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Abstract. Two series of polyurethane (PU) networks based on Boltorn® hyperbranched polyester (HBP) and hydrox-
yethoxy propyl terminated poly(dimethylsiloxane) (EO-PDMS) or hydroxy propyl terminated poly(dimethylsiloxane) (HP-
PDMS), were synthesized. The effect of the type of soft PDMS segment on the properties of PUs was investigated by
Fourier transform infrared spectroscopy (FTIR), contact angle measurements, surface free energy determination, X-ray
photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), atomic force microscopy (AFM), dynamic
mechanical thermal analysis (DMTA) and differential scanning calorimetry (DSC). The surface characterization of PUs
showed existence of slightly amphiphilic character and it revealed that PUs based on HP-PDMS have lower surface free
energy, more hydrophobic surface and better waterproof performances than PUs based on EO-PDMS. PUs based on HP-
PDMS had higher crosslinking density than PUs based on EO-PDMS. DSC and DMTA results revealed that these newly-
synthesized PUs exhibit the glass transition temperatures of the soft and hard segments. DMTA, SEM and AFM results
confirmed existence of microphase separated morphology. The results obtained in this work indicate that PU networks
based on HBP and PDMS have improved surface and thermomechanical properties.
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1. Introduction

Polyurethane (PU) coatings are very important
because of their excellent mechanical properties,
good hardness and high abrasion resistance [1, 2].
The properties of PU coatings can be tailor-made by
appropriate selection of the constituents such as soft
and hard segments and using an appropriate amount
of crosslinker. However, poor thermal stability of
conventional PU coatings limits their high tempera-
ture applications [3, 4]. For PU to be useful at high
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temperatures, its architecture should be modified by
introducing poly(dimethylsiloxane) (PDMS) seg-
ments in the PU backbone [5]. Therefore, many
investigations have been carried out in which PDMS
was used as a component of polyurethane to improve
PU properties, such as water resistance, flame resist-
ance, and thermal stability [6, 7]. Furthermore, PU
with PDMS has been tested as a component of foul-
release type coatings due to its smooth and non-
stick surface [6].
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PDMS, a major compound in the class of polysilox-
anes, has a number of unique and specific proper-
ties such as high thermal and oxidative stability,
good water resistance, biocompatibility, low sur-
face tension, low glass transition temperature, high
permeability to many gases and very good UV sta-
bility [8, 9]. However, poor mechanical properties
and abrasion resistance of PDMS limit its applica-
tion in many fields [10]. Another shortcoming is its
incompatibility with organic polymers arising from
the non-polar nature of the PDMS based on its very
low solubility parameter (14.9 JV2-cm™2) compared
to other polymers (17.6-28.6 J'?-cm™*?). The non-
polar nature of the PDMS structure combined with
the weak intermolecular interaction leads to the cre-
ation of a polymer phase that is both thermodynam-
ically and mechanically incompatible, not only with
the PU components, but also with all organic mono-
mers and with other polymer. This leads to the for-
mation of phase-segregated morphology of PUs [8].
Polyurethane networks based on PDMS macrodiols
and hyperbranched polyesters (HBP) as crosslink-
ers introduced into the hard segment domains can
combine properties of all components, making these
networks good candidates for coating applications.
The large number of terminal hydroxyl groups pres-
ent in Boltorn® HBPs enables fast formation of net-
works that have good mechanical properties, as
well as good resistance to chemicals [11-14], while
the presence of PDMS contributes to the good ther-
mal and surface properties, and to elasticity of the
highly crosslinked materials. In our previous stud-
ies, we have investigated the influence of the con-
tent of a,w-dihydroxyethoxy propyl-poly(dimethyl-
siloxane) (EO-PDMS) and type of HBPs on the
swelling behavior, morphological, thermal and ther-
momechanical properties of PU networks [15-21].
These results confirmed that physical and thermal
properties are related to the crosslinking density,
hydrogen bonding interactions, microphase separa-
tion and content of EO-PDMS soft segment. The
aim of our previous studies was to prepare poly
(urethane-siloxane) networks with good thermal,
mechanical and surface properties, which would be
suitable for coating applications.

As far as we are aware, there is a paucity of peer-
reviewed literature on the surface free energy of
these particular polyurethanes prepared in the form
of films, which is especially important for coatings.

In the present work, therefore, we have studied the
surface and thermomechanical properties of PU
networks prepared with different types of soft PDMS
segment, as part of our efforts to produce improved
PUs. Two series of PU networks based on hydrox-
yethoxy propyl terminated PDMS or hydroxy propyl
terminated PDMS as the soft segment and 4,4'-
methylenediphenyl diisocyanate and Boltorn® hyper-
branched polyester of the third pseudo generation
(BH-30) as components of hard segment were pre-
pared. The PU networks were characterized by
Fourier transform infrared spectroscopy (FTIR), con-
tact angle measurements, surface free energy deter-
mination, X-ray photoelectron spectroscopy (XPS),
scanning electron microscopy (SEM), atomic force
microscopy (AFM), dynamic mechanical thermal
analysis (DMTA) and differential scanning calorime-
try (DSC).

2. Experimental

2.1. Materials

a,0-Dihydroxyethoxy propyl-poly(dimethylsilox-
ane) (EO-PDMS) and a,w-dihydroxypropyl-poly
(dimethylsiloxane) (HP-PDMS) supplied from
ABCR (Karlsruhe, Germany) were dried over molec-
ular sieves (0.4 nm) before use. The average molec-
ular weights, M, of the EO-PDMS and HP-PDMS
were calculated from 'H NMR spectroscopy. In addi-
tion, the degree of polymerization of the PDMS-
block in the EO-PDMS and HP-PDMS prepolymers
was determined as the relative intensities of the
Si—CHj; protons signals and the terminal —CH,— pro-
tons in the ethylene oxide residue or the —CH,— pro-
tons arising from the PDMS propylene groups which
were connected to oxygen atoms in hydroxyl groups,
respectively. Therefore, the degree of polymerization
of PDMS-block in the EO-PDMS and HP-PDMS
prepolymers was 12.8 and 10.6. The M,, of the pre-
polymer EO-PDMS was 1200 g/mol [22], while for
the prepolymer HP-PDMS it was 960 g/mol. 4,4'-
Methylenediphenyl diisocyanate (MDI) (supplied
from Aldrich, Steinheim, Germany), with an iso-
cyanate content of 33.6 wt%, was used as received.
Commercially available Boltorn® hydroxy-func-
tional aliphatic HBP of the third pseudo generation
(BH-30) was kindly supplied by Perstorp Specialty
Chemicals AB (Sweden) and dried at 50°C under
vacuum for 48 h prior to use. The aliphatic hyper-
branched polyester is based on 2,2-bis(hydrox-
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ymethyl)propionic acid as a monomer and tetra-
functional ethoxylated pentaerythrytol as a core [23].
For the exact calculation of the amounts of all com-
ponents necessary for the synthesis of PUs, the value
of the molecular weight determined by vapor pres-
sure osmometry (M, = 3080 g/mol) and hydroxyl
number of BH-30 determined by titration method
(HN =474.1 mg KOH/g) were used. Consequently,
the exact functionality, f;,, of the BH-30 used was
calculated (f, = 26) [24]. The catalyst was stannous-
octanoate (Sn(Oct);), supplied from Aldrich (St.
Louis, USA). The solvent N-methyl-2-pyrrolidone
(NMP) supplied from Acros (Geel, Belgium) was
dried over calcium-hydride and distilled before use.
Tetrahydrofuran (THF) supplied from J.T. Baker
(Center Valley, USA) was refluxed with lithium-
aluminum hydride and distilled before use. For-
mamide (analytically pure, Merck, Darmstadt, Ger-
many) and diiodomethane (analytically pure, UCB,
Brussels, Belgium) were used as received.

2.2. Synthesis of PU films based on PDMS
and control sample

Two series of PU networks based on PDMS macro-
diols, MDI and Boltorn® HBP were synthesized by
a two-step polymerization in solution, using a mix-
ture of N-methyl-2-pyrrolidone/tetrahydrofuran as
the solvent and stannous octanoate as the catalyst.
Macrodiols used for the preparation of samples of
series PUS1 (PUS1-15 and PUS1-30) and PUS2
(PUS2-15 and PUS2-30) were hydroxyethoxy propyl
terminated PDMS and hydroxy propyl terminated
PDMS, respectively. Each series of the synthesized
PUs consisted of two samples of different PDMS
content (15 and 30 wt%), which, in this study, is
marked by the last two numbers in the name of pre-
pared samples. The total molar ratio of -NCO (from
MDI) and —~OH groups (from PDMS macrodiol and
BH-30) was, for all samples, kept constant (NCO/
OH = 1.05) [25-27]. Catalyst concentration was
kept at 0.02 wt% [25-27]. The details for the syn-
thesis of similar PU networks are given in our pre-
viously published papers [16-21]. Compositions of
the synthesized PUs and weights of the reactants used
for the synthesis of PUs are presented in Table 1. PU
samples were synthesized in 100 mL four-neck
round-bottom flasks, placed in a silicone oil bath
and connected to an inlet for dry argon, a mechani-
cal stirrer, a dropping funnel and a reflux condenser.
Calculated amounts of macrodiol and MDI were

Table 1. Compositions of the synthesized PUs and weights
of reactants used for their preparation

Soft segment PDMS
Sample contgent macrodiol MDbI BH-30
[Wt%] le] Igl [g]
PUSI-15 15 2.5004 7.7706 | 6.4615
PUSI1-30 30 4.0004 53212 | 4.0128
PUS2-15 15 2.5004 7.7714 | 6.3965
PUS2-30 30 4.0004 5.4258 | 3.9096
MDI-BH30 0 0 5.0002 | 4.5128

weighed into reaction flask at room temperature,
dissolved in the mixture of NMP/THF and then
heated up to 40°C under an argon atmosphere. The
reaction started by the introduction of a solution of
Sn(Oct), in NMP. The reaction mixture was stirred
for 30 min (for the PUS1 series) or 20 min (for the
PUS2 series) at 40°C to prepare the NCO-termi-
nated prepolymer, i.e. until the theoretical NCO con-
tent was attained. The NCO content was controlled
by the dibutylamine back-titration method [28]. In
the second stage of the reaction, a dilute solution of
BH-30 in NMP was added drop-wise to the NCO-
terminated prepolymer and the reaction was contin-
ued at 40°C for 10 min. Finally, the obtained reaction
mixture was cast into Petri dishes. The crosslinking
reaction was continued in a force-draft oven during
40 h at 80°C and 1 h at 110°C, and finally 10 h at
50°C in a vacuum oven. The thickness of the syn-
thesized yellow PU films was about 1 mm.

The synthesis of the control (MDI-BH30) sample,
prepared without PDMS macrodiol, was carried out
at the same conditions, but the crosslinking reaction
proceeded at ambient temperature for 24 h, and then
in a vacuum oven at 50°C for 10 h and at 80°C for
12 h.

2.3. Characterization

FTIR spectra of PUs were recorded using the atten-
uated total reflection (ATR) mode on Nicolet 6700
FTIR spectrometer (Madison, USA). The scanning
range was from 500 to 4000 cm™' at the resolution
of 4 cm™!, and 64 scans were collected for each
sample.

The static contact angles were measured using a
contact angle analyzer (Kriiss DSA100, Hamburg,
Germany), equipped with software for a drop shape
analysis. The static contact angle (6) was measured
by a sessile drop method at a temperature of 23°C.
Single drops of test liquids with volumes of 20 pL
were deposited on the polymer film surface and the
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contact angles were measured after 30 s. In all cases,
at least five measurements were used, and the aver-
age contact angle was calculated. The equilibrium
contact angle is defined as the angle between the solid
surface and a tangent, drawn on the drop-surface,
passing through the triple-point atmosphere-liquid-
solid [29]. The relationship between three interfa-
cial tensions is given by Young’s Equation (1):
Ysolid/vapor Y solid/liquid

cosf = (1)

Yquuid/vapor

where Vsolid/vapor is the energy of the surface, Vsolid/liquid
is the interfacial tension between the solid and the
drop of liquid, yiiquidivapor 1 the liquid-vapor surface
tension and ? is the contact angle of 6 the drop with
the surface.

The surface free energy of PUs was calculated
according to the van Oss Chaudhury Good method
[30]. This method has been widely used to investi-
gate the surface free energy of polymer films that are
used as coatings. For reliable determination of the
surface energy, three test liquids (distilled water,
formamide and diiodomethane) with known surface
tensions [31, 32], ranging from very polar to non-
polar, were utilized to determine the surface free
energy of the PU films, as shown in Table 2. The
surface free energy and its components were calcu-
lated by solving the following set Equations (2)
[30]:

Yrvi(1—cosb)) =2\/7§W7£¥/v1+ \/')’g Yinit \/'Ys_ Yivi

Yrva(1—cosb,) :2\/'YI§W'Y£\V}/2+ \/’Yg Yivat \/')’s_ Yivz

Yrva(1—cosb;) 22\/7]§W'}’]iy3+ \/7’; Yivst \/75 Yivs
Ys = vs" + et =¥ + 2Vysvs (2)

where y; is the surface free energy that can be divided
into two components: the dispersive (y*V) which
represent the van der Waals interactions, and the
polar component (y*B) including the Lewis acid
parameter (y*) and the Lewis base parameter (y). yry
is the surface tension of the liquid in equilibrium
with its own vapor. The total surface energy and its
components could be obtained by solving Equa-
tion (2), since values of yLv , Yiv» YLy are known.

The surface composition of the PU films was deter-
mined by X-ray photoelectron spectroscopy (XPS)
using a VG ESCALAB I electron spectrometer

Table 2. Surface tension of the examined liquids for surface
energy determination

Ty S T 0
Liquids [mJ/m?] [mf/;/nZ] [mJ/annzl [mJ/annz]
Distilled water 72.8 21.8 25.5 25.5
Formamide 58.0 39.0 228 39.6
Diiodomethane 50.8 50.8 0 0

(East Grinstead, England) under a base pressure of
1:1078 Pa. The photoelectron spectra were excited
using non-monochromatized Al K, radiation (hv =
1486.6 eV) with a total instrumental resolution of
1 eV. The photoelectron spectra were corrected by
subtracting a Shirley-type background and were
quantified using the peak area and Scofield pho-
toionization cross-sections.

Scanning electron microscopy (SEM) micrographs
of the PUs were obtained on a JEOL JSM-6610
instrument (Tokyo, Japan), at a working distance of
ca. 14 mm and an accelerating voltage of 20 kV.
Investigation of the surface topography and hetero-
geneity relief was done by the atomic force micro-
scope (Dimensionlcon, Bruker, Santa Barbara, USA),
equipped with the SSS-NCL probe, Super Sharp
Silicon™- SPM-Sensor (NanoSensors™ Switzer-
land; spring constant 35 N/m, resonant frequency
~170 kHz). Measurements were performed under
ambient conditions using the tapping mode AFM
technique. The scans covered the sizes of 10 x
10 um. The AFM images of the fracture areas of PU
films after previous freeze-fracturing at the temper-
ature of liquid were measured in order to evaluate
the inner arrangement in the bulk system.

Dynamic mechanical thermal analysis (DMTA) was
performed on an ARES G2 rheometer (TA Instru-
ments, New Castle, USA) at a frequency of 1 Hz,
strain 0.1%, with a heating rate of 3°C/min and in
the temperature range from —135 to 180°C. The
measurements were carried out using rectangular
specimens (15.0 mmx 7.8 mm x 1.0 mm+0.2 mm),
under torsion mode, using torsion fixture (rectangle)
geometry. All details of the calculation of crosslink-
ing density and average molecular weight between
two crosslinks using the rubber elasticity theory and
calculated from DMTA results, are described in the
literature [19-21, 33]. Some clarification of the cal-
culation of crosslinking density is given. The
crosslinking density of the synthesized PU net-
works can be calculated from the rubber elasticity
theory using Equation (3) and (4):
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Gl
=— 3
V=21 3)
where G’ represents rubbery plateau modulus at 7=
(Tgns)g” +90°C, (Tens)g- is the glass transition
temperature of the hard segments determined from
loss modulus (G") maximum, 7 is the temperature
in Kelvin and R is the universal gas constant. Value
of the molecular weight of polymer chain between
crosslinks (M.) was evaluated as:
Pru

M, = 7 4)

where ppy is the density of PUs.

Differential scanning calorimetry (DSC) was carried
out on a DSC Q1000V9.0 Build 275 thermal ana-
lyzer (New Castle, USA). The DSC scans were
recorded under a dynamic nitrogen atmosphere (the
flow rate of nitrogen was 50 mL/min), in the tem-
perature range from —140 to 230°C, at a heating and
cooling rate of 10 and 5°C/min, respectively.

3. Results and discussion

3.1. Synthesis of the PU networks

Two series of PUs based on Boltorn® hyperbranched
polyester of the third pseudo generation, 4,4'-meth-
ylenediphenyl diisocyanate and hydroxyethoxy
propyl terminated poly(dimethylsiloxane) (samples
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Figure 1. The simplified reaction pathway of the synthesis of PU networks based on EO-PDMS (PUSI series) and HP-
PDMS (PUS?2 series)
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of the PUSI series) or hydroxy propyl terminated
poly(dimethylsiloxane) (samples of the PUS2 series)
were synthesized by a two-step polymerization in
solution. In our previous work, PUs were synthe-
sized in melt using BH-20, MDI and two different
macrodiols: poly(tetramethylene oxide) and EO-
PDMS [15]. However, our results showed that the
polymerization in melt and incompatibility of non-
polar EO-PDMS with polar reactants, i.e. BH-20
and MDI, led to the formation of heterogeneous PU
networks. Therefore, in this work, a two-step poly-
merization in solution was applied to improve the
compatibility between reactants during the synthe-
sis of PUs. The mixture of NMP/THF was used as a
reaction medium for the synthesis of PUs. The sim-
plified reaction pathway of the synthesis of PU net-
works based on EO-PDMS and HP-PDMS is shown
in Figure 1.

3.2. FTIR characterization

The chemical structure of PUs was investigated by
FTIR spectroscopy. In Figure 2, FTIR spectra of the
synthesized PUs and the control sample are given.
In the FTIR spectrum of the control sample, the
presence of urethane -NH groups at 3320 cm™' can be
observed, while the characteristic region at 1700—
1735 cm™! was ascribed to the carbonyl urethane
and ester groups. The amide II and amide I1I bands
appeared at 1547 and 1260 cm™', respectively. The
FTIR absorption bands characteristic for the
C-O-C groups (1040 and 1120 cm™"), aromatic C=C
linkage (1599 and 1411 cm™!) and -CH»— and —CHj3
groups (2900-3000 cm™') can also be observed in
the FTIR spectrum of the control sample.

PUS2-30
_ | PUS1-30
z ~
@ ! /
(‘-:) ‘NH VC:O/:C=C r
] .
= amide |«
= amide 1”7 Pscn,
E MDI-BH30 VsiositVe-oc
[=
Ay
bV TNeoo
Van T “~amide Il
Veso v amide I
Cc=C
Y T T T T T T T T T T T T
4000 3500 3000 2500 2000 1500 1000 500

Wavenumber [cm™']

Figure 2. FTIR spectra of the synthesized PUs and the con-
trol MDI-BH30 sample

In the FTIR spectra of PUs, peaks corresponding to
amide II and amide III vibrations were observed at
around 1537 and 1258 cm™!, respectively. The peaks
which were ascribed to the C=0O and —NH vibra-
tions were detected in the regions 1645-1735 cm™!
and 3100-3500 cm™!, respectively. The absorption
bands which were observed at around 1015 and
1080 cm™' represent overlapped bands of Si—O-Si
and C—O-C groups, respectively. The absorption
band at around 790 cm™! was ascribed to the Si—-CHj
linkage. The presence of the symmetric and asym-
metric -CH,— and —CHj groups was observed at
around 2961, 2903 and 2875 cm™'. Other bands at
around 1596 and 1412 cm™' were assigned to the aro-
matic C=C. Since no peak was detected at 2260 cm™!
in the FTIR spectra of these PUs, it can be con-
cluded that all isocyanate groups were incorporated
into the polymer chains.

3.3. Contact angles and surface free energy
Since the synthesized PUs prepared from the soft
PDMS and hard MDI-HBP segments were designed
to obtain materials for coating applications, their
surface energy and wettability play a key role. The
results obtained from contact angle measurements
and the surface free energy determinations are pre-
sented in Tables 3 and 4. Post-hoc Tukey’s HSD test
at 95% confidence limit was calculated to show sig-
nificant differences between different samples. The
surface energy of the synthesized PUs and control
sample is shown in Figure 3.

The water contact angles of PUS2 series were higher
than values obtained for samples from PUSI series.
Therefore, the synthesized PUs based on HP-PDMS
were more hydrophobic, i.e. had better waterproof
properties than PUs based on EO-PDMS. From the
results, it is also quite apparent that the synthesized
PUs had higher water contact angles than the con-

Table 3. Water contact angle, 4, formamide contact angle,
6», and diiodomethane contact angle, 63, of the
synthesized PUs and control sample

0, 0, 03

Sample ] [°] ]
PUSI-15 86.23+£0.90° | 67.75+0.85° | 49.50+0.95°
PUS1-30 86.78+0.79% | 75.88+1.45% | 51.73+0.79°
PUS2-15 88.13+0.46%° | 74.33+0.51* | 52.40+0.48°
PUS2-30 89.53+£0.92¢ | 79.70+0.759 | 56.05+0.56¢
MDI-BH30 74.68+0.75¢ | 62.98+0.72° | 34.50+0.59°

abedDifferent letters printed in superscript within the same column
show significantly different means of observed data (at p <
0.05 level, according to post-hoc Tukey’s HSD test)
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Table 4. Surface free energy and its components of the synthesized PUs and control sample

LB
Ts

AB
Ts

T =
Sample [mJ/m?] [mJ/m?] [m}/smz] [m}/smz] [:::.(It/');::;]
PUSI-15 34.55+0.53¢ 2.07+0.14° 1.91+0.14° 3.97+0.15° 38.52+0.58%
PUSI1-30 33.30+0.45° 2.89+0.18% 2.83+0.24% 5.72+0.38? 39.03+0.52°
PUS2-15 32.92+0.27° 2.55+0.05° 2.29+0.08¢ 4.83+£0.06° 37.75+0.24°
PUS2-30 30.84+0.32° 2.86+0.07% 2.70+0.14% 5.55+0.09? 36.39+0.34°
MDI-BH30 42.25+0.27¢ 3.21+0.134 4.19+0.164 7.33+0.214 49.59+0.464

abedDifferent letters printed in superscript within the same column show significantly different means of observed data (at p < 0.05 level,

according to post-hoc Tukey’s HSD test)

60

=== Dispersive
50 - Polar

—— Tc:ta] surface free energy
40

Surface free energy [mJ/m?]

30 4
20
10 4
o4

MDI-BH30 PUS1-15 PUS1-30 PUS2-15 PUS2-30

Figure 3. Surface free energy of the synthesized PUs and
control MDI-BH30 sample

trol sample. This behavior may be ascribed to the
tendency of the PDMS segments to migrate to the
surface, due to the very low surface energy of PDMS,
resulting in a part of the PU surfaces being covered
by PDMS [31]. As can be seen (Table 3), the change
of the formamide and diiodomethane contact angles
of PU samples followed the same trend as the water
contact angle.

According to the Figure 3, the surface free energy
of the samples based on HP-PDMS was lower than
that of samples based on EO-PDMS. The dispersive
component decreased, but the polar component did
not vary for the PUs based on HP-PDMS. The syn-
thesized PU samples had lower values of surface
energy compared to the control sample (Table 4). Fur-
thermore, the surface energy values of our PU sam-
ples were higher than values presented in the litera-
ture for siloxane-urethane coatings (around 25 mJ/m?)
[34] and linear high molecular weight PDMS
(21 mJ/m?) [35]. In contrast, the surface free energy
values of our newly-synthesized PUs were closer to
that of the control MDI-BH30 sample (49.6 mJ/m?).
These results indicated that PDMS covers only a
part of the surface of these novel PUs. Therefore,
surface energy studies have confirmed the presence
of both hydrophobic PDMS and hydrophilic ure-
thane groups at the surface, giving a slight amphi-
philic character to the surface of the PU samples.

812

The water contact angle of PUs was higher but the
surface free energy was lower than the values obtained
for previously synthesized PU networks based on
EO-PDMS and hyperbranched polyester of the
fourth pseudo generation (6, = 82.6-87.3° and
Vs(total) = 38.7-43.8 mJ/rnz) [21].

3.4. XPS analysis

XPS investigation was conducted to provide infor-
mation of surface elemental composition of PU net-
works. Figure 4 shows XPS survey spectra and high
resolution XPS spectra of the PU films.

The surface elemental composition, calculated from
the normalized peak areas of Cls, Ols, N1s and
Si2p core level peaks, is listed in Table 5. The sur-
face content of Si is almost constant for most PU
samples, excluding PUS1-30. This sample has also
a higher concentration of carbon and nitrogen at
surface. Probably, the reason for this is the presence
of more urethane —~NH groups. The content of nitro-
gen for other PU samples is at the XPS sensitivity
limit.

The Cls spectra of all PU samples contain peak
centered at 284.8 eV, attributed to C—C and C-H
bonds in the polyurethane. Only for PUS1-30 sam-
ple the C1s peak shows asymmetry at a higher bind-
ing energy side at ~286.5 eV. According to the liter-
ature data, this feature could be assigned to the car-
bon formed C—O bonding [36]. The measured Si2p
binding energy for all PU samples at 102.3 eV is con-
sistent with previously published values for PDMS
materials [36, 37]. The binding energy of the Nls

Table 5. XPS data of surface composition of the synthe-

sized PUs
Sample Surface concentration [atomic%]
C (0] N Si
PUSI-15 50.2 24.9 0.2 24.7
PUSI1-30 59.2 22.8 22 15.8
PUS2-15 51.0 24.5 0.4 24.1
PUS2-30 50.6 24.1 0.3 25.0
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Figure 4. XPS survey spectra and high resolution XPS spec-
tra of PUS1-15, PUS1-30, PUS2-15 and PUS2-30
films: (a) Si2p; (b) Cls; (c) Nls; (d) Ols

peak of the PUS1-30 sample at 400.4 eV is typical
for urethane —NH bonds.

The obtained results showed tendency of PDMS
segments to migrate to the PU surface. It stemmed
from the silico-organic groups with low surface
energy, incompatibility with polyurethane and high
chain flexibility, which allowed it’s migration to the
surface of PU films [37]. This result was in good
agreement with that from the contact angle analysis.
On the other hand, the N concentration on the surface

was very low, indicating that the urethane hard seg-
ments of samples PUS1-15, PUS2-15 and PUS2-30
were present in a small amount on their surface,
except for PUS1-30.

3.5. Morphological investigation by SEM

The surface morphology of PU networks was ana-
lyzed by SEM and the obtained microphotographs
are shown in Figure 5. The results obtained by SEM
analysis revealed the existence of microphase sepa-
rated morphology of the investigated PUs. Figure 5
shows a typical view of microdomains of hard MDI-
HBP segments, hydrogen-bonded in aggregates and
irregular in shapes, and unevenly dispersed in the
soft PDMS matrix of the PUs, which was consistent
with the results for PDMS based PUs [38]. There-
fore, the brighter region in the surface view of the
PUs represents the aggregates of hard segments in
the darker PDMS soft segments that are more pro-
nounced for samples with high soft segment con-
tent. This might be because the samples PUS1-30
and PUS2-30 have higher crosslinking density in
comparison with PUS1-15 and PUS2-15 (Table 7).
With the increase of crosslinking density, there was
stronger cohesion force among hard segment chains,
leading to an inclination of hard segments aggrega-
tion within soft phase. SEM results of the samples
PUSI1-15 and PUS2-15 indicate increased homo-
geneity in samples and improved compatibility of
all components in comparison to PUS1-30 and
PUS2-30.

3.6. AFM analysis

In order to understand the influence of the type of
PDMS soft segments on the formation of surface
topography and heterogeneity relief of PUs, AFM
analysis was performed. The obtained results are
shown in Figures 6 and 7 and summarized in Table 6.
Based on prior studies, it is known that the bright
regions represent the hard phase (hard domains),
while the darker regions represent the soft phase in
a polyurethane.

Height images, showing surface topography, substan-
tially differ for the synthesized PUs: the topogra-
phies of PUS1-15 and PUS1-30 display particulate
formations of nm size, while PUS2-15 and PUS2-
30 samples show agglomerates of um size (PUS2-
15 is the roughest one). In comparison with samples
from PUSI series, the roughness of PUS2 samples
is higher (see Table 6). In addition, the three-dimen-
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Figure 5. SEM microphotographs of the surface of the synthesized PUs: (a) PUSI-15, (b) PUS1-30, (c) PUS2-15,

(d) PUS2-30

Table 6. Roughness values of the synthesized PUs

Surface area R, R, Ruax

Sample | m?) (am| | [om] | [om]
PUSI-15 106 104 128 1818
PUSI-30 104 101 77 670
PUS2-15 131 839 663 4143
PUS2-30 120 385 294 2533

Surface area: the total area of examined sample surface (the three-

dimensioned area of a given region expressed as the sum of the

area of all the triangles formed by three adjacent data points).

Ry" (Rms): the standard deviation of the Z values within the given

area
R, (mean roughness) the mean value of the surface relative to
the center place

Ruax ™ (max height): the difference in height between the highest
and lowest points on the surface relative to the mean plane

Mean: the average of all Z values within the enclosed area.

sional large-scale resolution images clearly show
that the surface structure changes and the roughness
diminishes with increasing content of the PDMS soft
segments. These results are in agreement with those
previously reported, based on surface composition

analysis, which showed that PDMS predominates
on the surface of block copolymers contaning PDMS
segments due to its immiscibility with other poly-
mers and its low surface energy [39].

Phase images (i.e., maps of tip-sample interactions)
enable qualitative insight into the sample homo-
geneity relief. The synthesized PUs are character-
ized by two-phase morphology consisting of a hard
segment-rich phase and a soft segment-rich phase.
It is evident that the synthesized PU samples are dis-
tinguished by heterogeneous character, apparently
connected with strong microphase separation. The
obtained results showed that the synthesized samples
are heterogeneous on nm (PUS1-15) or even on um
level (PUS1-30, PUS2-15 and PUS2-30). Samples
PUSI1-15, PUS2-15 and PUS2-30 have very sharp
interface between both phases, characterized entirely
black and/or white localities anticipating strong
microphase separation. On the other hand, the phase
image of sample PUS1-30 contains also relatively
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Figure 6. 3D AFM height images of the fractured surface of the synthesized PUs: (a) PUS1-15, (b) PUS1-30, (c) PUS2-15,

(d) PUS2-30

Table 7. Glass transition temperatures determined by DSC, temperatures corresponding to the tan 0 maximum, crosslinking
density, v, and molecular weight of polymer chain between crosslinks, M., determined by DMTA of the synthe-

sized PUs
Tyss DSC) | Tans (DSC) tand 104 M
Sample £5 gHS T T T v ¢
P [°C] [°C] [gcsi o é] [ggls [mol/cm?] [g/mol]
PUSI-15 “123 50 125 74 45 10.61 1000
PUSI-30 125 57 ~126 67 50/73 1432 800
PUS2-15 124 52 ~126 79 70 1421 780
PUS2-30 121 63 118 58 84 103.5 110

high part of grey color indicating higher degree of
phase mixing compared with samples PUS1-15,
PUS2-15 and PUS2-30.

3.7. DMTA and DSC analysis

Dynamic mechanical thermal measurements were
used to examine viscoelastic properties of PU sam-
ples. The mechanical loss factor, tan d, storage mod-
ulus, G', and loss modulus, G", of the synthesized
PUs are shown in Figures 8 and 9. The PUs exhib-
ited two thermal transitions and probably one sec-

ond relaxation process [13]. The glass transition
temperatures of PU networks were affected by the
crosslinking density, plus the type and content of
soft segment. The values of glass transition temper-
atures, obtained as the temperature of the tan 6 max-
imum, are shown in Table 7. Temperatures of tand
peaks are somewhat higher than temperatures cor-
responding to the G"” peaks.

The glass transition temperature in the range from
—118 to —126°C is associated with the soft PDMS
segment (Tgss). Tand curves show a small maxi-
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Figure 7. 2D AFM phase images of the fractured surface of the synthesized PUs: (a) PUS1-15, (b) PUS1-30, (¢) PUS2-15,

(d) PUS2-30

mum at —74 and —67°C for PUS1-15 and PUS1-30
samples, and at —79 and —58°C for PUS2-15 and
PUS2-30 samples, respectively, that may be corre-
sponding to the subglass relaxation process (73),
but this should be studied further. This is probably a
consequence of the movement of the part of chain
which contains urethane groups connected to the
hyperbranched polyester according to the findings of
other authors [13]. Due to the steric hindrance, these
urethane groups are not involved in the formation
of hydrogen bonds and are therefore, more mobile.
The samples from the PUS2 series had higher val-
ues of Tyys than the samples from the PUST series.
The presence of terminal ethoxy units in PDMS
prepolymer improves miscibility between reactants
and, therefore, the PU samples based on EO-PDMS
(PUSI series) had lower Tyus values, and conse-
quently, lower degree of microphase separation. The
glass transition temperatures of the hard and soft
segments were also determined in DSC thermo-

06

. - PUS1-15
" - PUS1-30
' — PUS2-15

Y - PUS2-30

0.4

tand

0.2 1

0.0
-150

T T T
=50 0 50 100

Temperature [*C]

100
Figure 8. Tan 0 of the synthesized PUs versus temperature

grams of the synthesized PUs (Table 7). The observed
trend for T,us values was consistent with DMTA
results. The 7, of the PDMS soft segments of the
synthesized PUs was between —121 and —125°C.
The Tyss values determined as (tan d)yax from DMTA
curves are slightly higher than those determined by
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Figure 10. DSC thermograms of the synthesized PUs and
control MDI-BH30 sample

DSC. DSC thermograms of the synthesized PUs and
control sample, determined from the second heating
run, are shown in Figure 10. A T, value of the con-
trol MDI-BH30 sample obtained by DSC analysis
was 30°C, which shifted to lower temperature com-
pared with that of the synthesized PUs. The synthe-
sized samples based on PDMS have two Ts in com-
parison with the control sample and therefore
possess microphase separated structure.

The network homogeneity of each of the PU net-
works was analyzed by comparing the width of the
mechanical loss factor curves [14, 40, 41]. The width
of the tano peak for samples PUS2-15 and PUS2-
30 was slightly lower in comparison with PUS1-15
and PUS1-30 samples. The slightly wider peak of
tan o obtained for PUSI samples indicates a less
homogeneous distribution of crosslinks than for the
samples of PUS2 series.

For PU samples, the storage modulus firstly
decreased gradually, and then decreased relatively

fast at temperatures between 20 to 100°C. A rubber
elastic plateau was observed at around 120°C for all
examined PUs. PU samples based on HP-PDMS
had higher G’ in the rubbery plateau than the sam-
ples based on EO-PDMS (Figure 9), which indi-
cates the higher crosslinking density (Table 7). The
results given in Table 7 show that the crosslinking
density of PUs based on HP-PDMS was higher,
while M. was lower than values obtained for the
EO-PDMS containing PUs. Samples PUS1-30 and
PUS2-30 have higher values of the crosslinking
density in comparison with PUS1-15 and PUS2-15,
and PUS2-30 has the highest crosslinking density of
all samples. The reason for higher crosslinking den-
sity of PUS1-30 and PUS2-30 samples in compari-
son with samples PUS1-15 and PUS2-15 may be
steric hindrance caused by HBP molecules which is
more pronounced in samples with 15 wt% of soft
segment because of the greatest amount of BH-30.
Therefore, instead of participating in the reaction of
crosslinking, —OH groups of the HBP may be hydro-
gen bonded. The obtained results also showed that
hydroxypropyl terminated PDMS is more effi-
ciently incorporated in the polyurethane networks
in comparison with hydroxyethoxy propyl termi-
nated PDMS.

It can be observed (Figure 9a) that the rubbery
plateau modulus of the investigated PU networks
was higher than values of the order of 106 Pa
obtained for other crosslinked PUs based on hydrox-
ybutyl-PDMS [42] and based on poly(propylene
oxide) or hyperbranched polyester [14]. Therefore,
the incorporation of the PDMS macrodiols into PU
networks based on BH-30 as the crosslinker
improved the thermomechanical and surface prop-
erties of the synthesized PUs.
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4. Conclusions

Polyurethane networks based on different PDMS
macrodiols and hyperbranched polyester of the
third pseudo generation were synthesized using
two-step polymerization in solution. The results
clearly demonstrated that the type of the PDMS
macrodiols incorporated in the PUs influenced the
morphology, surface and thermomechanical proper-
ties of the synthesized PU networks. DMTA showed
that the synthesized PU networks based on EO-
PDMS or HP-PDMS have two glass transition tem-
peratures and a microphase separated structure.
Microphase separation, where the hard MDI-HBP
domains are dispersed in a soft matrix, was also
confirmed by SEM and AFM analyses. Better ther-
momechanical properties, higher crosslinking den-
sity, more hydrophobicity and better waterproof
properties were obtained for PU samples based on
HP-PDMS than for EO-PDMS-based PUs. The sur-
face energy values of the samples based on HP-
PDMS were lower than values obtained for the
samples based on EO-PDMS. Evaluation of all syn-
thesized PU samples also revealed that their surface
energy values were closer to the value obtained for
the control sample prepared without PDMS macro-
diol and were higher than those of siloxane-urethane
coatings and linear PDMS presented in the litera-
ture. The obtained results showed the presence of
both the hydrophobic PDMS and hydrophilic ure-
thane groups at the surface, giving a slight amphi-
philic nature to the surface of the synthesized PUs.
The results in this study clearly demonstrate that the
synthesis of polyurethanes based on PDMS and
hyperbranched polyester leads to the creation of
networks with improved surface and thermome-
chanical properties, which can be easily tailored by
changing the type of soft PDMS segment for spe-
cific applications.
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