Serbian Academy of Sciences and Arts, grant number F-26.

Link to this page

Serbian Academy of Sciences and Arts, grant number F-26.

Authors

Publications

Ligand binding to fibrinogen influences its structure and function

Gligorijević, Nikola; Minić, Simeon; Radomirović, Mirjana; Lević, Steva M.; Nikolić, Milan; Ćirković-Veličković, Tanja; Nedić, Olgica

(University of Novi Sad - Faculty of Sciences, Department of Biology, 2021)

TY  - JOUR
AU  - Gligorijević, Nikola
AU  - Minić, Simeon
AU  - Radomirović, Mirjana
AU  - Lević, Steva M.
AU  - Nikolić, Milan
AU  - Ćirković-Veličković, Tanja
AU  - Nedić, Olgica
PY  - 2021
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/7288
AB  - Fibrinogen is a plasma protein that is highly susceptible to oxidation. Because of this chemical modification, fibrinogen acquires thrombogenic characteristics under different pathophysiological conditions. Increased carbonyl content and reduced porosity impair the degradation of formed fibrin mediated by plasmin. Fibrinogen is capable of interacting with many proteins, ions, and small molecules. These interactions can modify the functions of this protein. The discovery of new binding partners that may protect fibrinogen from harmful oxidation and, thus, preserve its normal function is essential. Some of the newly detected interactions between fibrinogen and small, natural bioactive molecules, together with the influence of these interactions on the structure and function of fibrinogen, will be presented in this text.
PB  - University of Novi Sad - Faculty of Sciences, Department of Biology
T2  - Biologia Serbica
T1  - Ligand binding to fibrinogen influences its structure and function
VL  - 43
IS  - 1
SP  - 24
EP  - 31
DO  - 10.5281/zenodo.5512285
ER  - 
@article{
author = "Gligorijević, Nikola and Minić, Simeon and Radomirović, Mirjana and Lević, Steva M. and Nikolić, Milan and Ćirković-Veličković, Tanja and Nedić, Olgica",
year = "2021",
abstract = "Fibrinogen is a plasma protein that is highly susceptible to oxidation. Because of this chemical modification, fibrinogen acquires thrombogenic characteristics under different pathophysiological conditions. Increased carbonyl content and reduced porosity impair the degradation of formed fibrin mediated by plasmin. Fibrinogen is capable of interacting with many proteins, ions, and small molecules. These interactions can modify the functions of this protein. The discovery of new binding partners that may protect fibrinogen from harmful oxidation and, thus, preserve its normal function is essential. Some of the newly detected interactions between fibrinogen and small, natural bioactive molecules, together with the influence of these interactions on the structure and function of fibrinogen, will be presented in this text.",
publisher = "University of Novi Sad - Faculty of Sciences, Department of Biology",
journal = "Biologia Serbica",
title = "Ligand binding to fibrinogen influences its structure and function",
volume = "43",
number = "1",
pages = "24-31",
doi = "10.5281/zenodo.5512285"
}
Gligorijević, N., Minić, S., Radomirović, M., Lević, S. M., Nikolić, M., Ćirković-Veličković, T.,& Nedić, O.. (2021). Ligand binding to fibrinogen influences its structure and function. in Biologia Serbica
University of Novi Sad - Faculty of Sciences, Department of Biology., 43(1), 24-31.
https://doi.org/10.5281/zenodo.5512285
Gligorijević N, Minić S, Radomirović M, Lević SM, Nikolić M, Ćirković-Veličković T, Nedić O. Ligand binding to fibrinogen influences its structure and function. in Biologia Serbica. 2021;43(1):24-31.
doi:10.5281/zenodo.5512285 .
Gligorijević, Nikola, Minić, Simeon, Radomirović, Mirjana, Lević, Steva M., Nikolić, Milan, Ćirković-Veličković, Tanja, Nedić, Olgica, "Ligand binding to fibrinogen influences its structure and function" in Biologia Serbica, 43, no. 1 (2021):24-31,
https://doi.org/10.5281/zenodo.5512285 . .