Republic of Serbia, Ministry of Education, Science and Technological Development

Link to this page

Republic of Serbia, Ministry of Education, Science and Technological Development

Authors

Publications

Effect of Al2O3 nanoparticles and strontium addition on structural, mechanical and tribological properties of Zn25Al3Si alloy

Vencl, Aleksandar; Bobić, Biljana; Vučetić, Filip; Svoboda, Petr; Popović, Vladimir; Bobić, Ilija

(Springer Heidelberg, Heidelberg, 2018)

TY  - JOUR
AU  - Vencl, Aleksandar
AU  - Bobić, Biljana
AU  - Vučetić, Filip
AU  - Svoboda, Petr
AU  - Popović, Vladimir
AU  - Bobić, Ilija
PY  - 2018
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/2370
AB  - Nanocomposites were synthesized via compocasting using Zn25Al3Si and Zn25Al3Si0.03Sr alloys as the matrices and nanoparticles of Al2O3 (1 wt%) as the reinforcement. Structure of the nanocomposites was examined, and their basic mechanical and tribological properties were tested. Distribution of primary silicon particles in the structure of nanocomposites has been improved compared to their distribution in the Zn25Al3Si matrix alloy due to the presence of Al2O3 nanoparticles and strontium. The primary silicon particles in the structure of the nanocomposites were found to be more fine-grained compared to the same particles in the structure of the as-cast Zn25Al3Si alloy. Tested mechanical properties of the nanocomposite with Zn25Al3Si alloy matrix are improved, compared to the matrix alloy. The nanocomposite with Zn25Al3Si0.03Sr alloy matrix is characterized with slightly higher value of compressive yield strength and a slightly lower hardness value compared to the as-cast Zn25Al3Si alloy. Both nanocomposites showed lower wear rate and higher coefficient of friction, compared to the matrix alloy, in sliding under the boundary lubricating regime. However, the nanocomposite with Zn25Al3Si alloy matrix showed better tribological properties than the nanocomposite with Zn25Al3Si0.03Sr alloy matrix.
PB  - Springer Heidelberg, Heidelberg
T2  - Journal of the Brazilian Society of Mechanical Sciences and Engineering
T1  - Effect of Al2O3 nanoparticles and strontium addition on structural, mechanical and tribological properties of Zn25Al3Si alloy
VL  - 40
IS  - 11
DO  - 10.1007/s40430-018-1441-9
ER  - 
@article{
author = "Vencl, Aleksandar and Bobić, Biljana and Vučetić, Filip and Svoboda, Petr and Popović, Vladimir and Bobić, Ilija",
year = "2018",
abstract = "Nanocomposites were synthesized via compocasting using Zn25Al3Si and Zn25Al3Si0.03Sr alloys as the matrices and nanoparticles of Al2O3 (1 wt%) as the reinforcement. Structure of the nanocomposites was examined, and their basic mechanical and tribological properties were tested. Distribution of primary silicon particles in the structure of nanocomposites has been improved compared to their distribution in the Zn25Al3Si matrix alloy due to the presence of Al2O3 nanoparticles and strontium. The primary silicon particles in the structure of the nanocomposites were found to be more fine-grained compared to the same particles in the structure of the as-cast Zn25Al3Si alloy. Tested mechanical properties of the nanocomposite with Zn25Al3Si alloy matrix are improved, compared to the matrix alloy. The nanocomposite with Zn25Al3Si0.03Sr alloy matrix is characterized with slightly higher value of compressive yield strength and a slightly lower hardness value compared to the as-cast Zn25Al3Si alloy. Both nanocomposites showed lower wear rate and higher coefficient of friction, compared to the matrix alloy, in sliding under the boundary lubricating regime. However, the nanocomposite with Zn25Al3Si alloy matrix showed better tribological properties than the nanocomposite with Zn25Al3Si0.03Sr alloy matrix.",
publisher = "Springer Heidelberg, Heidelberg",
journal = "Journal of the Brazilian Society of Mechanical Sciences and Engineering",
title = "Effect of Al2O3 nanoparticles and strontium addition on structural, mechanical and tribological properties of Zn25Al3Si alloy",
volume = "40",
number = "11",
doi = "10.1007/s40430-018-1441-9"
}
Vencl, A., Bobić, B., Vučetić, F., Svoboda, P., Popović, V.,& Bobić, I.. (2018). Effect of Al2O3 nanoparticles and strontium addition on structural, mechanical and tribological properties of Zn25Al3Si alloy. in Journal of the Brazilian Society of Mechanical Sciences and Engineering
Springer Heidelberg, Heidelberg., 40(11).
https://doi.org/10.1007/s40430-018-1441-9
Vencl A, Bobić B, Vučetić F, Svoboda P, Popović V, Bobić I. Effect of Al2O3 nanoparticles and strontium addition on structural, mechanical and tribological properties of Zn25Al3Si alloy. in Journal of the Brazilian Society of Mechanical Sciences and Engineering. 2018;40(11).
doi:10.1007/s40430-018-1441-9 .
Vencl, Aleksandar, Bobić, Biljana, Vučetić, Filip, Svoboda, Petr, Popović, Vladimir, Bobić, Ilija, "Effect of Al2O3 nanoparticles and strontium addition on structural, mechanical and tribological properties of Zn25Al3Si alloy" in Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40, no. 11 (2018),
https://doi.org/10.1007/s40430-018-1441-9 . .
5
1
4

Structural, mechanical and tribological characterization of Zn25Al alloys with Si and Sr addition

Vencl, Aleksandar; Bobić, Ilija; Vučetić, Filip; Bobić, Biljana; Ružić, Jovana

(Elsevier Sci Ltd, Oxford, 2014)

TY  - JOUR
AU  - Vencl, Aleksandar
AU  - Bobić, Ilija
AU  - Vučetić, Filip
AU  - Bobić, Biljana
AU  - Ružić, Jovana
PY  - 2014
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/1399
AB  - The ZA-27 alloy is a zinc-aluminium casting alloy that has been frequently used as the material for sleeves of plain bearings. It has good physical, mechanical and tribological properties. However, one of the major disadvantages is its dimensional instability over a period of time (ageing). To overcome this, copper in the alloy may be replaced with silicon. Coarsening of silicon particles can be controlled by a suitable addition of strontium. In this paper, the commercial ZA-27 alloy and six different Zn25Al alloys (with 1 and 3 wt.% silicon; and with 0, 0.03 and 0.05 wt.% strontium) were obtained by casting in the pre-heated steel mould. Casting of the alloys was carried out at a laboratory level. In the alloys containing silicon, a finer dendritic structure was noticed compared to the structure of the commercial ZA-27 alloy. The addition of strontium influenced the size and distribution of primary silicon particles. Needle-like particles of eutectic silicon were changed into the fibrous ones. The presence of silicon and strontium did not significantly affect mechanical properties of the obtained Zn25Al alloys compared to mechanical properties of the commercial ZA-27 alloy. Wear rate of the alloys containing silicon was lower than that of the ZA-27 alloy. The addition of strontium further lowers the wear rate and slightly increases the coefficient of friction.
PB  - Elsevier Sci Ltd, Oxford
T2  - Materials & Design
T1  - Structural, mechanical and tribological characterization of Zn25Al alloys with Si and Sr addition
VL  - 64
SP  - 381
EP  - 392
DO  - 10.1016/j.matdes.2014.07.056
ER  - 
@article{
author = "Vencl, Aleksandar and Bobić, Ilija and Vučetić, Filip and Bobić, Biljana and Ružić, Jovana",
year = "2014",
abstract = "The ZA-27 alloy is a zinc-aluminium casting alloy that has been frequently used as the material for sleeves of plain bearings. It has good physical, mechanical and tribological properties. However, one of the major disadvantages is its dimensional instability over a period of time (ageing). To overcome this, copper in the alloy may be replaced with silicon. Coarsening of silicon particles can be controlled by a suitable addition of strontium. In this paper, the commercial ZA-27 alloy and six different Zn25Al alloys (with 1 and 3 wt.% silicon; and with 0, 0.03 and 0.05 wt.% strontium) were obtained by casting in the pre-heated steel mould. Casting of the alloys was carried out at a laboratory level. In the alloys containing silicon, a finer dendritic structure was noticed compared to the structure of the commercial ZA-27 alloy. The addition of strontium influenced the size and distribution of primary silicon particles. Needle-like particles of eutectic silicon were changed into the fibrous ones. The presence of silicon and strontium did not significantly affect mechanical properties of the obtained Zn25Al alloys compared to mechanical properties of the commercial ZA-27 alloy. Wear rate of the alloys containing silicon was lower than that of the ZA-27 alloy. The addition of strontium further lowers the wear rate and slightly increases the coefficient of friction.",
publisher = "Elsevier Sci Ltd, Oxford",
journal = "Materials & Design",
title = "Structural, mechanical and tribological characterization of Zn25Al alloys with Si and Sr addition",
volume = "64",
pages = "381-392",
doi = "10.1016/j.matdes.2014.07.056"
}
Vencl, A., Bobić, I., Vučetić, F., Bobić, B.,& Ružić, J.. (2014). Structural, mechanical and tribological characterization of Zn25Al alloys with Si and Sr addition. in Materials & Design
Elsevier Sci Ltd, Oxford., 64, 381-392.
https://doi.org/10.1016/j.matdes.2014.07.056
Vencl A, Bobić I, Vučetić F, Bobić B, Ružić J. Structural, mechanical and tribological characterization of Zn25Al alloys with Si and Sr addition. in Materials & Design. 2014;64:381-392.
doi:10.1016/j.matdes.2014.07.056 .
Vencl, Aleksandar, Bobić, Ilija, Vučetić, Filip, Bobić, Biljana, Ružić, Jovana, "Structural, mechanical and tribological characterization of Zn25Al alloys with Si and Sr addition" in Materials & Design, 64 (2014):381-392,
https://doi.org/10.1016/j.matdes.2014.07.056 . .
21
17
25