COST action CM1203 Polyoxometalate Chemistry for Molecular Nanoscience (PoCheMoN), ECOST-STSM-CM1203-041015-063147-63147

Link to this page

COST action CM1203 Polyoxometalate Chemistry for Molecular Nanoscience (PoCheMoN), ECOST-STSM-CM1203-041015-063147-63147

Authors

Publications

A new acetylcholinesterase allosteric site responsible for binding voluminous negatively charged molecules – the role in the mechanism of AChE inhibition

Bondžić, Aleksandra M.; Lazarević-Pašti, Tamara D.; Leskovac, Andreja R.; Petrović, Sandra; Čolović, Mirjana B.; Parac-Vogt Tatjana; Janjić, Goran

(Elsevier, 2020)

TY  - JOUR
AU  - Bondžić, Aleksandra M.
AU  - Lazarević-Pašti, Tamara D.
AU  - Leskovac, Andreja R.
AU  - Petrović, Sandra
AU  - Čolović, Mirjana B.
AU  - Parac-Vogt Tatjana
AU  - Janjić, Goran
PY  - 2020
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3582
AB  - Acetylcholinesterase (AChE) inhibitors are important in the treatment of neurodegenerative diseases. Two inhibitors,
12-tungstosilicic acid (WSiA) and 12-tungstophosphoric acid (WPA), which have polyoxometalate
(POM) type structure, have been shown to inhibit AChE activity in nM concentration. Circular dichroism and
tryptophan fluorescence spectroscopy demonstrated that the AChE inhibition was not accompanied by significant
changes in the secondary structure of the enzyme. The molecular docking approach has revealed a new
allosteric binding site, termed β-allosteric site (β-AS), which is considered responsible for the inhibition of AChE
by POMs. To the best of our knowledge, this is the first study reporting a new allosteric site that is considered
responsible for AChE inhibition by voluminous and negatively charged molecules such as POMs. The selected
POMs were further subjected to genotoxicity testing using human peripheral blood cells as a model system. It
was shown that WSiA and WPA induced a mild cytostatic but not genotoxic effects in human lymphocytes, which
indicates their potential to be used as medicinal drugs. The identification of non-toxic compounds capable of
binding to an allosteric site that so far has not been considered responsible for enzyme inhibition could be
fundamental for the development of new drug design strategies and the discovery of more efficient AChE
modulators.
PB  - Elsevier
T2  - European Journal of Pharmaceutical Sciences
T1  - A new acetylcholinesterase allosteric site responsible for binding voluminous negatively charged molecules – the role in the mechanism of AChE inhibition
VL  - 151
SP  - 105376
DO  - 10.1016/j.ejps.2020.105376
ER  - 
@article{
author = "Bondžić, Aleksandra M. and Lazarević-Pašti, Tamara D. and Leskovac, Andreja R. and Petrović, Sandra and Čolović, Mirjana B. and Parac-Vogt Tatjana and Janjić, Goran",
year = "2020",
abstract = "Acetylcholinesterase (AChE) inhibitors are important in the treatment of neurodegenerative diseases. Two inhibitors,
12-tungstosilicic acid (WSiA) and 12-tungstophosphoric acid (WPA), which have polyoxometalate
(POM) type structure, have been shown to inhibit AChE activity in nM concentration. Circular dichroism and
tryptophan fluorescence spectroscopy demonstrated that the AChE inhibition was not accompanied by significant
changes in the secondary structure of the enzyme. The molecular docking approach has revealed a new
allosteric binding site, termed β-allosteric site (β-AS), which is considered responsible for the inhibition of AChE
by POMs. To the best of our knowledge, this is the first study reporting a new allosteric site that is considered
responsible for AChE inhibition by voluminous and negatively charged molecules such as POMs. The selected
POMs were further subjected to genotoxicity testing using human peripheral blood cells as a model system. It
was shown that WSiA and WPA induced a mild cytostatic but not genotoxic effects in human lymphocytes, which
indicates their potential to be used as medicinal drugs. The identification of non-toxic compounds capable of
binding to an allosteric site that so far has not been considered responsible for enzyme inhibition could be
fundamental for the development of new drug design strategies and the discovery of more efficient AChE
modulators.",
publisher = "Elsevier",
journal = "European Journal of Pharmaceutical Sciences",
title = "A new acetylcholinesterase allosteric site responsible for binding voluminous negatively charged molecules – the role in the mechanism of AChE inhibition",
volume = "151",
pages = "105376",
doi = "10.1016/j.ejps.2020.105376"
}
Bondžić, A. M., Lazarević-Pašti, T. D., Leskovac, A. R., Petrović, S., Čolović, M. B., Parac-Vogt Tatjana,& Janjić, G.. (2020). A new acetylcholinesterase allosteric site responsible for binding voluminous negatively charged molecules – the role in the mechanism of AChE inhibition. in European Journal of Pharmaceutical Sciences
Elsevier., 151, 105376.
https://doi.org/10.1016/j.ejps.2020.105376
Bondžić AM, Lazarević-Pašti TD, Leskovac AR, Petrović S, Čolović MB, Parac-Vogt Tatjana, Janjić G. A new acetylcholinesterase allosteric site responsible for binding voluminous negatively charged molecules – the role in the mechanism of AChE inhibition. in European Journal of Pharmaceutical Sciences. 2020;151:105376.
doi:10.1016/j.ejps.2020.105376 .
Bondžić, Aleksandra M., Lazarević-Pašti, Tamara D., Leskovac, Andreja R., Petrović, Sandra, Čolović, Mirjana B., Parac-Vogt Tatjana, Janjić, Goran, "A new acetylcholinesterase allosteric site responsible for binding voluminous negatively charged molecules – the role in the mechanism of AChE inhibition" in European Journal of Pharmaceutical Sciences, 151 (2020):105376,
https://doi.org/10.1016/j.ejps.2020.105376 . .
21
6
23