Power spectrum, Lyapunov 
exponents, Return maps, etc, are presented. Next, also important track of experimental 
investigation is given in Subsection 2.2. In fact, this part refers to the formal kinetic analysis of 
homogeneous oscillatory reactions using (the traditional way and) the methods specially 
developed for oscillatory reactions. Finally, the developed applications of oscillatory reaction 
systems in analytical procedures for determination of pharmaceutically active substances and 
their antioxidative activity are given in the Subsection 2.3. On the other side, the results of 
modelling the considered reaction systems are presented in the Subsection 2.4. For achieving 
best performances of the developed models, sophisticated mathematical apparatus of SNA was 
used and improved. Also, there is a brief review of the influences of microwave (MW) and 
radiofrequency (RF) fields on the BL reaction (Subsection 2.5). Instead of conclusions, our 
vision of future trends in the field is given in the Section 3. 

2. Contemporary research in Belgrade group 

From the beginning as well as in the last ten years, we analyze oscillatory dynamics of reaction 
systems, more precisely, dynamical states of chemical, physicochemical and biochemical 
reaction systems, both experimentally and theoretically using numerical method to correlate 
obtained results. Although our systems are different from mechanical oscillators, we also 
examine stability of the states, oscillatory regions, bifurcation points, periodic and aperiodic 
oscillations (deterministic chaos), the standard notions in Nonlinear dynamics. Necessary 
mathematical equipment is similar or even the same as the one applied in other scientific fields. 
Thus, the obtained deterministic chaos in reaction system must be analysed and proved by 
common methods for deterministic chaos.  

2.1 Controlled generation of various dynamic states 

Controlled generation of various dynamic states, from regular oscillatory to the chaotic ones, 
has been our main aim from the beginning. The experimental results stimulated theoretical 
investigations and vice versa (Fig.1). Thus, experimentally obtained mixed-mode and chaotic 
states influenced their modelling. When we found that our model of the BL reaction confirms 
the existence of the deterministic chaos in this system (Kolar-Anić et al. 2004a; Kolar-Anić et 
al. 2004b) the attention in our experimental investigation moved to even more complex 
oscillations (Schmitz et al. 2006). Consequently, the exotic dynamic states were generated 
under controlled conditions in the BL system (Pejić et al. 2011; Bubanja et al. 2016) and also in 
the BR reaction perturbed by phenol (Čupić et al. 2014). As a result, the possibility to generate 
and control the intermittent dynamics in the BL reaction (Fig. 2) is demonstrated for the first 
time, without addition of any perturbing substances. 
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Fig. 1. Oscillograms in BZ system obtained experimentally A) and numerical simulation B) for 

the temperature 35°C and initial concentration of malonic acid  (mol dm-3): a) 8,00 × 10-3; b) 
9,00 × 10-3; c) 1,20 × 10-2; d) 1,60 × 10-2; e) 2,20 × 10-2; f) 3,20 × 10-2; g) 4,30×10-2; 

Oscillograms obtained by numerical simulation are based on BG (1-12) model 

 
Fig. 2. Oscillogram (potential vs time) of the intermittent dynamic state obtained in Bray-
Liebhafsky oscillatory reaction generated in continuously fed stirred tank reactor (CSTR) 

Methods for characterization of intermittencies were developed and deterministic nature of 
the phenomena is proved in both BL and BR system. In general, exotic dynamic states (Fig.3) 
were characterized by various mathematical techniques, starting from the Lyapunov exponents, 
Poincare sections, return maps, multifractal distributions, etc (Kolar-Anić al. 2006; Pejić et al. 
2009; Čupić et al. 2014; Ivanovo et al. 2008; Ivanović et al. 2009; Ivanović et al. 2011; Čupić et 
al 2013; Blagojević et al. 2015; Bubanja et al. 2016; Čupić et al. 2016a). 
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(a)      (b) 

Fig. 3. Numerical simulations of the complex mixed mode oscillations in the BL reaction 
model. (a) Time series; (b) Phase space attractor 

The dynamic states and kinetics of Belousov–Zhabotinsky reaction was also examined 
(Blagojević et al. 2008; Blagojević et al. 2009). We have examined the influence of temperature 
and malonic acid concentration on the dynamic states of the BZ system. Improved variant of the 
model was proposed and excellent agreement is achieved between the experiment and numerical 
simulations (Blagojević et al. 2011; Blagojević et al. 2013). 

2.2 Evaluation of kinetic parameters 

Almost all methods for evaluation of kinetic parameters of oscillatory reactions are developed 
on the BL reaction (Anić et al. 1986a; Anić 1987; Anić et al. 1988; Anić et al. 1989a; Anić et al. 
1996a; Anić et al. 1996b; Anić 1997a; Anić et al. 1997b) and later applied to other ones 
(Blagojević et al. 2000; Blagojević et al. 2008; Blagojević et al. 2009). So, it was the case with 
the rate constants of overall process (D), as well as the reaction routes (O) and (R) and its 
corresponding apparent activation energies and also order and pseudo orders of overall reaction 
(D). The two competing routes (R) and (O) were clearly obtained both experimentally and 
theoretically by application of the same phenomenological methods on the experimentally 
obtained results as well as on the proposed models. 

The BL reaction was also used as the reaction medium for the catalyst characterization 
(Anić et al. 2009; Maksimović et al. 2011). Cobalt ions on porous polymer support were used to 
perturb the kinetics of the BL system. Catalytic activity was then evaluated based on apparent 
activation energies. By calculating apparent activation energies of the reduction and oxidation 
processes in the BL reaction and their dependence on the mass of added catalyst, the oxidative 
catalytic activity of the tested catalyst activity was evaluated. 

2.3 Analytical procedures 

The oscillatory reactions with at least two reaction routes and very low concentrations of 
intermediate species are extremely sensitive on perturbations and therefore appropriate for 
analytical purposes. Using them, analyte pulse perturbation techniques (Fig. 4) were developed for 
determination of paracetamol, ascorbic acide, morphine, 6-monoacetylmorphyne, piroxicam, and 
also for uric acid in human urine (Pejić et al. 2006; Pejić et al. 2007a; Pejić et al. 2007b; Pejić et al. 
2007c;  Pejić et al. 2012; Pejić et al. 2014). 
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Fig. 4. Potentiometric responses of BL analyte matrix, which is originally in the stationary state, 

obtained after the pulse perturbation by various concentrations of vitamin B1 (a) and B2 (b). 
Arrows indicate the moment of perturbation 

2.4 Modeling 

For controlled generation of various dynamic states and prediction of dynamic states of the 
reaction system, the model of the process ought to be postulated. Modeling procedure is a 
serious task. It depends very much on the system under consideration. For this purpose, theory 
of the Stoichiometric Network Analysis was improved and used for identification of the 
instability regions in several models of the oscillatory reactions (Jelić et al. 2008; Schmitz et al. 
2008; Jelić et al. 2009; Kolar-Anić et al. 2010; Čupić et al. 2011; Marković et al. 2011a; 
Maćešić et al. 2012; Maćešić et al. 2015a; Maćešić et al. 2015b; Maćešić et al. 2016; Čupić et 
al. 2016b; Čupić et al. 2016c). Here, as in the case of formal kinetics, the main steps in 
modelling procedure were developed on the BL reaction and then applied to the other systems. 
Thus, multiple time scale dynamics of the BL reaction model was identified as a source of the 
mixed-mode oscillations (Fig. 5) and tourbillion mechanism was recognized (Čupić et al. 2013). 
Complex bifurcations were also found in this model and confirmed by both numerical evidence 
and theoretical considerations (Stanković et al. 2013; Stanković et al. 2016). Details of the 
reaction mechanism were studied in the model of the BZ reaction (Fig. 1B) and complex 
oscillations were also discovered there (Blagojević et al. 2011; Blagojević et al. 2013 and Table 
1). 
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(BG1)      Br-
 + HOBr + H+  → Br2 + H2O  

(BG-1)     Br2 + H2O → Br-
 + HOBr + H+   

(BG2)      HBrO2 + Br- + H+ → Br2O + H2O  

(BG3)      Br2O + H2O → 2HOBr 

(BG-3)     2HOBr → Br2O + H2O 

(BG4)      Br- + BrO3
−

 + 2H+ → HOBr + HBrO2 

(BG5)      2HBrO2 → BrO3
− 

 + HOBr  + H+ 

(BG6)      BrO3
− + HBrO2 + H+ → 2BrO2

• + H2O 

(BG-6)     2BrO2
• + H2O → BrO3

−
 + HBrO2 + H+  

(BG7)      Ce3+ + BrO2
•  + H+ → Ce(IV) + HBrO2 

(BG-7)     Ce4+ + HBrO2 → Ce3+ + BrO2
• + H+ 

(BG8)      MK + Br2 → BrMK + Br- + H+ 

(BG9)      MK + Ce4+→ Ce3+ + P1 + H+ 

(BG10)    BrMK + Ce4+→ Ce3+ + Br − + P2 

(BG11)    MK  + Br2O → BrMK + HOBr 

(BG12)    Br2 (rast.) → Br2 (g) 

Table 1. Model BG(1-12) of the BZ reaction consisting of 12 reactions: BG1-BG12. 
(Blagojević et al. 2008) Remark: P1 and P2 are the products 
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Fig. 5. Critical manifold of the BL reaction model and numerically simulated phase space 

trajectory over it. Fold line of the critical manifold is also given 

Much of our work in the last decade was dedicated to the investigation of the HPA axis, 
and influences of several perturbing substances on its dynamics (Marković et al. 2011b; 
Marković et al. 2016; Čupić et al. 2016b; Čupić et al. in press). Due to inherent ultradian 
oscillations, our model of the HPA axis has a phase sensitive response on perturbations. This 
property was crucial for successful simulation of numerous effects which were previously 
unexplained, like different reaction on the same stress during night and day. 

2.5 Oscillatory reactions in external fields 

The researches of the influence of external fields were commenced in 2014 (Stanisavljev et al. 
2004; Stanisavljev et al. 2005). This investigation persists until the present day. So, the 
influence of MW (2.45 GHz) and RF (30-120 MHz) electromagnetic radiation on the oscillatory 
reactions was examined at the constant bulk temperature (Stanisavljev et al. 2006; Stanisavljev 
et al. 2007; Stanisavljev et al. 2011; Stanisavljev et al. 2014). It was found that highly absorbed 
microwaves decrease the number of oscillations where as reaction dynamics is not affected by 
RF radiation. 

3. Perspectives  

Belgrade group is continually spreading its interests in the area of new oscillating reaction 
systems, new experimental and theoretical techniques, and it keeps producing new insights in 
the reaction mechanism underlying complex dynamical states. The new contributions to the 
understanding of the intermittent behaviour in the BL reaction can be expected. Further 
progress in modelling HPA axis under basal and stress conditions is also in front of us. 

Acknowledgements This work was partially supported by the Ministry of Education, Science 
and Technological Development of the Republic of Serbia (Grants no. 172015 and 45001). We 
are grateful to our collaborators Nataša Pejić, Slavica Blagojević, Ana Ivanović-Šašić, Jelena 
Maksimović, Stevan Maćešić and Itana Nuša Bubanja for the help during the preparation of the 
manuscript. 

 



Lj. Kolar-Anić et al: Advances made by Belgrade's group in research of oscillatory reactions 

 

160 
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Резиме 

Осцилаторна динамичка стања, као облик самоорганизације нелинеарних система, могу 
се наћи у готово свим наукама, као што су механика, физичка хемија или биомедицина. 
Иако је порекло ових осцилација различито, тешкоће у моделирању осцилаторних 
феномена су заједничке на свим пољима. Од 1979. године истраживачи Београдске групе 
систематски истражују осцилаторне реакције. Како је стабилност устаљених стања 
кључни проблем у моделирању осцилаторних реакција, у последњих 10 година они су за 
ту намену усвојили и унапредили моћну технику Анализе стехиометријских мрежа. 
Затим је идентификовано више типова бифуркација у неколико модела осцилаторних 
реакција. Чак су и веома сложена хаотична кретања у концентрационом фазном простору 
окарактерисана и квантификована различитим нумеричким техникама. Установљено је 
да извор осцилација мешаних модова и других уочених сложених облика динамике 
представљају процеси који се одигравају на различитим временским скалама. Такође су 
развијене и аналитичке примене осцилаторних реакција. 

Кључне речи: осцилаторне реакције, нелинеарна динамика, Анализа стехиометријских 
мрежа, нумеричке технике за детекцију периодичних и апериодичних динамичких стања, 
аналитичка детерминација 
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