National Major Research and Development Program of China (2019YFC1803500)

Link to this page

National Major Research and Development Program of China (2019YFC1803500)

Authors

Publications

Dithionite accelerated copper slag heterogeneous-homogeneous coupled Fenton degradation of organic pollutants

Ma, Bo; Yao, Jun; Šolević Knudsen, Tatjana; Pang, Wancheng; Liu, Bang; Zhu, Xiaozhe; Cao, Ying; Zhao, Chenchen

(Elsevier, 2023)

TY  - JOUR
AU  - Ma, Bo
AU  - Yao, Jun
AU  - Šolević Knudsen, Tatjana
AU  - Pang, Wancheng
AU  - Liu, Bang
AU  - Zhu, Xiaozhe
AU  - Cao, Ying
AU  - Zhao, Chenchen
PY  - 2023
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/6880
AB  - The heterogeneous-homogeneous coupled Fenton (HHCF) processes combine the advantages of rapid reaction and the catalyst reuse, which makes them attractive for wastewater treatment. Nevertheless, the lack of both, cost-effective catalysts and the desirable Fe3+/Fe2+ conversion mediators limit the development of HHCF processes. This study investigates a prospective HHCF process, in which solid waste copper slag (CS) and dithionite (DNT) act as catalyst and mediator of Fe3+/Fe2+ transformation, respectively. DNT enables controlled leaching of iron and a highly efficient homogeneous Fe3+/Fe2+ cycle by dissociating to SO2- • under acidic conditions,
leading to the enhanced H2O2 decomposition and •OH generation (from 48 μmol/L to 399 μmol/L) for pchloroaniline (p-CA) degradation. The removal rate of p-CA in the CS/DNT/H2O2 system increased by 30 times in comparison with the CS/H2O2 system (increased from 1.21 × 10-3 min-1 to 3.61 × 10-2 min-1). Moreover, batch dosing of H2O2 can greatly promote the yield of •OH (from 399 μmol/L to 627 μmol/L), by mitigating the side reactions between H2O2 and SO2- •. This study highlights the importance of the iron cycle regulation for improvement of the Fenton efficiency and develops a cost-effective Fenton system for organic contaminants elimination in wastewater.
PB  - Elsevier
T2  - Journal of Hazardous Materials
T1  - Dithionite accelerated copper slag heterogeneous-homogeneous coupled Fenton degradation of organic pollutants
VL  - 457
SP  - 131797
DO  - 10.1016/j.jhazmat.2023.131797
ER  - 
@article{
author = "Ma, Bo and Yao, Jun and Šolević Knudsen, Tatjana and Pang, Wancheng and Liu, Bang and Zhu, Xiaozhe and Cao, Ying and Zhao, Chenchen",
year = "2023",
abstract = "The heterogeneous-homogeneous coupled Fenton (HHCF) processes combine the advantages of rapid reaction and the catalyst reuse, which makes them attractive for wastewater treatment. Nevertheless, the lack of both, cost-effective catalysts and the desirable Fe3+/Fe2+ conversion mediators limit the development of HHCF processes. This study investigates a prospective HHCF process, in which solid waste copper slag (CS) and dithionite (DNT) act as catalyst and mediator of Fe3+/Fe2+ transformation, respectively. DNT enables controlled leaching of iron and a highly efficient homogeneous Fe3+/Fe2+ cycle by dissociating to SO2- • under acidic conditions,
leading to the enhanced H2O2 decomposition and •OH generation (from 48 μmol/L to 399 μmol/L) for pchloroaniline (p-CA) degradation. The removal rate of p-CA in the CS/DNT/H2O2 system increased by 30 times in comparison with the CS/H2O2 system (increased from 1.21 × 10-3 min-1 to 3.61 × 10-2 min-1). Moreover, batch dosing of H2O2 can greatly promote the yield of •OH (from 399 μmol/L to 627 μmol/L), by mitigating the side reactions between H2O2 and SO2- •. This study highlights the importance of the iron cycle regulation for improvement of the Fenton efficiency and develops a cost-effective Fenton system for organic contaminants elimination in wastewater.",
publisher = "Elsevier",
journal = "Journal of Hazardous Materials",
title = "Dithionite accelerated copper slag heterogeneous-homogeneous coupled Fenton degradation of organic pollutants",
volume = "457",
pages = "131797",
doi = "10.1016/j.jhazmat.2023.131797"
}
Ma, B., Yao, J., Šolević Knudsen, T., Pang, W., Liu, B., Zhu, X., Cao, Y.,& Zhao, C.. (2023). Dithionite accelerated copper slag heterogeneous-homogeneous coupled Fenton degradation of organic pollutants. in Journal of Hazardous Materials
Elsevier., 457, 131797.
https://doi.org/10.1016/j.jhazmat.2023.131797
Ma B, Yao J, Šolević Knudsen T, Pang W, Liu B, Zhu X, Cao Y, Zhao C. Dithionite accelerated copper slag heterogeneous-homogeneous coupled Fenton degradation of organic pollutants. in Journal of Hazardous Materials. 2023;457:131797.
doi:10.1016/j.jhazmat.2023.131797 .
Ma, Bo, Yao, Jun, Šolević Knudsen, Tatjana, Pang, Wancheng, Liu, Bang, Zhu, Xiaozhe, Cao, Ying, Zhao, Chenchen, "Dithionite accelerated copper slag heterogeneous-homogeneous coupled Fenton degradation of organic pollutants" in Journal of Hazardous Materials, 457 (2023):131797,
https://doi.org/10.1016/j.jhazmat.2023.131797 . .
4
2