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Abstract. Novel soy alkyd-based nanocomposites (NCs) were prepared using TiO, nanoparticles (NPs) surface modified
with different gallates, and for the first time with imine obtained from 3,4-dihydroxybenzaldehyde and oleylamine
(DHBAOA). Unmodified and surface modified anatase TiO, NPs were characterized by transmission electron microscopy
(TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and ultraviolet-visible (UV-Vis) spec-
troscopy, while the amount of adsorbed ligands was calculated from thermogravimetric analysis (TGA) results. Surface mod-
ification of TiO, NPs was confirmed by FTIR and UV-Vis spectra. The influence of the TiO, surface modification on the
dispersion of TiO, NPs in alkyd resin, thermal, barrier and mechanical properties and chemical resistance of alkyd resin/
TiO, NC coatings was investigated. The obtained results revealed that glass transition temperature of all investigated NCs
is lower than for pure resin, that the presence of TiO, NPs surface modified with gallates had no significant influence on the
thermooxidative stability of alkyd resin, while TiO,-DHBAOA NPs slightly improved alkyd resin thermooxidative stabil-
ity. Also, the presence of surface modified TiO, NPs improved barrier properties, increased stress and strain at break and
hardness and chemical resistance and decreased modulus of elasticity and abrasion resistance of alkyd resin.

Keywords: thermal properties, alkyd-based coatings, TiO, nanoparticles, surface modification, mechanical properties

1. Introduction the ratio and type of the applied reactants, the oil

Alkyds are the most widely used synthetic resins due
to their relatively low cost, compatibility with other
polymers and various interesting properties which
are highly desirable for the application in paint indus-
try. The versatility of alkyd resins originates from
the fact that their properties such as drying time,
gloss retention, anticorrosion, mechanical, thermal
and barrier properties, durability, flame retardancy,
water and chemical resistance and adhesion can be
easily tailored and improved by simple changing

*Corresponding author, e-mail: edzunuzovic@tmf.bg.ac.rs
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length or by modification of alkyd resins with differ-
ent reactive compounds [1]. Alkyd resins are obtained
by polycondensation of polyol (glycerol, trimethy-
lolpropane, pentaerythritol, etc.) with dicarbonic acid
or its anhydride derivative in the presence of fatty
acids or oil of synthetic or natural origin (soya bean
oil, linseeds oil, sunflower oil, castor oil, etc.). The
content of oil, which corresponds to the oil length,
has significant influence on the properties of alkyd
resins [1, 2]. Depending on the composition of the

916



Radoman et al. — eXPRESS Polymer Letters Vol.9, No.10 (2015) 916-931

fatty acids used for the synthesis, alkyd resins can be
cross-linked (dried) using either oxidative drying
(unsaturated fatty acids) or non-oxidative drying
(saturated fatty acids) mechanism [2—4].

Alkyd resins based on non-toxic, biodegradable, mul-
tifunctional, low cost, physically and chemically
stable and eco-friendly renewable resources such as
vegetable oils show properties comparable with prop-
erties of products based on petroleum, and therefore
have found their industrial application in paints and
surface coatings [5—19]. Especially interesting low
cost vegetable oil is soy bean oil, which has balanced
composition of unsaturated and saturated fatty acids
and it can reduce yellowing and oxidative degrada-
tion of resin [2, 16—19]. Araujo et al. [16] have shown
that anticorrosive properties of alkyd paints pre-
pared with soy bean oil are similar to the anticorro-
sive properties of alkyd resins synthesized using lin-
seed oil, but water vapor and ions permeability in
freestanding film, as well as adhesion loss, depend on
the type of pigment and vegetable oil used in the for-
mulation of alkyd resins. By comparing properties of
short oil-modified alkyd resins prepared using soy
bean, corn, rice bran, sunflower and dehydrated cas-
tor oil, it was revealed that soy bean based alkyd resin
show the best sea water resistance [17]. Nalawade
et al. [19] have used modified soy bean oils as reac-
tive diluents for the preparation of long oil alkyd
resin, which had significantly reduced viscosity.
Different commercial, micro-sized, inorganic pig-
ments are usually included in alkyd resin formula-
tions, and their presence can improve mechanical,
optical and anticorrosive properties of the coatings
[20, 21]. However, due to their micro-sizes, densities
different from the density of alkyd resins, and other
various effects, sedimentation of pigments occurs,
leading to different problems considering final alkyd-
based coatings (viscosity changes, covering power
deterioration, poor adhesion, loss of optical trans-
parency, low scratch and impact resistance, delami-
nation, reduction of the storage time, etc.) [22].
Sedimentation issue can be avoided if small quanti-
ties of nano-sized pigments are used in the alkyd resin
formulations instead of micro-sized ones. The main
advantages of the application of nanoparticles (NPs)
for the preparation of polymer nanocomposites (NCs)
are high surface to volume ratios and high interfa-
cial reactivity of NPs and properties which are sig-
nificantly different from the properties of their bulk
counterparts and micro- and macro-additives [23].

By adequate surface modification of NPs it is possi-
ble to enable uniform distribution of NPs through
the polymer matrix and better interaction with poly-
mer in order to achieve significant improvement of
properties of polymer materials with simultaneous
decrease of the final product price [24, 25]. The
influence of different nano-sized pigments on the
properties of alkyd-based NCs was extensively
investigated in the literature [26—37]. It has been
shown that application of zinc oxide (ZnO) as nano-
sized pigment improves mechanical and thermal
properties [26] and corrosion resistance [27] of alkyd-
based coatings. Furthermore, the presence of tita-
nium dioxide (TiO,) NPs affects the rheological prop-
erties of alkyd resin [28], improves corrosion resist-
ance [29, 30] and hardness of alkyd coatings [29],
and can be applied for the preparation of coatings
with antibacterial properties [31]. Also, hematite
(Fe,O3) NPs are proven to be useful nano-pigment
which enhances mechanical and UV blocking prop-
erties [32] and corrosion resistance [32, 33] of alkyd-
based waterborne coatings. The presence of nano-
ferrite (Fe;O4) in soy alkyd coating improved ther-
mal stability, physico-mechanical properties and cor-
rosion resistance [34]. The addition of aluminum
oxide (Al,O3) nano-sized pigment into the alkyd
coatings improved its corrosion [35, 36] and UV
resistance and mechanical properties, without alter-
ing the optical clarity of the prepared coating [36].
Alkyd paint prepared using molybdenum oxide
(Mo0O3) NPs showed good antibacterial properties
against pathogenic bacteria [37].

In our previous studies, we have synthesized and
examined properties of NCs based on epoxy resin
and TiO, NPs surface modified with propyl, hexyl
and lauryl gallate [38], as well as the influence of the
size of TiO, nanoparticles, their concentration and
type of the surface modification on the rheological
properties of alkyd resin [28].

Since there is constantly increasing demand for
developing environmentally friendly materials and
taking into account that alkyd resins are one of the
most applied resins and TiO; is one of the most
applied pigment in coating industry, in the present
study we have made an effort to prepare novel alkyd-
based NCs with improved properties, by utilizing
differently surface modified TiO, NPs and alkyd
resin based on vegetable oil. Different types of lig-
ands, grafted on the surface of TiO, NPs, were
applied in order to improve interactions between
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NPs and polymer matrix and consequently to enhance
the properties of the alkyd-based coatings.

In the present study we have used TiO, NPs surface
modified with hexyl (C6), lauryl (C12) and cetyl
(C16) gallate, and imine obtained from 3,4-dihy-
droxybenzaldehyde and oleylamine to prepare novel
soy alkyd-based NCs. The TiO, NPs were synthe-
sized using acid catalyzed hydrolysis of titanium iso-
propoxide. The average size and size distribution of
the synthesized TiO, NPs were determined by trans-
mission electron microscopy (TEM), their crystal
structure was investigated by X-ray diffraction
(XRD) measurements, while surface modified TiO,
NPs were characterized using TEM, XRD, FTIR
and UV/VIS spectroscopy. The amount of adsorbed
molecules on the surface of TiO, NPs was deter-
mined by thermogravimetric analysis (TGA). The
influence of the type of TiO, nanoparticles surface
modification, as well as the length of hydrophobic
part of gallates used for surface modification of
TiO; nanoparticles, on the dispersion of TiO, NPs in
alkyd resin and on the rheological properties of the
prepared dispersions, as well as on the thermal, bar-
rier and mechanical properties and chemical resist-
ance of alkyd resin/TiO, NCs was investigated.

2. Experimental section

2.1. Materials

Titanium isopropoxide was purchased from TCI
Europe N.V. (Zwijndrecht, Belgium). Gallic acid, 2-
propanol, 1-hexanol, lauryl gallate (LG) and oley-
lamine (OA) were obtained from Sigma—Aldrich
(Germany). Cetyl alcohol was obtained from Fluka
(Switzerland), while 3,4-dihydroxybenzaldehyde
(DHBA) from Acros Organics (Geel, Belgium).
Alkyd resin (AR65), CHS-ALKYD S 653, based on
soy bean oil (65% of oil) was obtained from Spol-
chemie (Usti nad Labem, Czech Republic). Ca-
octoate (10%), Co-octoate (4%) and Zr-octoate
(15%) were purchased from Tikkurila Zorka (Sabac,
Serbia) and used as driers. All chemicals were used
as received without further purification.

2.2. Synthesis of TiO;, colloid

The synthesis of TiO, colloid was performed by
hydrolysis of titanium isopropoxide using the proce-
dure described in the literature [39]. Briefly, 12.5 mL
of titanium isopropoxide and 2.0 mL of 2-propanol
were added into the dropping funnel and then the
mixture was added to 75 mL of deionized water and

vigorously stirred. White precipitate was formed dur-
ing the hydrolysis. Within 10 min of the alkoxide
addition, 0.57 mL of 65% nitric acid was added to
the hydrolysis mixture. The mixture was stirred for
8 h at 80°C, allowing 2-propanol to evaporate. Using
this procedure, approximately 70 mL of stable TiO,
colloidal solution was obtained.

2.3. Synthesis of gallic acid esters

The synthesis of hexyl (HG) and cetyl gallate (CG)
was performed by esterification of gallic acid using
1-hexanol and cetyl alcohol. The esterification of
gallic acid by 1-hexanol was performed using the pro-
cedure described in the literature [40]. In the reac-
tion flask (250 mL), connected to a Soxhlet appara-
tus containing 10 g of sodiumsulfate as a drying
agent, 50 g of gallic acid, 136 g of 1-hexanol and
1 mL of sulfuric acid were added. 80 mL of extra 1-
hexanol was used to fill Soxhlet apparatus. The reac-
tion mixture was stirred with magnetic stirrer at
165°C for 8 h. During the reaction, formed water
made azeotrope with 1-hexanol and it was captured
by drying agent in Soxhlet apparatus. Then, the reac-
tion mixture was placed in Rotavapor (BUCHI 461,
Switzerland) and 1-hexanol was distilled until the
mixture of 75 wt% of hexyl gallate in 1-hexanol was
obtained. In order to crystallize, the reaction mix-
ture was poured with stirring into methylene chlo-
ride. After that, the prepared suspension was washed
with water, and hexyl gallate was placed between
two layers. The crude product was separated by fil-
tration, washed with water and methylene chloride
and dried at 60°C in vacuum oven.

The esterification of gallic acid by cetyl alcohol
was performed using the similar procedure as pro-
cedure described in the literature for the synthesis of
octyl gallate [40]. In the reaction flask (250 mL), con-
nected to a mechanical stirrer, a nitrogen inlet, a con-
tact thermometer and a condenser for vacuum distil-
lation, 70.24 g of cetyl alcohol was placed. The flask
was heated to 60°C, and then 10.24 g of gallic acid
and 0.5 mL of H,SO,4 were added into the flask. The
reaction mixture was heated up to 160°C with stir-
ring under a stream of nitrogen. The course of the
reaction was controlled by the amount of the formed
water. After 5 h, a reduced pressure (0.4 bar) was
applied to the flask for 1 h. The reaction mixture was
then slowly cooled down to 55°C. In another flask
(500 mL), equipped with a mechanical stirrer and
reflux condenser, 250 mL of petrol ether heated to
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55°C was added. The reaction mixture was then
slowly with stirring, added into petrol ether, heated
to 60°C and left to cool down to the room tempera-
ture. The precipitate was separated by filtration,
washed with petrol ether and then with water. The
obtained precipitate was then placed into the flask
and the alcohol residue was separated by distillation
with water vapor. After that, cetyl gallate was recrys-
tallized two times from the mixture petrol ether/ben-
zene (50:50 vol.) and dried at 60°C in vacuum oven.

2.4. Modification of TiO, nanoparticles with
gallates

For the surface modification of TiO, NPs, three gal-
lates with different hydrophobic part length (hexyl,
lauryl and cetyl gallate) were applied. Modification
of TiO, NPs with gallates was done according to the
procedure described in the literature [38]. The pro-
cedure for the surface modification of TiO, NPs
with lauryl gallate will be briefly described here.
0.1136 g of LG was dissolved in the mixture of chlo-
roform and methanol and then mixed with 10 mL of
TiO; colloid solution in a separation funnel. After
short vigorous shaking, a dark-red chloroform phase
with TiO; NPs surface modified with LG (TiO,-LG)
separated from the upper aqueous phase. The
obtained dark-red phase was drop-wise added to
100 times larger amount of methanol. Nanoparticles
of TiO,-LG separated as precipitate, which was then
redispersed in chloroform.

2.5. Modification of TiO, nanoparticles with
imine based on
3,4-dihydroxybenzaldehyde and oleylamine

The surface modification of TiO, NPs with imine

obtained from DHBA and OA was performed in the

following manner. In one flask (50 mL), 0.09 g of

DHBA was dissolved in 8§ mL of methanol using

magnetic stirrer, while in another flask (50 mL),

0.5 mL of 70% OA was added into 20 mL of chloro-

form. Then, 5 mL of TiO; colloid solution, previously

diluted with 25 mL of distilled water, was vigor-
ously mixed with prepared solutions. After leaving
the obtained solution overnight, a dark-orange phase
containing TiO, NPs surface modified with imine

(TiO,-DHBAOA) separated from the upper aqueous

phase. The obtained dark-orange phase was then

slowly, with simultaneous mixing with the magnetic
stirrer, drop-wise added into 100 times larger amount
of methanol. Nanoparticles of TiO,-DHBAOA sep-

arated as precipitate, which was then redispersed in
chloroform.

2.6. Preparation of the alkyd based
nanocomposites

Alkyd based NCs, containing 2 wt% of TiO, NPs
(calculated with respect to the total mass of solid
mater in alkyd resin), were prepared by adding ade-
quate amount of TiO, NPs surface modified with
HG (TiO,-HG), LG (TiO,-LG), CG (TiO,-CG) and
DHBAOA (TiO,-DHBAOA) dispersed in chloro-
form into AR65. So prepared mixtures were then
mixed in ultrasonic bath (Sonorex Digitec, BAN-
DELIN electronic GmbH & Co KG, Berlin, Ger-
many) for 10 min. After that, chloroform was evap-
orated at room temperature under the reduced
pressure. Then, in the reaction mixtures were added
50 wt% of white spirit (oil thinner), calculated with
respect to the total mass of solid mater in alkyd resin,
and adequate amount of driers (Table 1). In order to
obtain completely cured NC films (AR65/TiO,-HG,
AR65/TiO;,-LG, AR65/Ti0,-CG and AR65/TiO,-
DHBAOA), the dispersions were drawn on two
glass plates (10x10 cm and 15%20 cm) using wire-
wound rods and then cured at room temperature for
21 days. Film based on the pure alkyd resin was
obtained in the same manner.

2.7. Characterization of unmodified and
surface modified TiO; nanoparticles
Transmission electron microscopy (JEOL-1200EX,
Jeol Ltd. Tokyo, Japan) was applied to determine the
average size of TiO, NPs, while the size distribu-
tion of TiO, NPs was obtained using Image J soft-
ware. TEM images of surface modified TiO, NPs
were recorded on JEM-1400 (Jeol Ltd. Tokyo, Japan).
The X-ray powder diffraction measurements of
unmodified and modified TiO, nanoparticles were
performed on a Philips 1050 X-ray powder diffracto-
meter (Philips, Netherlands) using Ni-filtered Cu Ka
radiation and Bragg-Brentano focusing geometry.
The patterns were taken in the 10-90° 26 range

Table 1. The amount of driers used for the cross-linking of
alkyd resin based nanocomposites

Drier Metal co:ltent
[%]
Solution of Ca-octoate 0.10
Solution of Co-octoate 0.04
Solution of Zr-octoate 0.15

*Calculated with respect to the content of alkyd resin
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with the step of 0.05° and exposure time of 6 s per
step. Using X-ray Line Profile Fitting Program
(XFIT) with a Fundamental Parameters convolution
approach to generate line profiles [41], the coherent
domain sizes of the prepared samples were calcu-
lated. FTIR spectra of gallic acid esters, dry unmod-
ified and modified TiO, NPs in the form of KBr pel-
lets were recorder using a Bomem MB-102 (Quebec,
Canada) FTIR spectrophotometer. The absorption
spectra of unmodified and surface modified TiO,
NPs were recorded on a Perkin-Elmer Lambda-5 UV-
Vis (MA, USA) spectrometer. Using thermogravi-
metric analysis, performed on Setaram Setsys Evo-
lution-1750 (SETARAM S.A. France, Caluire —
France) instrument in dynamic argon atmosphere
(flow rate 20 cm?/min) at a heating rate of 10°C/min,
the amount of molecules adsorbed on the surface of
TiO, NPs was determined. Before TGA measure-
ments, investigated samples were dried in vacuum
oven at 60°C for 12 h.

2.8. Characterization of alkyd resin,
dispersions of modified TiO,
nanoparticles in alkyd resin and prepared
nanocomposite coatings

Complex dynamic viscosity of pure AR65 and dis-
persions of surface modified TiO, NPs in AR65,
prepared by dispersing 2 wt% of surface modified
TiO, NPs in AR65 using ultrasound, was deter-
mined on rheometer Rheometrics RMS 605 (Rheo-
metric Scientific, Piscataway NJ, USA). Dynamic
shear experiments were performed between cone
and plate, at constant temperature of 25°C. The fre-
quency was changed between 0.1 and 100 rad/s, at
strain of 5%.
The dispersion of surface modified TiO, nanoparti-
cles in alkyd matrix was investigated by Scanning
Electron Microscopy (SEM) using JEOL JSM-
6610LV (Jeol Ltd. Tokyo, Japan). In order to observe
the cross section of the nanocomposite films, the
piece of each examined sample was immersed in
liquid nitrogen for 20 s, removed and immediately
broken.

Differential scanning calorimetry (DSC) measure-

ments were done on Q1000 (TA Instruments, USA)

instrument in a nitrogen atmosphere, at a heating rate
of 20°C/min. Thermooxidative stability of samples
was determined by TGA (Setaram Setsys Evolution-

1750) in air atmosphere (flow rate 25 cm3/min), at a

heating rate of 10°C/min.

Water vapour transfer rate (WVTR) through the pre-
pared films was determined according to the method
described in the standard ASTM:D1653 using
BYK-Gardner permeability cup (BYK-Gardner
GmbH, Geretsried, Germany), filled with a desic-
cant (dry calcium chloride). The investigated films
were clamped and sealed across the open end of the
cup and then the cup was placed in an atmosphere of
controlled relative humidity (85%), which was pro-
vided by saturated potassium chloride solution. Dur-
ing measurements, vapour passes from a solution
through the film to a desiccant within the permeabil-
ity cup. Three WVTR measurements were performed
for each investigated film and the average value is
reported.

Tensile properties of the prepared samples were
examined on Shimadzu Universal Testing Machine
AG-Xplus (Shimadzu, Kyoto, Japan) with deforma-
tion rate of 5 mm/min using 100 N cell. Investi-
gated specimens were cut from the dried films. For
each sample the average value of five measure-
ments was taken.

Using the non-destructive ultrasound thickness meter
Posi Tector 200 (DeFelsko, USA), the thickness of
dried films was calculated as average value of three
measurements. The estimated thickness of the pre-
pared dried films was 40+£3 pm. The surface hard-
ness of dried films was determined using Konig pen-
dulum (Elcometer Pendulum Hardness Tester 3034,
Elcometer Limited, Manchester, England). Konig
pendulum hardness, expressed in seconds as aver-
age value of three measurements, was measured
using films drawn on glass plates (10x10 cm).
Impact resistance of prepared films was determined
according to the standard ASTM D 2794 using Erich-
sen Impact Tester, Model 304 (Hemer, Germany).
The indentation was performed through the uncoated
side of metal plate, i.e. the examined coating was
exposed to convex deformation (extrusion). For each
sample, five specimens were tested and their aver-
age has been reported. Adhesion of films coated on
mild steel panels was determined by cross-cut (ISO
2409) test. For each film, three specimens were
tested by cross-cut method and their average has been
reported. Abrasion resistance of prepared films was
determined by Taber Abraser Testing Apparatus
(Taber Industries, USA) using No. CS-17 Resilent
Calibrase Wheels in accordance with standard ASTM
D 4060. Load applied to the abrasive wheels was
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1000 g. For each film, three specimens were tested
and their average has been reported.

The gel content of the prepared films was deter-
mined by immersion of square specimens
(1.2%2.5 cm), placed in holder made from steel net-
work, in xylene for 14 days, at room temperature.
After that, test specimens were dried in vacuum
oven at 100°C for 2 hours and then, their weight (w)
was measured. Data of three different specimens of
each investigated film were averaged. The gel con-
tent of the samples was calculated using the follow-
ing Equation (1):

Gel% = ~--100 (1)
"o

where wy is the weight of the sample before immer-
sion in xylene.

The chemical resistance of the prepared films to dis-
tilled water, 1M HCI, 0.15% NaOH, 3% NaCl,
ethanol, acetone and sunflower oil was investigated
using films drawn on glass plates (10x10 cm). Sol-
vent was dripped on the examined film using Pas-
teur pipette and appearance of the film was observed
during 24 hours. Three specimens of each film were
tested. The obtained results are presented as time
needed to reach certain change in the appearance of
the examined films: (0) completely unaffected,
(1) unaffected, slightly color changed, (2) film
swelled and (3) film cracked.

3. Results and discussion
3.1. Properties of unmodified and surface
modified TiO, nanoparticles

TEM image of TiO, NPs, prepared by acid catalyzed
hydrolysis of titanium isopropoxide, is given in
Figure 1. It can be observed that synthesized TiO,
NPs have approximately spherical shape and aver-
age diameter of 3.9+0.9 nm. The crystal structure
and average crystalline size of TiO, NPs were deter-
mined by XRD measurements and obtained X-ray
diffraction patterns are given in Figure 2. It can be
seen that synthesized TiO, NPs have anatase crystal
form and it has been estimated that their coherent
domain size is around 3.6 nm, which is in good
agreement with TEM result.

According to the literature, TiO, NPs have on their
surface some Ti atoms which are not in octahedral,
but in square-pyramidal position [42]. The coordi-
nation number of such Ti atoms is therefore five and
not six, and one of these five bonds between Ti and

Figure 1. TEM image of TiO, nanoparticles

oxygen is shorter than others. Due to that, Ti atoms
on the surface of TiO, NPs are more reactive than
bulk ones and can react quite fast with hydroxyl
groups of modifying agent, bonding in this manner
the missing oxygen and leading to the formation of
charge transfer (C7T) complex. This process leads
simultaneously to the formation of stable crystal
anatase form, where coordination number of Ti
atoms is six and all Ti—O bonds are of the same
length.

The surface modification of nanosized TiO, colloids
was performed with three alkyl gallates with differ-
ent hydrophobic part length (hexyl, lauryl and cetyl
gallate) and with imine obtained from 3,4-dihydrox-

TIO,LG

TiO,-HG

Intensity [a.u.]

TiO,-DHBAOA

20[°]

Figure 2. XRD patterns of unmodified and surface modi-
fied TiO, NPs
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208 8 nm

ith Magnification

JEM-1400 | 200000 x

b)

50 nm

Figure 3. TEM images of TiO; nanoparticles surface modified with a) lauryl gallate and b) DHBAOA

ybenzaldehyde and oleylamine. During the modifi-
cation process, a dark-red (when gallates were used
for the modification) or dark-orange phase (when
DHBAOA was used for the surface modification)
separated, and transfer of NPs from water into
organic phase occurred as a consequence of the for-
mation of CT complex between TiO, NPs and gal-
lates or DHBAOA. XRD patterns of modified TiO,
NPs presented in Figure 2 show that the crystal
structure and crystallite size of TiO, NPs were not
changed by modification of TiO, NPs with gallates
or DHBAOA, which was also confirmed by TEM
analysis of modified TiO, NPs, reported in Figure 3.
From the TEM analysis it can be observed that the
morphology of TiO, NPs has not been changed dur-
ing their surface modification.

The formation of CT complex between TiO, NPs
and gallates or DHBAOA was confirmed by FTIR

LN [N B By B B B B B B B N B B B B B B B B B

CG

TiO,

TiO,-LG

Transmittance [%)]

TiO_-HG

—— ]
4000 3500 3000 2500 2000 1500 1000 500

a) Wave number [cm™']

and UV-Vis spectroscopy. As an example, FTIR spec-
tra of CG, dry TiO; colloid, dry TiO,-CG, TiO,-LG
and TiO,-HG NPs are presented in Figure 4a. From
Figure 4a it can be observed that characteristic bands
of CG at 3450 and 3350 cm™!, which represent the
stretching vibrations of —OH groups from benzene
ring, are not present in the FTIR spectrum of TiO;-
CG NPs. On the other hand, the bands correspon-
ding to the stretching vibration of aliphatic C—H
bonds from cetyl group at 2920 and 2850 cm™! and
band which is assigned to the stretching vibration of
C=0 group from ester at 1670 cm™" are also visible
in the FTIR spectrum of TiO,-CG NPs. According
to these results, it can be concluded that the coordi-
native bond between surface Ti atoms and gallate
was achieved through the adjacent -OH groups from
the benzene ring, by creating bridging complexes,
which is in agreement with our previous results [28,

LN [ A B B B B B B B B B B B B B B B B B B B B |

DHBA

OA

TiO,-DHBAOA

Transmittance [%]

TiO,

M

T T T T
4000 3500 3000 2500 2000 1500 1000 500

b) Wave number [cm™]

Figure 4. FTIR spectra of a) CG, dry TiO, colloid, dry TiO,-CG, TiO,-LG and TiO,-HG NPs and b) OA, DHBAOA, dry
TiO, colloid and TiO, NPs surface modified with DHBAOA
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38, 43]. As can be observed from Figure 4a, similar
results were obtained for the TiO,-HG and TiO,-LG
NPs. Detailed explanation of the FTIR spectra of
TiO, NPs surface modified with gallates is given
elsewhere [38].

FTIR spectra of DHBA, OA, dry TiO; colloid and dry
TiO,-DHBAOA NPs are presented in Figure 4b. In
the FTIR spectrum of TiO,-DHBAOA, the bands at
3331 and 3233 cm™!, assigned to the stretching vibra-
tions of aldehyde phenolic —OH groups, and bands
at 1389 and 1192 cm™, corresponding to the bending
vibrations of phenolic -OH groups, are missing. Fur-
thermore, the intensity of band at 1296 cm™" (origi-
nating from the C—O stretching vibrations of pheno-
lic group) is noticeable reduced, and the band became
broader. Also, in the FTIR spectrum of TiO,-
DHBAOA, the band at 1576 cm™!, assigned to the
stretching vibrations of aromatic ring, and band at
1645 cm™!, corresponding to the C=N stretching
vibrations, are also visible. Furthermore, character-
istic bands of the OA residue between 3000 and
2800 cm™!, assigned to the asymmetric and sym-
metric C—H stretching vibrations of methyl and meth-
ylene groups, and at 3005 cm™!, assigned to the
C—H stretching vibrations in C=C—H group can also
be observed. These results show that imine based on
DHBA and OA was obtained and it was chemi-
sorbed on TiO; surface through the two adjacent —OH
phenolic groups of the aldehyde residue.
Absorption spectra of unmodified TiO, NPs and
TiO, NPs surface modified with CG and DHBAOA
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Figure 5. The absorption spectra of aqueous TiO, colloid
solution and solutions of TiO,-CG and TiO,-
DHBAOA in chloroform
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Figure 6. TGA curves of TiO,-CG and TiO,-DHBAOA
NPs, obtained in argon atmosphere at a heating
rate of 10°C/min

are shown in Figure 5. It can be observed that com-
pared to the absorption spectrum of unmodified TiO,
NPs, absorption spectra of surface modified TiO,
NPs are red shifted, due to the CT complex forma-
tion on the surface of TiO, NPs. The absorption onset
of unmodified, gallate and imine modified TiO,
NPs is around 380, 640 and 610 nm, respectively.
In order to determine the amount of gallates and
DHBAOA adsorbed on the surface of TiO,, TGA
measurements in argon atmosphere were performed.
As an example, TGA curves of TiO,-CG and TiO,-
DHBAOA are presented in Figure 6. It can be
observed that thermal stability of TiO,-DHBAOA
NPs is higher than thermal stability of TiO,-CG
NPs. The first stage of thermal degradation of surface
modified TiO, NPs occurred due to the mass loss of
the absorbed water, while the second stage between
210 and 800°C corresponds to the mass loss of
adsorbed ligand grafted on the surface of TiO, NPs.
In our previous work we have shown that theoreti-
cal amount of adsorbed ligand necessary to cover all
Ti surface sites should be 1.86 mmol of ligand per
gram of TiO, [38]. According to the TGA results
obtained here, the amount of the adsorbed ligands,
TiO,-HG, TiO,-LG, TiO,-CG and TiO,-DHBAOA,
are 0.90, 0.89, 0.80 and 1.53 mmol per gram of TiO»,
respectively. Consequently, the calculated coverage
is for the TiO, NPs surface modified with gallates
similar between each other (48% for TiO,-HG and
TiO,-LG, and 43% for TiO,-CG), while the amount
of DHBAOA adsorbed on the surface of TiO, NPs
is 82%.
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3.2. Rheological properties of prepared
dispersions of alkyd resin/TiO,

The influence of surface modified TiO, NPs on the
rheological properties of alkyd resin was investi-
gated by measuring the dependence of complex
dynamic viscosity (#*) on frequency. From the
results presented in Figure 7 it can be observed that
prepared dispersions have higher dynamic viscosity
than pure AR65 and that #* decreases with increas-
ing frequency for all investigated samples. Dynamic
viscosity of the prepared dispersions depends on the
interactions between surface modified TiO, NPs, as
well as on the interactions between NPs and alkyd
resin. Furthermore, from the samples prepared using
TiO, NPs surface modified with gallates, the AR65/
TiO,-CG dispersion has the highest #* value. This
was reasonable to expect since TiO,-CG NPs have
the highest effective diameter. On the other hand,
the viscosity of alkyd resin increased more after
addition of TiO,-HG than after addition of TiO,-LG
NPs. This indicates that TiO,-HG NPs have low dis-
persion stability, leading to the formation of agglom-
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Figure 7. Frequency dependence of complex dynamic vis-
cosity (n*) for pure AR65 and AR65/TiO,-HG,
ARG65/Ti0,-LG, AR65/Ti0,-CG and AR65/TiO;-
DHBAOA dispersions

erates in AR65, which are actually the main cause
for the viscosity increase. Figure 7 also reveals that
ARG65/Ti0,-DHBAOA dispersion has the lowest #*
value from the investigated samples, indicating
lower hydrodynamic radius of TiO,-DHBAOA in
ARG65 than TiO, NPs surface modified with gallic
acid esters.

3.3. SEM image analysis of cross-sections of
the nanocomposite coatings

The cross-section of the prepared nanocomposite
coatings was investigated by SEM analysis in order
to examine the dispersion of surface modified TiO,
NPs in polymer matrix. The SEM micrographs pre-
sented in Figure 8§ show that TiO, NPs formed
agglomerates in alkyd resin. Furthermore, it can be
observed that agglomeration is more pronounced in
NCs prepared with TiO, NPs surface modified with
gallates and that formed agglomerates have approx-
imately the same size no matter which ester of the
gallic acid was used for the surface modification of
TiO;, NPs. The presence of agglomerates can also be
observed in AR65/TiO,-DHBAOA nanocomposite
(Figure 8d and 8f), but their size is smaller and they
are better dispersed in alkyd resin.

3.4. Thermal properties of AR65/TiO,
nanocomposites

Glass transition temperature (7,) of the synthesized
NCs was determined using DSC measurements and
obtained results are given in Figure 9 and summa-
rized in Table 2. Furthermore, it can be observed
that 7, of all investigated NCs is lower than 7, of
pure AR65, which indicates that the presence of sur-
face modified TiO, NPs increased molecular mobil-
ity of polymer chains at the polymer/nanoparticles
interface, due to the absence of the attractive inter-
actions between NPs and polymer matrix. The
increase of the hydrophobic part length of the used

Table 2. Values of the glass transition temperature (7;), water vapour transfer rate (WVTR), modulus of elasticity (E), stress
at break (op) and strain at break (eg) of the pure alkyd resin and prepared nanocomposites (WVTR values were
determined as average value of three measurements, while tensile properties were determined as average value of
five measurements and all results are reported with a standard deviation)

Sample Tg WVTR E OB &
[°C] [g/(m*h)] [MPa] [MPa] [%]
ARG65 25 3.80+0.20 354+14 12.3+£0.86 39.1+5.80
ARG65/TiO,-HG 21 2.68+0.11 27948 13.1£1.00 47.6+5.71
ARG65/TiO,-LG 23 3.44+0.21 144+6 14.0£1.12 53.7£9.12
AR65/TiO,-CG 23 3.40+0.18 246+12 11.9+0.71 45.8+4.72
AR65/TiO,-DHBAOA 20 3.66+0.23 12445 12.5+1.12 62.3+9.34
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Figure 8. SEM micrographs of the cross-section of a) AR65/TiO,-HG, b) AR65/TiO,-LG, c) AR65/Ti0,-CG,
d) AR65/TiO,-DHBAOA at magnification of 3000%, and e¢) AR65/TiO,-CG and f) AR65/TiO,-DHBAOA at

magnification of 25000%

gallic acid esters led to only slight increase of the T,
of prepared NCs.

The influence of differently surface modified TiO,
NPs on thermooxidative stability of alkyd resin was
investigated by TGA under air atmosphere, at a
heating rate of 10°C/min. The results presented in
Figure 10 show that thermooxidative degradation of

all investigated samples took place in two stages, first
at around 350°C and second at around 450°C. The
first stage of thermooxidative degradation can be
ascribed to the thermal degradation of polyester part
of the alkyd resin chains, while the second stage
occurred as a consequence of degradation of fatty
acids chains [44]. The presence of surface modified
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Figure 9. DSC curves of pure AR65 and AR65/TiO,-HG,
AR65/TiO,-LG, AR65/Ti0,-CG and AR65/TiO,-

DHBAOA nanocomposites
100 T ' ARG5S
TR - - -- ARB5/TIO,-HG
»\‘\ .- ARB5ITIO.-LG
R e ARB5/TIO,-CG 104

\ .=~ AR6S/TIO.-DHBAOA
60 3

j\

0.0

Mass [%]

40

dm/dT [%/°C]

204

200 300 400 500
Temperature [*C]

Figure 10. TGA and DTG curves of pure AR65 and AR65/
TiO,-HG, AR65/TiO,-LG, AR65/TiO,-CG and
AR65/Ti0,-DHBAOA nanocomposites deter-
mined in air atmosphere at a heating rate of
10°C/min

TiO, NPs in AR65 shifted the position of both deriv-
ative thermogram (DTG) peaks to slightly higher
temperatures compared to the DTG peaks of pure
alkyd resin. This improvement of thermooxidative
stability was more pronounced for AR65/TiO,-
DHBAOA during the first stage of degradation than
for other investigated nanocomposites.

3.5. Barrier properties of AR65/TiO;
nanocomposites

The cross-linking density of long oil alkyd resin is
usually not enough to reduce diffusivity of permeat-
ing molecules through the prepared coating. On the
other hand, the filler particles, compatible with poly-
mer matrix and well dispersed in it, can be applied as
good strategy to improve barrier properties of organic
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Figure 11. The dependence of the transmitted water
through the pure AR65 and prepared nanocom-
posites on time

coatings [45—47]. The presence of NPs enhances
the degree of tortuosity of the permeating mole-
cules diffusion path through the polymer, by occu-
pying the free volume within the polymer. Therefore,
the water vapour barrier properties of the alkyd resin
and prepared NCs were investigated by water vapour
permeability measurements. Obtained results are
presented in Figure 11 and listed in Table 2. Accord-
ing to these results it can be concluded that the pres-
ence of TiO, NPs surface modified with gallates and
DHBAOA reduces WVTR of alkyd resin, whereby
AR65/Ti0,-HG NC has the lowest WVTR value.
Therefore, prepared NCs can be applied as efficient
protection coating against corrosion of metal sur-
faces.

3.6. Tensile properties of AR65/TiO,
nanocomposites

The stress-strain curves of pure alkyd resin and pre-
pared NCs are given in Figure 12. From these results,
values of the modulus of elasticity (E), stress at
break (op) and strain at break (¢g) of the pure alkyd
resin and prepared nanocomposites were determined
and listed in Table 2. Modulus of elasticity of AR65
is higher than the value obtained for the prepared
NCs, indicating that pure alkyd resin is stiffer than
other investigated samples. Simultaneously, alkyd
resin has also the lowest value of strain at break. The
rigidity of the commercial alkyd resin originates
from the presence of polyesters chains in its struc-
ture. On the other hand, the low value of strain at
break comes from the relatively fast curing of alkyd
resin, despite the presence of certain flexibility from
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Figure 12. The dependence stress-strain of pure AR65 and
ARG65/TiO,-HG, AR65/TiO,-LG, AR65/TiO;-
CG and AR65/TiO,-DHBAOA nanocomposites

fatty acids chains [48]. The stress-strain curves
given in Figure 12 also show that tensile properties
of prepared AR65/TiO, NCs are dependent on the
type of NPs surface modification. After addition of
surface modified TiO, NPs into AR65, the largest
decrease in modulus and increase in strain at break
was observed for AR65/Ti0,-DHBAOA nanocom-
posite, which is consistent with the lowest T, value
obtained for this NC. Furthermore, the increase of
the gallates alkyl chain length from 6C (hexyl gal-
late) to 12C (lauryl gallate) induced lower E and
higher op and ¢g values. In contrast, further increase
of the hydrophobic part length of the used gallic
acid esters to 16C (cetyl gallate) led to increase of
the modulus of elasticity and decrease of the stress
and strain at break. The obtained results revealed that
stiffness of the alkyd resin based on soy bean oil can
be reduced by addition of 2 wt% of TiO, NPs sur-
face modified with gallates, simultaneously leading
to the formation of NC with relatively high values
of op and ¢p. The highest impact on the increase of

stress at break was observed after addition of TiO,-
LG NPs into the AR65.

3.7. Mechanical properties of AR65/TiO,
nanocomposite coatings

The hardness of the prepared coatings was deter-
mined using Konig pendulum. From the obtained
results, listed in Table 3, it can be observed that addi-
tion of TiO, NPs surface modified with gallic acid
esters leads to the increase of surface hardness (Konig
hardness) of the alkyd resin, while with increasing
alkyl chain length of the applied gallate hardness
decreased. The certain increase of the surface hard-
ness of air dried alkyd coatings by addition of col-
loidal SiO; particles was also observed by Kurt ef al.
[49]. Furthermore, Bal and coworkers [50, 51] have
found that NC coatings based on alkyd-melamine
formaldehyde resin and modified silica, as well as
films prepared from alkyd-phenol formaldehyde resin
and organo clay have higher Konig hardness than
pure resin. On the other hand, obtained results
revealed that AR65/TiO,-DHBAOA has slightly
lower value of the Konig hardness than pure alkyd
resin. The probable reason for such behavior could
be the lowest cross-linking density of this sample.
This NC sample has the lowest T, the lowest modu-
lus of elasticity and the highest strain at break. Also,
it has better dispersion of nanofiller in polymer
matrix than other NCs. Furthermore, AR65/Ti0,-
DHBAOA had the highest concentration of unsatu-
rated double bonds before curing (additional double
bounds originating from DHBAOA ligands), caus-
ing faster curing reaction, which can lead to the lower
cross-linking density of cured sample. All this
implies that this sample has the lowest cross-linking
density and that was the reason why it showed the
opposite behavior compared to the other NCs.

From the results listed in Table 3 it can be observed
that impact strength of all investigated samples is

Table 3. Values of the Konig hardness, impact strength, adhesion and abrasion resistance of the pure alkyd resin and pre-
pared nanocomposites (Konig hardness, adhesion and abrasion resistance were determined as average value of
three measurements, while impact strength as average value of five measurements and values of Konig hardness
and abrasion resistance are reported with a standard deviation) 80 in-1b corresponds to 9 J

Sample Konig hardness Impact strength Adhesion resistance Abrasion resistance
[s] [in-1b] (ISO 2409) (wear index)
AR65 31+1 >80 Gt0 103+10
ARG65/TiO,-HG 3842 >80 Gt0 140+11
ARG65/TiO-LG 3442 >80 Gt0 109+9
ARG65/TiO,-CG 33+2 >80 Gt0 121£10
ARG65/TiO,-DHBAOA 28+1 >80 Gt0 115+12

927



Radoman et al. — eXPRESS Polymer Letters Vol.9, No.10 (2015) 916-931

larger than 80 in-lb (9 J), indicating good flexibility
of the prepared coatings. Furthermore, adhesion
resistance of the prepared coatings was determined
according to the ISO 2409 standard and obtained
results listed in Table 3 indicate that all examined
coatings have very good adhesion to the metal sub-
strate. The results of the abrasion resistance test of
examined coatings are shown in Table 3. It could be
seen that the wear index is higher for NC coatings,
indicating the deterioration of abrasion resistance of
alkyd coatings after addition of surface modified
TiO; nanoparticles. It is well known that the quality
of the interface between NPs and polymer matrics
defines material capability to transfer stresses and
elastic deformation from the polymer matrix to the
nanofillers. According to the DSC results, NCs pre-
pared in this work have lower T, than pure alkyd
resin, indicating the poor interaction between NPs
and polymer matrix at the interface. Therefore, NPs
are not able to bear the applied load and due to that
the abrasion resistance of NCs cannot be better than
that of the pure polymer matrix [52].

3.8. Gel content and chemical resistance of
AR65/TiO; nanocomposite coatings

The gel content of the prepared films was deter-
mined according to the procedure described in the
experimental section and obtained results are listed
in Table 4. It can be observed that all examined sam-
ples have approximately the same gel content, which
indicates that the presence of surface modified TiO,
NPs has no significant influence on the content of
residual soluble components.

The results of the chemical resistance investigation
of the pure AR65 and prepared nanocomposite coat-

ings are given in Table 4. All examined samples show
good resistance to distilled water, 1M HCI, 3% NaCl
and sunflower oil and after 24 hours there was no
change in the appearance of the examined coatings.
Furthermore, nanocomposite coatings showed bet-
ter resistance to 0.15% NaOH, acetone and ethanol
than pure alkyd resin, but after certain time all NC
films cracked.

4. Conclusions

Novel soy alkyd-based nanocomposite coatings were

synthesized using TiO, NPs surface modified with

hexyl, lauryl and cetyl gallate, and imine obtained
from 3,4-dihydroxybenzaldehyde and oleylamine.

Anatase TiO, NPs (average diameter of 3.9+0.9 nm)

were prepared via acid catalyzed hydrolysis of tita-

nium isopropoxide. FTIR and UV-Vis spectroscopy
confirmed surface modification of TiO, NPs. Fur-
thermore, TEM and XRD analysis revealed that mor-
phology, crystal structure and crystallite size of TiO,

NPs were not changed by surface modification of

TiO;, NPs, while the amount ligands adsorbed on the

surface of TiO, NPs was calculated from TGA meas-

urements. Experimental results presented in this
work further demonstrated:

— Dynamic viscosity of AR65/TiO, dispersions is
higher than for pure AR65 and it decreases with
increasing frequency. AR65/TiO,-DHBAOA dis-
persion exhibited the lowest #* value, due to the
lower hydrodynamic radius of TiO,-DHBAOA
NPs in AR65 than TiO, NPs surface modified
with gallates.

— SEM analysis of the prepared NC coatings showed
that surface modified TiO, NPs formed agglom-
erates in alkyd resin and that the size of TiO,-

Table 4. The gel content and chemical resistance investigation of the pure alkyd resin and prepared nanocomposites (three
specimens of each film were tested; gel content is reported with a standard deviation)

Solvent ARG65 ARG65/TiO,-HG AR65/TiO,-LG ARG65/TiO,-CG ARG65/TiO,-DHBAOA
Gel% [%] 88.8+1.8 89.1£2.0 88.9+1.9 89.8+2.1 87.0+1.9
Distilled water 24h  (0) 24h  (0) 24h  (0) 24h  (0) 24h 0)
IM HC1 24h  (0) 24h  (0) 24h  (0) 24h  (0) 24 h 0)

5min (1)d" 10 min (1)d" 10 min (1)d" 10 min (1)d” 10 min (1) 1"
0.15% NaOH 70 min (2) 70 min (2) 70 min (2) 70 min (2) 70 min  (2)
90 min (3) 90 min (3) 90 min (3) 90 min (3) 90 min (3)
3% NaCl 24h  (0) 24h  (0) 24h  (0) 24h  (0) 24h 0)
Ethanol 21 min (3) 35min (3) 36 min (3) 32 min (3) 37min (3)
Acetone 13s  (3) 15s 3) 22s  (3) 24s  (3) 28's 3)
Sunflower oil 24h  (0) 24 h 0) 24h  (0) 24h  (0) 24 h 0)

(0) completely unaffected, (1) unaffected, slightly color changed, (2) film swelled and (3) film cracked

*d — the change of the film color to darker, 1 — the change of the film color to lighter
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DHBAOA agglomerates is smaller than the size
of agglomerates formed by TiO, NPs surface mod-
ified with gallates.

— T of prepared NCs is lower than 7}, of pure alkyd
resin, indicating the absence of attractive interac-
tions between NPs and polymer matrix. The
change of the hydrophobic part length of gallates
showed no significant influence on the 7, of pre-
pared NCs.

— The presence of TiO, NPs surface modified with
gallates had no significant influence on the ther-
mooxidative stability of AR65, while TiO,-
DHBAOA NPs induced slightly better thermoox-
idative stability.

— All examined samples have approximately the
same gel content, which indicates that the pres-
ence of surface modified TiO, NPs has no signif-
icant influence on the cross-linking density of the
alkyd resin.

— The presence of TiO, NPs surface modified with
gallates and DHBAOA reduced WVTR, modulus
of elasticity and abrasion resistance of alkyd resin
and improved strain at break and chemical resist-
ance. Furthermore, all prepared coatings have
good flexibility and very good adhesion to the
metal substrate, and addition of TiO, NPs surface
modified with gallates increased surface Konig
hardness of the alkyd resin, while the presence of
TiO,-DHBAOA NPs had no significant influence
on it.
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