Qatar Foundation for Education, Science and Community Development

Link to this page

Qatar Foundation for Education, Science and Community Development

Authors

Publications

What is the preferred geometry of sulfur–disulfide interactions?

Veljković, Ivana S.; Veljković, Dušan; Sarić, Gordana G.; Stanković, Ivana M.; Zarić, Snežana D.

(Royal Society of Chemistry, 2020)

TY  - JOUR
AU  - Veljković, Ivana S.
AU  - Veljković, Dušan
AU  - Sarić, Gordana G.
AU  - Stanković, Ivana M.
AU  - Zarić, Snežana D.
PY  - 2020
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3987
AB  - Non-covalent interactions between disulfide fragments and sulfur atoms were studied in crystal structures of small molecules and by quantum chemical calculations. Statistical analysis of the geometrical data from the Cambridge Structural Database (CSD) reveals that in most cases, interactions between sulfur and disulfide bonds are bifurcated. Quantum chemical calculations are in agreement with those findings. A strong interaction energy was calculated for bifurcated interactions (ECCSD(T)/CBS = −2.83 kcal mol−1) considering the region along the disulfide bond. Non-bifurcated interactions are weaker except in cases where σ-hole interaction is possible or in cases where S⋯S interaction is accompanied by additional hydrogen bonds (ECCSD(T)/CBS = −3.26 kcal mol−1). SAPT decomposition analysis shows that dispersion is the main attractive force in the studied systems while electrostatics plays a crucial role in defining the geometry of interactions.

Non-covalent interactions between disulfide fragments and sulfur atoms were studied in crystal structures of small molecules and by quantum chemical calculations. Statistical analysis of the geometrical data from the Cambridge Structural Database (CSD) reveals that in most cases, interactions between sulfur and disulfide bonds are bifurcated. Quantum chemical calculations are in agreement with those findings. A strong interaction energy was calculated for bifurcated interactions (ECCSD(T)/CBS = −2.83 kcal mol−1) considering the region along the disulfide bond. Non-bifurcated interactions are weaker except in cases where σ-hole interaction is possible or in cases where S⋯S interaction is accompanied by additional hydrogen bonds (ECCSD(T)/CBS = −3.26 kcal mol−1). SAPT decomposition analysis shows that dispersion is the main attractive force in the studied systems while electrostatics plays a crucial role in defining the geometry of interactions.
PB  - Royal Society of Chemistry
T2  - CrystEngComm
T1  - What is the preferred geometry of sulfur–disulfide interactions?
VL  - 22
SP  - 7262
EP  - 7271
DO  - 10.1039/D0CE00211A
ER  - 
@article{
author = "Veljković, Ivana S. and Veljković, Dušan and Sarić, Gordana G. and Stanković, Ivana M. and Zarić, Snežana D.",
year = "2020",
abstract = "Non-covalent interactions between disulfide fragments and sulfur atoms were studied in crystal structures of small molecules and by quantum chemical calculations. Statistical analysis of the geometrical data from the Cambridge Structural Database (CSD) reveals that in most cases, interactions between sulfur and disulfide bonds are bifurcated. Quantum chemical calculations are in agreement with those findings. A strong interaction energy was calculated for bifurcated interactions (ECCSD(T)/CBS = −2.83 kcal mol−1) considering the region along the disulfide bond. Non-bifurcated interactions are weaker except in cases where σ-hole interaction is possible or in cases where S⋯S interaction is accompanied by additional hydrogen bonds (ECCSD(T)/CBS = −3.26 kcal mol−1). SAPT decomposition analysis shows that dispersion is the main attractive force in the studied systems while electrostatics plays a crucial role in defining the geometry of interactions.

Non-covalent interactions between disulfide fragments and sulfur atoms were studied in crystal structures of small molecules and by quantum chemical calculations. Statistical analysis of the geometrical data from the Cambridge Structural Database (CSD) reveals that in most cases, interactions between sulfur and disulfide bonds are bifurcated. Quantum chemical calculations are in agreement with those findings. A strong interaction energy was calculated for bifurcated interactions (ECCSD(T)/CBS = −2.83 kcal mol−1) considering the region along the disulfide bond. Non-bifurcated interactions are weaker except in cases where σ-hole interaction is possible or in cases where S⋯S interaction is accompanied by additional hydrogen bonds (ECCSD(T)/CBS = −3.26 kcal mol−1). SAPT decomposition analysis shows that dispersion is the main attractive force in the studied systems while electrostatics plays a crucial role in defining the geometry of interactions.",
publisher = "Royal Society of Chemistry",
journal = "CrystEngComm",
title = "What is the preferred geometry of sulfur–disulfide interactions?",
volume = "22",
pages = "7262-7271",
doi = "10.1039/D0CE00211A"
}
Veljković, I. S., Veljković, D., Sarić, G. G., Stanković, I. M.,& Zarić, S. D.. (2020). What is the preferred geometry of sulfur–disulfide interactions?. in CrystEngComm
Royal Society of Chemistry., 22, 7262-7271.
https://doi.org/10.1039/D0CE00211A
Veljković IS, Veljković D, Sarić GG, Stanković IM, Zarić SD. What is the preferred geometry of sulfur–disulfide interactions?. in CrystEngComm. 2020;22:7262-7271.
doi:10.1039/D0CE00211A .
Veljković, Ivana S., Veljković, Dušan, Sarić, Gordana G., Stanković, Ivana M., Zarić, Snežana D., "What is the preferred geometry of sulfur–disulfide interactions?" in CrystEngComm, 22 (2020):7262-7271,
https://doi.org/10.1039/D0CE00211A . .
2
2
2

What is the preferred geometry of sulfur–disulfide interactions?

Veljković, Ivana S.; Veljković, Dušan; Sarić, Gordana G.; Stanković, Ivana M.; Zarić, Snežana D.

(Royal Society of Chemistry, 2020)

TY  - JOUR
AU  - Veljković, Ivana S.
AU  - Veljković, Dušan
AU  - Sarić, Gordana G.
AU  - Stanković, Ivana M.
AU  - Zarić, Snežana D.
PY  - 2020
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3990
AB  - Non-covalent interactions between disulfide fragments and sulfur atoms were studied in crystal structures of small molecules and by quantum chemical calculations. Statistical analysis of the geometrical data from the Cambridge Structural Database (CSD) reveals that in most cases, interactions between sulfur and disulfide bonds are bifurcated. Quantum chemical calculations are in agreement with those findings. A strong interaction energy was calculated for bifurcated interactions (ECCSD(T)/CBS = −2.83 kcal mol−1) considering the region along the disulfide bond. Non-bifurcated interactions are weaker except in cases where σ-hole interaction is possible or in cases where S⋯S interaction is accompanied by additional hydrogen bonds (ECCSD(T)/CBS = −3.26 kcal mol−1). SAPT decomposition analysis shows that dispersion is the main attractive force in the studied systems while electrostatics plays a crucial role in defining the geometry of interactions.Non-covalent interactions between disulfide fragments and sulfur atoms were studied in crystal structures of small molecules and by quantum chemical calculations. Statistical analysis of the geometrical data from the Cambridge Structural Database (CSD) reveals that in most cases, interactions between sulfur and disulfide bonds are bifurcated. Quantum chemical calculations are in agreement with those findings. A strong interaction energy was calculated for bifurcated interactions (ECCSD(T)/CBS = −2.83 kcal mol−1) considering the region along the disulfide bond. Non-bifurcated interactions are weaker except in cases where σ-hole interaction is possible or in cases where S⋯S interaction is accompanied by additional hydrogen bonds (ECCSD(T)/CBS = −3.26 kcal mol−1). SAPT decomposition analysis shows that dispersion is the main attractive force in the studied systems while electrostatics plays a crucial role in defining the geometry of interactions.
PB  - Royal Society of Chemistry
T2  - CrystEngComm
T1  - What is the preferred geometry of sulfur–disulfide interactions?
VL  - 22
SP  - 7262
EP  - 7271
DO  - 10.1039/D0CE00211A
ER  - 
@article{
author = "Veljković, Ivana S. and Veljković, Dušan and Sarić, Gordana G. and Stanković, Ivana M. and Zarić, Snežana D.",
year = "2020",
abstract = "Non-covalent interactions between disulfide fragments and sulfur atoms were studied in crystal structures of small molecules and by quantum chemical calculations. Statistical analysis of the geometrical data from the Cambridge Structural Database (CSD) reveals that in most cases, interactions between sulfur and disulfide bonds are bifurcated. Quantum chemical calculations are in agreement with those findings. A strong interaction energy was calculated for bifurcated interactions (ECCSD(T)/CBS = −2.83 kcal mol−1) considering the region along the disulfide bond. Non-bifurcated interactions are weaker except in cases where σ-hole interaction is possible or in cases where S⋯S interaction is accompanied by additional hydrogen bonds (ECCSD(T)/CBS = −3.26 kcal mol−1). SAPT decomposition analysis shows that dispersion is the main attractive force in the studied systems while electrostatics plays a crucial role in defining the geometry of interactions.Non-covalent interactions between disulfide fragments and sulfur atoms were studied in crystal structures of small molecules and by quantum chemical calculations. Statistical analysis of the geometrical data from the Cambridge Structural Database (CSD) reveals that in most cases, interactions between sulfur and disulfide bonds are bifurcated. Quantum chemical calculations are in agreement with those findings. A strong interaction energy was calculated for bifurcated interactions (ECCSD(T)/CBS = −2.83 kcal mol−1) considering the region along the disulfide bond. Non-bifurcated interactions are weaker except in cases where σ-hole interaction is possible or in cases where S⋯S interaction is accompanied by additional hydrogen bonds (ECCSD(T)/CBS = −3.26 kcal mol−1). SAPT decomposition analysis shows that dispersion is the main attractive force in the studied systems while electrostatics plays a crucial role in defining the geometry of interactions.",
publisher = "Royal Society of Chemistry",
journal = "CrystEngComm",
title = "What is the preferred geometry of sulfur–disulfide interactions?",
volume = "22",
pages = "7262-7271",
doi = "10.1039/D0CE00211A"
}
Veljković, I. S., Veljković, D., Sarić, G. G., Stanković, I. M.,& Zarić, S. D.. (2020). What is the preferred geometry of sulfur–disulfide interactions?. in CrystEngComm
Royal Society of Chemistry., 22, 7262-7271.
https://doi.org/10.1039/D0CE00211A
Veljković IS, Veljković D, Sarić GG, Stanković IM, Zarić SD. What is the preferred geometry of sulfur–disulfide interactions?. in CrystEngComm. 2020;22:7262-7271.
doi:10.1039/D0CE00211A .
Veljković, Ivana S., Veljković, Dušan, Sarić, Gordana G., Stanković, Ivana M., Zarić, Snežana D., "What is the preferred geometry of sulfur–disulfide interactions?" in CrystEngComm, 22 (2020):7262-7271,
https://doi.org/10.1039/D0CE00211A . .
2
2
2

Carbohydrate – Protein aromatic ring interactions beyond CH/π interactions: A Protein Data Bank survey and quantum chemical calculations

Stanković, Ivana; Blagojević Filipović, Jelena P.; Zarić, Snežana D.

(Elsevier, 2020)

TY  - JOUR
AU  - Stanković, Ivana
AU  - Blagojević Filipović, Jelena P.
AU  - Zarić, Snežana D.
PY  - 2020
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3519
AB  - The geometries of the contacts between monosaccharides and aromatic rings of amino acids found in X-ray crystallography structures, in the Protein Data Bank (PDB), were analyzed, while the energies of the interactions were calculated using quantum chemical method. We found 1913 sugar/aromatic ring contacts, 1054 of them (55%) with CH/π interactions and 859 of them (45%) without CH/π interactions. We showed that only the carbohydrate/aromatic contacts with CH/π interactions are preferentially parallel and enable sliding in the plane parallel to aromatic ring. The calculated interaction energies in systems with CH/π interactions are in the range from −1.7 kcal/mol to −6.8 kcal/mol, while in the systems without CH/π interactions are in the range −0.2 to −3.2 kcal/mol. Hence, the binding that does not include CH/π interactions, can also be important for aromatic amino acid and carbohydrate binding processes, since some of these interactions can be as strong as the CH/π interactions. At the same time, these interactions can be weak enough to enable releasing of small carbohydrate fragments after the enzymatic reaction. The analysis of the protein-substrate patterns showed that every second or third carbohydrate unit in long substrates stacks with protein aromatic amino acids.
PB  - Elsevier
T2  - International Journal of Biological Macromolecules
T1  - Carbohydrate – Protein aromatic ring interactions beyond CH/π interactions: A Protein Data Bank survey and quantum chemical calculations
VL  - 157
SP  - 1
EP  - 9
DO  - 10.1016/j.ijbiomac.2020.03.251
ER  - 
@article{
author = "Stanković, Ivana and Blagojević Filipović, Jelena P. and Zarić, Snežana D.",
year = "2020",
abstract = "The geometries of the contacts between monosaccharides and aromatic rings of amino acids found in X-ray crystallography structures, in the Protein Data Bank (PDB), were analyzed, while the energies of the interactions were calculated using quantum chemical method. We found 1913 sugar/aromatic ring contacts, 1054 of them (55%) with CH/π interactions and 859 of them (45%) without CH/π interactions. We showed that only the carbohydrate/aromatic contacts with CH/π interactions are preferentially parallel and enable sliding in the plane parallel to aromatic ring. The calculated interaction energies in systems with CH/π interactions are in the range from −1.7 kcal/mol to −6.8 kcal/mol, while in the systems without CH/π interactions are in the range −0.2 to −3.2 kcal/mol. Hence, the binding that does not include CH/π interactions, can also be important for aromatic amino acid and carbohydrate binding processes, since some of these interactions can be as strong as the CH/π interactions. At the same time, these interactions can be weak enough to enable releasing of small carbohydrate fragments after the enzymatic reaction. The analysis of the protein-substrate patterns showed that every second or third carbohydrate unit in long substrates stacks with protein aromatic amino acids.",
publisher = "Elsevier",
journal = "International Journal of Biological Macromolecules",
title = "Carbohydrate – Protein aromatic ring interactions beyond CH/π interactions: A Protein Data Bank survey and quantum chemical calculations",
volume = "157",
pages = "1-9",
doi = "10.1016/j.ijbiomac.2020.03.251"
}
Stanković, I., Blagojević Filipović, J. P.,& Zarić, S. D.. (2020). Carbohydrate – Protein aromatic ring interactions beyond CH/π interactions: A Protein Data Bank survey and quantum chemical calculations. in International Journal of Biological Macromolecules
Elsevier., 157, 1-9.
https://doi.org/10.1016/j.ijbiomac.2020.03.251
Stanković I, Blagojević Filipović JP, Zarić SD. Carbohydrate – Protein aromatic ring interactions beyond CH/π interactions: A Protein Data Bank survey and quantum chemical calculations. in International Journal of Biological Macromolecules. 2020;157:1-9.
doi:10.1016/j.ijbiomac.2020.03.251 .
Stanković, Ivana, Blagojević Filipović, Jelena P., Zarić, Snežana D., "Carbohydrate – Protein aromatic ring interactions beyond CH/π interactions: A Protein Data Bank survey and quantum chemical calculations" in International Journal of Biological Macromolecules, 157 (2020):1-9,
https://doi.org/10.1016/j.ijbiomac.2020.03.251 . .
13
8
12

Carbohydrate – Protein aromatic ring interactions beyond CH/π interactions: A Protein Data Bank survey and quantum chemical calculations

Stanković, Ivana; Blagojević Filipović, Jelena P.; Zarić, Snežana D.

(Elsevier, 2020)

TY  - JOUR
AU  - Stanković, Ivana
AU  - Blagojević Filipović, Jelena P.
AU  - Zarić, Snežana D.
PY  - 2020
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3520
AB  - The geometries of the contacts between monosaccharides and aromatic rings of amino acids found in X-ray crystallography structures, in the Protein Data Bank (PDB), were analyzed, while the energies of the interactions were calculated using quantum chemical method. We found 1913 sugar/aromatic ring contacts, 1054 of them (55%) with CH/π interactions and 859 of them (45%) without CH/π interactions. We showed that only the carbohydrate/aromatic contacts with CH/π interactions are preferentially parallel and enable sliding in the plane parallel to aromatic ring. The calculated interaction energies in systems with CH/π interactions are in the range from −1.7 kcal/mol to −6.8 kcal/mol, while in the systems without CH/π interactions are in the range −0.2 to −3.2 kcal/mol. Hence, the binding that does not include CH/π interactions, can also be important for aromatic amino acid and carbohydrate binding processes, since some of these interactions can be as strong as the CH/π interactions. At the same time, these interactions can be weak enough to enable releasing of small carbohydrate fragments after the enzymatic reaction. The analysis of the protein-substrate patterns showed that every second or third carbohydrate unit in long substrates stacks with protein aromatic amino acids.
PB  - Elsevier
T2  - International Journal of Biological Macromolecules
T1  - Carbohydrate – Protein aromatic ring interactions beyond CH/π interactions: A Protein Data Bank survey and quantum chemical calculations
VL  - 157
SP  - 1
EP  - 9
DO  - 10.1016/j.ijbiomac.2020.03.251
ER  - 
@article{
author = "Stanković, Ivana and Blagojević Filipović, Jelena P. and Zarić, Snežana D.",
year = "2020",
abstract = "The geometries of the contacts between monosaccharides and aromatic rings of amino acids found in X-ray crystallography structures, in the Protein Data Bank (PDB), were analyzed, while the energies of the interactions were calculated using quantum chemical method. We found 1913 sugar/aromatic ring contacts, 1054 of them (55%) with CH/π interactions and 859 of them (45%) without CH/π interactions. We showed that only the carbohydrate/aromatic contacts with CH/π interactions are preferentially parallel and enable sliding in the plane parallel to aromatic ring. The calculated interaction energies in systems with CH/π interactions are in the range from −1.7 kcal/mol to −6.8 kcal/mol, while in the systems without CH/π interactions are in the range −0.2 to −3.2 kcal/mol. Hence, the binding that does not include CH/π interactions, can also be important for aromatic amino acid and carbohydrate binding processes, since some of these interactions can be as strong as the CH/π interactions. At the same time, these interactions can be weak enough to enable releasing of small carbohydrate fragments after the enzymatic reaction. The analysis of the protein-substrate patterns showed that every second or third carbohydrate unit in long substrates stacks with protein aromatic amino acids.",
publisher = "Elsevier",
journal = "International Journal of Biological Macromolecules",
title = "Carbohydrate – Protein aromatic ring interactions beyond CH/π interactions: A Protein Data Bank survey and quantum chemical calculations",
volume = "157",
pages = "1-9",
doi = "10.1016/j.ijbiomac.2020.03.251"
}
Stanković, I., Blagojević Filipović, J. P.,& Zarić, S. D.. (2020). Carbohydrate – Protein aromatic ring interactions beyond CH/π interactions: A Protein Data Bank survey and quantum chemical calculations. in International Journal of Biological Macromolecules
Elsevier., 157, 1-9.
https://doi.org/10.1016/j.ijbiomac.2020.03.251
Stanković I, Blagojević Filipović JP, Zarić SD. Carbohydrate – Protein aromatic ring interactions beyond CH/π interactions: A Protein Data Bank survey and quantum chemical calculations. in International Journal of Biological Macromolecules. 2020;157:1-9.
doi:10.1016/j.ijbiomac.2020.03.251 .
Stanković, Ivana, Blagojević Filipović, Jelena P., Zarić, Snežana D., "Carbohydrate – Protein aromatic ring interactions beyond CH/π interactions: A Protein Data Bank survey and quantum chemical calculations" in International Journal of Biological Macromolecules, 157 (2020):1-9,
https://doi.org/10.1016/j.ijbiomac.2020.03.251 . .
13
8
12

Stacking of cyclopentadienyl organometallic sandwich and half-sandwich compounds. Strong interactions of sandwiches at large offsets

Malenov, Dušan P.; Antonijević, Ivana; Hall, Michael B.; Zarić, Snežana D.

(Royal Soc Chemistry, Cambridge, 2018)

TY  - JOUR
AU  - Malenov, Dušan P.
AU  - Antonijević, Ivana
AU  - Hall, Michael B.
AU  - Zarić, Snežana D.
PY  - 2018
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/2423
AB  - Stacking interactions of organometallic sandwich and half-sandwich compounds with cyclopentadienyl (Cp) were studied by searching and observing the crystal structures in the Cambridge Structural Database and performing density functional calculations. The strongest calculated interactions are at an offset of 1.5 angstrom with energies for sandwich and half-sandwich dimers of -3.37 and -2.87 kcal mol(-1), respectively, somewhat stronger than the stacking interaction between two benzene molecules, -2.73 kcal mol(-1). At large offsets of 5.0 angstrom, 74% of the strongest energy is preserved for the sandwich dimer and only 29% for the half-sandwich dimer. In crystal structures, for sandwich compounds, the stacking at large offsets is dominant (73%), since the interaction at large offsets is relatively strong, and the geometries enable additional simultaneous interactions with Cp faces. The stacking at large offsets between half-sandwich compounds is less dominant, since the interaction is weaker. However, Cp half-sandwich compounds stack at large offsets unexpectedly often (almost 60%), since the branching of their other ligands in the compound favors more simultaneous interactions with Cp faces. Strong interaction at large offsets for sandwich compounds is the consequence of favorable electrostatic interaction, which is not the feature of stacking between half-sandwich compounds.
PB  - Royal Soc Chemistry, Cambridge
T2  - Crystengcomm
T1  - Stacking of cyclopentadienyl organometallic sandwich and half-sandwich compounds. Strong interactions of sandwiches at large offsets
VL  - 20
IS  - 31
SP  - 4506
EP  - 4514
DO  - 10.1039/c8ce00597d
ER  - 
@article{
author = "Malenov, Dušan P. and Antonijević, Ivana and Hall, Michael B. and Zarić, Snežana D.",
year = "2018",
abstract = "Stacking interactions of organometallic sandwich and half-sandwich compounds with cyclopentadienyl (Cp) were studied by searching and observing the crystal structures in the Cambridge Structural Database and performing density functional calculations. The strongest calculated interactions are at an offset of 1.5 angstrom with energies for sandwich and half-sandwich dimers of -3.37 and -2.87 kcal mol(-1), respectively, somewhat stronger than the stacking interaction between two benzene molecules, -2.73 kcal mol(-1). At large offsets of 5.0 angstrom, 74% of the strongest energy is preserved for the sandwich dimer and only 29% for the half-sandwich dimer. In crystal structures, for sandwich compounds, the stacking at large offsets is dominant (73%), since the interaction at large offsets is relatively strong, and the geometries enable additional simultaneous interactions with Cp faces. The stacking at large offsets between half-sandwich compounds is less dominant, since the interaction is weaker. However, Cp half-sandwich compounds stack at large offsets unexpectedly often (almost 60%), since the branching of their other ligands in the compound favors more simultaneous interactions with Cp faces. Strong interaction at large offsets for sandwich compounds is the consequence of favorable electrostatic interaction, which is not the feature of stacking between half-sandwich compounds.",
publisher = "Royal Soc Chemistry, Cambridge",
journal = "Crystengcomm",
title = "Stacking of cyclopentadienyl organometallic sandwich and half-sandwich compounds. Strong interactions of sandwiches at large offsets",
volume = "20",
number = "31",
pages = "4506-4514",
doi = "10.1039/c8ce00597d"
}
Malenov, D. P., Antonijević, I., Hall, M. B.,& Zarić, S. D.. (2018). Stacking of cyclopentadienyl organometallic sandwich and half-sandwich compounds. Strong interactions of sandwiches at large offsets. in Crystengcomm
Royal Soc Chemistry, Cambridge., 20(31), 4506-4514.
https://doi.org/10.1039/c8ce00597d
Malenov DP, Antonijević I, Hall MB, Zarić SD. Stacking of cyclopentadienyl organometallic sandwich and half-sandwich compounds. Strong interactions of sandwiches at large offsets. in Crystengcomm. 2018;20(31):4506-4514.
doi:10.1039/c8ce00597d .
Malenov, Dušan P., Antonijević, Ivana, Hall, Michael B., Zarić, Snežana D., "Stacking of cyclopentadienyl organometallic sandwich and half-sandwich compounds. Strong interactions of sandwiches at large offsets" in Crystengcomm, 20, no. 31 (2018):4506-4514,
https://doi.org/10.1039/c8ce00597d . .
11
9
11

Prediction of strong O-H/M hydrogen bonding between water and square-planar Ir and Rh complexes

Janjić, Goran; Milosavljevic, M. D.; Veljković, Dušan; Zarić, Snežana D.

(Royal Soc Chemistry, Cambridge, 2017)

TY  - JOUR
AU  - Janjić, Goran
AU  - Milosavljevic, M. D.
AU  - Veljković, Dušan
AU  - Zarić, Snežana D.
PY  - 2017
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/2220
AB  - Intermolecular OH/M interactions, between a water molecule and square-planar acac complexes ([M(acac)L-2]), with different types of L ligands (en, H2O, CO, CN-, and OH-) and different types of metal atoms (Ir(I), Rh(I), Pt(II), and Pd(II)) were studied by high level ab initio calculations. Among the studied neutral complexes, the [Pd(acac)(CN)(CO)] complex forms the weakest interaction, -0.62 kcal mol(-1), while the [Ir(acac)(en)] complex forms the strongest interaction, -9.83 kcal mol(-1), which is remarkably stronger than the conventional hydrogen bond between two water molecules (-4.84 kcal mol(-1)).
PB  - Royal Soc Chemistry, Cambridge
T2  - Physical Chemistry Chemical Physics
T1  - Prediction of strong O-H/M hydrogen bonding between water and square-planar Ir and Rh complexes
VL  - 19
IS  - 13
SP  - 8657
EP  - 8660
DO  - 10.1039/c6cp08796e
ER  - 
@article{
author = "Janjić, Goran and Milosavljevic, M. D. and Veljković, Dušan and Zarić, Snežana D.",
year = "2017",
abstract = "Intermolecular OH/M interactions, between a water molecule and square-planar acac complexes ([M(acac)L-2]), with different types of L ligands (en, H2O, CO, CN-, and OH-) and different types of metal atoms (Ir(I), Rh(I), Pt(II), and Pd(II)) were studied by high level ab initio calculations. Among the studied neutral complexes, the [Pd(acac)(CN)(CO)] complex forms the weakest interaction, -0.62 kcal mol(-1), while the [Ir(acac)(en)] complex forms the strongest interaction, -9.83 kcal mol(-1), which is remarkably stronger than the conventional hydrogen bond between two water molecules (-4.84 kcal mol(-1)).",
publisher = "Royal Soc Chemistry, Cambridge",
journal = "Physical Chemistry Chemical Physics",
title = "Prediction of strong O-H/M hydrogen bonding between water and square-planar Ir and Rh complexes",
volume = "19",
number = "13",
pages = "8657-8660",
doi = "10.1039/c6cp08796e"
}
Janjić, G., Milosavljevic, M. D., Veljković, D.,& Zarić, S. D.. (2017). Prediction of strong O-H/M hydrogen bonding between water and square-planar Ir and Rh complexes. in Physical Chemistry Chemical Physics
Royal Soc Chemistry, Cambridge., 19(13), 8657-8660.
https://doi.org/10.1039/c6cp08796e
Janjić G, Milosavljevic MD, Veljković D, Zarić SD. Prediction of strong O-H/M hydrogen bonding between water and square-planar Ir and Rh complexes. in Physical Chemistry Chemical Physics. 2017;19(13):8657-8660.
doi:10.1039/c6cp08796e .
Janjić, Goran, Milosavljevic, M. D., Veljković, Dušan, Zarić, Snežana D., "Prediction of strong O-H/M hydrogen bonding between water and square-planar Ir and Rh complexes" in Physical Chemistry Chemical Physics, 19, no. 13 (2017):8657-8660,
https://doi.org/10.1039/c6cp08796e . .
2
7
7
7

Prediction of strong O-H/M hydrogen bonding between water and square-planar Ir and Rh complexes

Janjić, Goran; Milosavljevic, M. D.; Veljković, Dušan; Zarić, Snežana D.

(Royal Soc Chemistry, Cambridge, 2017)

TY  - JOUR
AU  - Janjić, Goran
AU  - Milosavljevic, M. D.
AU  - Veljković, Dušan
AU  - Zarić, Snežana D.
PY  - 2017
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3237
AB  - Intermolecular OH/M interactions, between a water molecule and square-planar acac complexes ([M(acac)L-2]), with different types of L ligands (en, H2O, CO, CN-, and OH-) and different types of metal atoms (Ir(I), Rh(I), Pt(II), and Pd(II)) were studied by high level ab initio calculations. Among the studied neutral complexes, the [Pd(acac)(CN)(CO)] complex forms the weakest interaction, -0.62 kcal mol(-1), while the [Ir(acac)(en)] complex forms the strongest interaction, -9.83 kcal mol(-1), which is remarkably stronger than the conventional hydrogen bond between two water molecules (-4.84 kcal mol(-1)).
PB  - Royal Soc Chemistry, Cambridge
T2  - Physical Chemistry Chemical Physics
T1  - Prediction of strong O-H/M hydrogen bonding between water and square-planar Ir and Rh complexes
VL  - 19
IS  - 13
SP  - 8657
EP  - 8660
DO  - 10.1039/c6cp08796e
ER  - 
@article{
author = "Janjić, Goran and Milosavljevic, M. D. and Veljković, Dušan and Zarić, Snežana D.",
year = "2017",
abstract = "Intermolecular OH/M interactions, between a water molecule and square-planar acac complexes ([M(acac)L-2]), with different types of L ligands (en, H2O, CO, CN-, and OH-) and different types of metal atoms (Ir(I), Rh(I), Pt(II), and Pd(II)) were studied by high level ab initio calculations. Among the studied neutral complexes, the [Pd(acac)(CN)(CO)] complex forms the weakest interaction, -0.62 kcal mol(-1), while the [Ir(acac)(en)] complex forms the strongest interaction, -9.83 kcal mol(-1), which is remarkably stronger than the conventional hydrogen bond between two water molecules (-4.84 kcal mol(-1)).",
publisher = "Royal Soc Chemistry, Cambridge",
journal = "Physical Chemistry Chemical Physics",
title = "Prediction of strong O-H/M hydrogen bonding between water and square-planar Ir and Rh complexes",
volume = "19",
number = "13",
pages = "8657-8660",
doi = "10.1039/c6cp08796e"
}
Janjić, G., Milosavljevic, M. D., Veljković, D.,& Zarić, S. D.. (2017). Prediction of strong O-H/M hydrogen bonding between water and square-planar Ir and Rh complexes. in Physical Chemistry Chemical Physics
Royal Soc Chemistry, Cambridge., 19(13), 8657-8660.
https://doi.org/10.1039/c6cp08796e
Janjić G, Milosavljevic MD, Veljković D, Zarić SD. Prediction of strong O-H/M hydrogen bonding between water and square-planar Ir and Rh complexes. in Physical Chemistry Chemical Physics. 2017;19(13):8657-8660.
doi:10.1039/c6cp08796e .
Janjić, Goran, Milosavljevic, M. D., Veljković, Dušan, Zarić, Snežana D., "Prediction of strong O-H/M hydrogen bonding between water and square-planar Ir and Rh complexes" in Physical Chemistry Chemical Physics, 19, no. 13 (2017):8657-8660,
https://doi.org/10.1039/c6cp08796e . .
2
7
7
7

Very Strong Parallel Interactions Between Two Saturated Acyclic Groups Closed with Intramolecular Hydrogen Bonds Forming Hydrogen-Bridged Rings

Blagojevic, Jelena P; Janjić, Goran; Zarić, Snežana D.

(MDPI, 2016)

TY  - JOUR
AU  - Blagojevic, Jelena P
AU  - Janjić, Goran
AU  - Zarić, Snežana D.
PY  - 2016
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/2005
AB  - Saturated acyclic four-atom groups closed with a classic intramolecular hydrogen bond, generating planar five-membered rings (hydrogen-bridged quasi-rings), in which at least one of the ring atoms is bonded to other non-ring atoms that are not in the ring plane and, thus, capable to form intermolecular interactions, were studied in this work, in order to find the preferred mutual positions of these species in crystals and evaluate strength of intermolecular interactions. We studied parallel interactions of these rings by analysing crystal structures in the Cambridge Structural Database (CSD) and by quantum chemical calculations. The rings can have one hydrogen atom out of the ring plane that can form hydrogen bonds between two parallel rings. Hence, in these systems with parallel rings, two types of hydrogen bonds can be present, one in the ring, and the other one between two parallel rings. The CSD search showed that 27% of the rings in the crystal structures form parallel interactions. The calculations at very accurate CCSD(T)/CBS level revealed strong interactions, in model systems of thiosemicarbazide, semicarbazide and glycolamide dimers the energies are -9.68, -7.12 and -4.25 kcal/mol. The hydrogen bonds between rings, as well as dispersion interactions contribute to the strong interaction energies.
PB  - MDPI
T2  - Crystals
T1  - Very Strong Parallel Interactions Between Two Saturated Acyclic Groups Closed with Intramolecular Hydrogen Bonds Forming Hydrogen-Bridged Rings
VL  - 6
IS  - 4
DO  - 10.3390/cryst6040034
ER  - 
@article{
author = "Blagojevic, Jelena P and Janjić, Goran and Zarić, Snežana D.",
year = "2016",
abstract = "Saturated acyclic four-atom groups closed with a classic intramolecular hydrogen bond, generating planar five-membered rings (hydrogen-bridged quasi-rings), in which at least one of the ring atoms is bonded to other non-ring atoms that are not in the ring plane and, thus, capable to form intermolecular interactions, were studied in this work, in order to find the preferred mutual positions of these species in crystals and evaluate strength of intermolecular interactions. We studied parallel interactions of these rings by analysing crystal structures in the Cambridge Structural Database (CSD) and by quantum chemical calculations. The rings can have one hydrogen atom out of the ring plane that can form hydrogen bonds between two parallel rings. Hence, in these systems with parallel rings, two types of hydrogen bonds can be present, one in the ring, and the other one between two parallel rings. The CSD search showed that 27% of the rings in the crystal structures form parallel interactions. The calculations at very accurate CCSD(T)/CBS level revealed strong interactions, in model systems of thiosemicarbazide, semicarbazide and glycolamide dimers the energies are -9.68, -7.12 and -4.25 kcal/mol. The hydrogen bonds between rings, as well as dispersion interactions contribute to the strong interaction energies.",
publisher = "MDPI",
journal = "Crystals",
title = "Very Strong Parallel Interactions Between Two Saturated Acyclic Groups Closed with Intramolecular Hydrogen Bonds Forming Hydrogen-Bridged Rings",
volume = "6",
number = "4",
doi = "10.3390/cryst6040034"
}
Blagojevic, J. P., Janjić, G.,& Zarić, S. D.. (2016). Very Strong Parallel Interactions Between Two Saturated Acyclic Groups Closed with Intramolecular Hydrogen Bonds Forming Hydrogen-Bridged Rings. in Crystals
MDPI., 6(4).
https://doi.org/10.3390/cryst6040034
Blagojevic JP, Janjić G, Zarić SD. Very Strong Parallel Interactions Between Two Saturated Acyclic Groups Closed with Intramolecular Hydrogen Bonds Forming Hydrogen-Bridged Rings. in Crystals. 2016;6(4).
doi:10.3390/cryst6040034 .
Blagojevic, Jelena P, Janjić, Goran, Zarić, Snežana D., "Very Strong Parallel Interactions Between Two Saturated Acyclic Groups Closed with Intramolecular Hydrogen Bonds Forming Hydrogen-Bridged Rings" in Crystals, 6, no. 4 (2016),
https://doi.org/10.3390/cryst6040034 . .
1
6
3
5