The International Joint Scientific and Technical Collaboration between the People’s Republic of China and the Republic of Serbia as part of the Project Number 4-18

Link to this page

The International Joint Scientific and Technical Collaboration between the People’s Republic of China and the Republic of Serbia as part of the Project Number 4-18

Authors

Publications

Degradation of three typical hydroxamic acids collectors via UVA-B activated H2O2 and persulfate: Kinetics, transformation pathway, DFT calculation and toxicity evaluation

Pang, Wancheng; Yao, Jun; Šolević Knudsen, Tatjana; Cao, Ying; Liu, Bang; Li, Hao; Li, Miaomiao; Zhu, Junjie

(Elsevier, 2023)

TY  - JOUR
AU  - Pang, Wancheng
AU  - Yao, Jun
AU  - Šolević Knudsen, Tatjana
AU  - Cao, Ying
AU  - Liu, Bang
AU  - Li, Hao
AU  - Li, Miaomiao
AU  - Zhu, Junjie
PY  - 2023
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/5331
AB  - This work systematically studied the kinetics and mechanism of degradation of salicylhydroxamic acid (SHA), benzhydroxamic acid (BHA) and N-hydroxyphthalimide (NOP) by UVA-B/H2O2 and UVA-B/peroxodisulfate (PDS). UVA-B irradiation could induce a direct photolysis of SHA and dominated SHA destruction in both systems. BHA and NOP were effectively degraded via HO•- and SO4•−-mediated oxidation. UVA-B/PDS displayed a better degradation performance for HAAs investigated than UVA-B/H2O2. An acidic pH was more suitable for three HAAs removal in the UVA-B/H2O2 system. However, basic pH was more efficient for HAAs degradation in the UVA-B/PDS system. The degradation of BHA and NOP was predominantly driven by SO4•− at all pH levels used (5.0–9.0). The second-order rate constants for SHA, BHA and NOP reactions with HO• and SO4•− were calculated to be (4.16–5.22) × 109 M−1•s−1 and (1.19–7.22) × 109 M−1•s−1, respectively. Presence of various water constituents had different influence on HAA removal, with a enhancement in the presence of HCO3–, Fe2+ and Cu2+. When real waters were used as a background, dissolved organic carbon and Cl− were the main factors that consumed radicals and affected the degradation performance of HAAs. Analysis of the transformation products and density functional theory revealed that all of the investigated HAAs first generated amidated products but the formation mechanisms might have been different. HAAs degradation pathways mainly included hydrolysis, hydroxylation, decarboxylation and ring opening processes. Toxicity evaluation showed that the UV/AOP degradation of HAAs generated some transformation products with higher acute toxicity than the parent compounds.
PB  - Elsevier
T2  - Chemical Engineering Journal
T1  - Degradation of three typical hydroxamic acids collectors via UVA-B activated H2O2 and persulfate: Kinetics, transformation pathway, DFT calculation and toxicity evaluation
VL  - 451
SP  - 138639
DO  - 10.1016/j.cej.2022.138639
ER  - 
@article{
author = "Pang, Wancheng and Yao, Jun and Šolević Knudsen, Tatjana and Cao, Ying and Liu, Bang and Li, Hao and Li, Miaomiao and Zhu, Junjie",
year = "2023",
abstract = "This work systematically studied the kinetics and mechanism of degradation of salicylhydroxamic acid (SHA), benzhydroxamic acid (BHA) and N-hydroxyphthalimide (NOP) by UVA-B/H2O2 and UVA-B/peroxodisulfate (PDS). UVA-B irradiation could induce a direct photolysis of SHA and dominated SHA destruction in both systems. BHA and NOP were effectively degraded via HO•- and SO4•−-mediated oxidation. UVA-B/PDS displayed a better degradation performance for HAAs investigated than UVA-B/H2O2. An acidic pH was more suitable for three HAAs removal in the UVA-B/H2O2 system. However, basic pH was more efficient for HAAs degradation in the UVA-B/PDS system. The degradation of BHA and NOP was predominantly driven by SO4•− at all pH levels used (5.0–9.0). The second-order rate constants for SHA, BHA and NOP reactions with HO• and SO4•− were calculated to be (4.16–5.22) × 109 M−1•s−1 and (1.19–7.22) × 109 M−1•s−1, respectively. Presence of various water constituents had different influence on HAA removal, with a enhancement in the presence of HCO3–, Fe2+ and Cu2+. When real waters were used as a background, dissolved organic carbon and Cl− were the main factors that consumed radicals and affected the degradation performance of HAAs. Analysis of the transformation products and density functional theory revealed that all of the investigated HAAs first generated amidated products but the formation mechanisms might have been different. HAAs degradation pathways mainly included hydrolysis, hydroxylation, decarboxylation and ring opening processes. Toxicity evaluation showed that the UV/AOP degradation of HAAs generated some transformation products with higher acute toxicity than the parent compounds.",
publisher = "Elsevier",
journal = "Chemical Engineering Journal",
title = "Degradation of three typical hydroxamic acids collectors via UVA-B activated H2O2 and persulfate: Kinetics, transformation pathway, DFT calculation and toxicity evaluation",
volume = "451",
pages = "138639",
doi = "10.1016/j.cej.2022.138639"
}
Pang, W., Yao, J., Šolević Knudsen, T., Cao, Y., Liu, B., Li, H., Li, M.,& Zhu, J.. (2023). Degradation of three typical hydroxamic acids collectors via UVA-B activated H2O2 and persulfate: Kinetics, transformation pathway, DFT calculation and toxicity evaluation. in Chemical Engineering Journal
Elsevier., 451, 138639.
https://doi.org/10.1016/j.cej.2022.138639
Pang W, Yao J, Šolević Knudsen T, Cao Y, Liu B, Li H, Li M, Zhu J. Degradation of three typical hydroxamic acids collectors via UVA-B activated H2O2 and persulfate: Kinetics, transformation pathway, DFT calculation and toxicity evaluation. in Chemical Engineering Journal. 2023;451:138639.
doi:10.1016/j.cej.2022.138639 .
Pang, Wancheng, Yao, Jun, Šolević Knudsen, Tatjana, Cao, Ying, Liu, Bang, Li, Hao, Li, Miaomiao, Zhu, Junjie, "Degradation of three typical hydroxamic acids collectors via UVA-B activated H2O2 and persulfate: Kinetics, transformation pathway, DFT calculation and toxicity evaluation" in Chemical Engineering Journal, 451 (2023):138639,
https://doi.org/10.1016/j.cej.2022.138639 . .
14
14

Resource utilization of steel converter slag: Efficient degradation of typical organic flotation reagent α-nitroso-β-naphthol via the synergy of radical and non-radical pathways

Zhu, Xiaozhe; Yao, Jun; Šolević Knudsen, Tatjana; Liu, Jianli; Zhao, Chenchen; Ma, Bo; Chen, Zhihui; Li, Hao; Liu, Bang

(Elsevier, 2023)

TY  - JOUR
AU  - Zhu, Xiaozhe
AU  - Yao, Jun
AU  - Šolević Knudsen, Tatjana
AU  - Liu, Jianli
AU  - Zhao, Chenchen
AU  - Ma, Bo
AU  - Chen, Zhihui
AU  - Li, Hao
AU  - Liu, Bang
PY  - 2023
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/5403
AB  - The organic pollution generated during production and processing in the mining area seriously endangers the ecological security of the surrounding environment. In this study, degradation of α-nitroso-β-naphthol (αNβN), a typical organic flotation reagent in mining area, by using steel converter slag (SCS) as a low-cost catalyst was reported for the first time. The results showed that SCS + H2O2 could effectively remove αNβN from water solutions. In the system used in this study, more than 98.8 % of αNβN could be removed within 60 min. Based on the analysis of the experimental results, the synergistic mechanism of radical and non-radical pathways was proposed. The radical pathway mainly consisted of [rad]OH radical oxidation, while the non-free radical pathway consisted of 1O2 and electron transfer. Fe, bridging OH and terminal OH on the surface of SCS were the active sites for H2O2 activation. The removal performance of the system was not affected by common coexisting ions, and showed strong anti-interference ability. After 4 times repeated use, the removal efficiency still reached more than 83 %. HPLC-MS was used to analyze the intermediate products, while the changes in their toxicity effects were analyzed by microcalorimetry for the first time. The results showed that the system could effectively reduce the ecotoxicity of a water solution containing αNβN. This study provides not only a new strategy for treating organic pollution in mining areas, but also a new idea for the green cycle development of industry and mining from the perspective of “treat the wastes with wastes”.
PB  - Elsevier
T2  - Chemical Engineering Journal
T1  - Resource utilization of steel converter slag: Efficient degradation of typical organic flotation reagent α-nitroso-β-naphthol via the synergy of radical and non-radical pathways
VL  - 454
SP  - 140097
DO  - 10.1016/j.cej.2022.140097
ER  - 
@article{
author = "Zhu, Xiaozhe and Yao, Jun and Šolević Knudsen, Tatjana and Liu, Jianli and Zhao, Chenchen and Ma, Bo and Chen, Zhihui and Li, Hao and Liu, Bang",
year = "2023",
abstract = "The organic pollution generated during production and processing in the mining area seriously endangers the ecological security of the surrounding environment. In this study, degradation of α-nitroso-β-naphthol (αNβN), a typical organic flotation reagent in mining area, by using steel converter slag (SCS) as a low-cost catalyst was reported for the first time. The results showed that SCS + H2O2 could effectively remove αNβN from water solutions. In the system used in this study, more than 98.8 % of αNβN could be removed within 60 min. Based on the analysis of the experimental results, the synergistic mechanism of radical and non-radical pathways was proposed. The radical pathway mainly consisted of [rad]OH radical oxidation, while the non-free radical pathway consisted of 1O2 and electron transfer. Fe, bridging OH and terminal OH on the surface of SCS were the active sites for H2O2 activation. The removal performance of the system was not affected by common coexisting ions, and showed strong anti-interference ability. After 4 times repeated use, the removal efficiency still reached more than 83 %. HPLC-MS was used to analyze the intermediate products, while the changes in their toxicity effects were analyzed by microcalorimetry for the first time. The results showed that the system could effectively reduce the ecotoxicity of a water solution containing αNβN. This study provides not only a new strategy for treating organic pollution in mining areas, but also a new idea for the green cycle development of industry and mining from the perspective of “treat the wastes with wastes”.",
publisher = "Elsevier",
journal = "Chemical Engineering Journal",
title = "Resource utilization of steel converter slag: Efficient degradation of typical organic flotation reagent α-nitroso-β-naphthol via the synergy of radical and non-radical pathways",
volume = "454",
pages = "140097",
doi = "10.1016/j.cej.2022.140097"
}
Zhu, X., Yao, J., Šolević Knudsen, T., Liu, J., Zhao, C., Ma, B., Chen, Z., Li, H.,& Liu, B.. (2023). Resource utilization of steel converter slag: Efficient degradation of typical organic flotation reagent α-nitroso-β-naphthol via the synergy of radical and non-radical pathways. in Chemical Engineering Journal
Elsevier., 454, 140097.
https://doi.org/10.1016/j.cej.2022.140097
Zhu X, Yao J, Šolević Knudsen T, Liu J, Zhao C, Ma B, Chen Z, Li H, Liu B. Resource utilization of steel converter slag: Efficient degradation of typical organic flotation reagent α-nitroso-β-naphthol via the synergy of radical and non-radical pathways. in Chemical Engineering Journal. 2023;454:140097.
doi:10.1016/j.cej.2022.140097 .
Zhu, Xiaozhe, Yao, Jun, Šolević Knudsen, Tatjana, Liu, Jianli, Zhao, Chenchen, Ma, Bo, Chen, Zhihui, Li, Hao, Liu, Bang, "Resource utilization of steel converter slag: Efficient degradation of typical organic flotation reagent α-nitroso-β-naphthol via the synergy of radical and non-radical pathways" in Chemical Engineering Journal, 454 (2023):140097,
https://doi.org/10.1016/j.cej.2022.140097 . .
10
10

Resource utilization of steel converter slag: Efficient degradation of typical organic flotation reagent α-nitroso-β-naphthol via the synergy of radical and non-radical pathways

Zhu, Xiaozhe; Yao, Jun; Šolević Knudsen, Tatjana; Liu, Jianli; Zhao, Chenchen; Ma, Bo; Chen, Zhihui; Li, Hao; Liu, Bang

(Elsevier, 2023)

TY  - JOUR
AU  - Zhu, Xiaozhe
AU  - Yao, Jun
AU  - Šolević Knudsen, Tatjana
AU  - Liu, Jianli
AU  - Zhao, Chenchen
AU  - Ma, Bo
AU  - Chen, Zhihui
AU  - Li, Hao
AU  - Liu, Bang
PY  - 2023
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/5509
AB  - The organic pollution generated during production and processing in the mining area seriously endangers the ecological security of the surrounding environment. In this study, degradation of α-nitroso-β-naphthol (αNβN), a typical organic flotation reagent in mining area, by using steel converter slag (SCS) as a low-cost catalyst was reported for the first time. The results showed that SCS + H2O2 could effectively remove αNβN from water solutions. In the system used in this study, more than 98.8 % of αNβN could be removed within 60 min. Based on the analysis of the experimental results, the synergistic mechanism of radical and non-radical pathways was proposed. The radical pathway mainly consisted of [rad]OH radical oxidation, while the non-free radical pathway consisted of 1O2 and electron transfer. Fe, bridging OH and terminal OH on the surface of SCS were the active sites for H2O2 activation. The removal performance of the system was not affected by common coexisting ions, and showed strong anti-interference ability. After 4 times repeated use, the removal efficiency still reached more than 83 %. HPLC-MS was used to analyze the intermediate products, while the changes in their toxicity effects were analyzed by microcalorimetry for the first time. The results showed that the system could effectively reduce the ecotoxicity of a water solution containing αNβN. This study provides not only a new strategy for treating organic pollution in mining areas, but also a new idea for the green cycle development of industry and mining from the perspective of “treat the wastes with wastes”.
PB  - Elsevier
T2  - Chemical Engineering Journal
T1  - Resource utilization of steel converter slag: Efficient degradation of typical organic flotation reagent α-nitroso-β-naphthol via the synergy of radical and non-radical pathways
VL  - 454
SP  - 140097
DO  - 10.1016/j.cej.2022.140097
ER  - 
@article{
author = "Zhu, Xiaozhe and Yao, Jun and Šolević Knudsen, Tatjana and Liu, Jianli and Zhao, Chenchen and Ma, Bo and Chen, Zhihui and Li, Hao and Liu, Bang",
year = "2023",
abstract = "The organic pollution generated during production and processing in the mining area seriously endangers the ecological security of the surrounding environment. In this study, degradation of α-nitroso-β-naphthol (αNβN), a typical organic flotation reagent in mining area, by using steel converter slag (SCS) as a low-cost catalyst was reported for the first time. The results showed that SCS + H2O2 could effectively remove αNβN from water solutions. In the system used in this study, more than 98.8 % of αNβN could be removed within 60 min. Based on the analysis of the experimental results, the synergistic mechanism of radical and non-radical pathways was proposed. The radical pathway mainly consisted of [rad]OH radical oxidation, while the non-free radical pathway consisted of 1O2 and electron transfer. Fe, bridging OH and terminal OH on the surface of SCS were the active sites for H2O2 activation. The removal performance of the system was not affected by common coexisting ions, and showed strong anti-interference ability. After 4 times repeated use, the removal efficiency still reached more than 83 %. HPLC-MS was used to analyze the intermediate products, while the changes in their toxicity effects were analyzed by microcalorimetry for the first time. The results showed that the system could effectively reduce the ecotoxicity of a water solution containing αNβN. This study provides not only a new strategy for treating organic pollution in mining areas, but also a new idea for the green cycle development of industry and mining from the perspective of “treat the wastes with wastes”.",
publisher = "Elsevier",
journal = "Chemical Engineering Journal",
title = "Resource utilization of steel converter slag: Efficient degradation of typical organic flotation reagent α-nitroso-β-naphthol via the synergy of radical and non-radical pathways",
volume = "454",
pages = "140097",
doi = "10.1016/j.cej.2022.140097"
}
Zhu, X., Yao, J., Šolević Knudsen, T., Liu, J., Zhao, C., Ma, B., Chen, Z., Li, H.,& Liu, B.. (2023). Resource utilization of steel converter slag: Efficient degradation of typical organic flotation reagent α-nitroso-β-naphthol via the synergy of radical and non-radical pathways. in Chemical Engineering Journal
Elsevier., 454, 140097.
https://doi.org/10.1016/j.cej.2022.140097
Zhu X, Yao J, Šolević Knudsen T, Liu J, Zhao C, Ma B, Chen Z, Li H, Liu B. Resource utilization of steel converter slag: Efficient degradation of typical organic flotation reagent α-nitroso-β-naphthol via the synergy of radical and non-radical pathways. in Chemical Engineering Journal. 2023;454:140097.
doi:10.1016/j.cej.2022.140097 .
Zhu, Xiaozhe, Yao, Jun, Šolević Knudsen, Tatjana, Liu, Jianli, Zhao, Chenchen, Ma, Bo, Chen, Zhihui, Li, Hao, Liu, Bang, "Resource utilization of steel converter slag: Efficient degradation of typical organic flotation reagent α-nitroso-β-naphthol via the synergy of radical and non-radical pathways" in Chemical Engineering Journal, 454 (2023):140097,
https://doi.org/10.1016/j.cej.2022.140097 . .
10
10

Degradation of three typical hydroxamic acids collectors via UVA-B activated H2O2 and persulfate: Kinetics, transformation pathway, DFT calculation and toxicity evaluation

Pang, Wancheng; Yao, Jun; Šolević Knudsen, Tatjana; Cao, Ying; Liu, Bang; Li, Hao; Li, Miaomiao; Zhu, Junjie

(Elsevier, 2023)

TY  - JOUR
AU  - Pang, Wancheng
AU  - Yao, Jun
AU  - Šolević Knudsen, Tatjana
AU  - Cao, Ying
AU  - Liu, Bang
AU  - Li, Hao
AU  - Li, Miaomiao
AU  - Zhu, Junjie
PY  - 2023
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/5546
AB  - This work systematically studied the kinetics and mechanism of degradation of salicylhydroxamic acid (SHA), benzhydroxamic acid (BHA) and N-hydroxyphthalimide (NOP) by UVA-B/H2O2 and UVA-B/peroxodisulfate (PDS). UVA-B irradiation could induce a direct photolysis of SHA and dominated SHA destruction in both systems. BHA and NOP were effectively degraded via HO•- and SO4•−-mediated oxidation. UVA-B/PDS displayed a better degradation performance for HAAs investigated than UVA-B/H2O2. An acidic pH was more suitable for three HAAs removal in the UVA-B/H2O2 system. However, basic pH was more efficient for HAAs degradation in the UVA-B/PDS system. The degradation of BHA and NOP was predominantly driven by SO4•− at all pH levels used (5.0–9.0). The second-order rate constants for SHA, BHA and NOP reactions with HO• and SO4•− were calculated to be (4.16–5.22) × 109 M−1•s−1 and (1.19–7.22) × 109 M−1•s−1, respectively. Presence of various water constituents had different influence on HAA removal, with a enhancement in the presence of HCO3–, Fe2+ and Cu2+. When real waters were used as a background, dissolved organic carbon and Cl− were the main factors that consumed radicals and affected the degradation performance of HAAs. Analysis of the transformation products and density functional theory revealed that all of the investigated HAAs first generated amidated products but the formation mechanisms might have been different. HAAs degradation pathways mainly included hydrolysis, hydroxylation, decarboxylation and ring opening processes. Toxicity evaluation showed that the UV/AOP degradation of HAAs generated some transformation products with higher acute toxicity than the parent compounds.
PB  - Elsevier
T2  - Chemical Engineering Journal
T1  - Degradation of three typical hydroxamic acids collectors via UVA-B activated H2O2 and persulfate: Kinetics, transformation pathway, DFT calculation and toxicity evaluation
VL  - 451
SP  - 138639
DO  - 10.1016/j.cej.2022.138639
ER  - 
@article{
author = "Pang, Wancheng and Yao, Jun and Šolević Knudsen, Tatjana and Cao, Ying and Liu, Bang and Li, Hao and Li, Miaomiao and Zhu, Junjie",
year = "2023",
abstract = "This work systematically studied the kinetics and mechanism of degradation of salicylhydroxamic acid (SHA), benzhydroxamic acid (BHA) and N-hydroxyphthalimide (NOP) by UVA-B/H2O2 and UVA-B/peroxodisulfate (PDS). UVA-B irradiation could induce a direct photolysis of SHA and dominated SHA destruction in both systems. BHA and NOP were effectively degraded via HO•- and SO4•−-mediated oxidation. UVA-B/PDS displayed a better degradation performance for HAAs investigated than UVA-B/H2O2. An acidic pH was more suitable for three HAAs removal in the UVA-B/H2O2 system. However, basic pH was more efficient for HAAs degradation in the UVA-B/PDS system. The degradation of BHA and NOP was predominantly driven by SO4•− at all pH levels used (5.0–9.0). The second-order rate constants for SHA, BHA and NOP reactions with HO• and SO4•− were calculated to be (4.16–5.22) × 109 M−1•s−1 and (1.19–7.22) × 109 M−1•s−1, respectively. Presence of various water constituents had different influence on HAA removal, with a enhancement in the presence of HCO3–, Fe2+ and Cu2+. When real waters were used as a background, dissolved organic carbon and Cl− were the main factors that consumed radicals and affected the degradation performance of HAAs. Analysis of the transformation products and density functional theory revealed that all of the investigated HAAs first generated amidated products but the formation mechanisms might have been different. HAAs degradation pathways mainly included hydrolysis, hydroxylation, decarboxylation and ring opening processes. Toxicity evaluation showed that the UV/AOP degradation of HAAs generated some transformation products with higher acute toxicity than the parent compounds.",
publisher = "Elsevier",
journal = "Chemical Engineering Journal",
title = "Degradation of three typical hydroxamic acids collectors via UVA-B activated H2O2 and persulfate: Kinetics, transformation pathway, DFT calculation and toxicity evaluation",
volume = "451",
pages = "138639",
doi = "10.1016/j.cej.2022.138639"
}
Pang, W., Yao, J., Šolević Knudsen, T., Cao, Y., Liu, B., Li, H., Li, M.,& Zhu, J.. (2023). Degradation of three typical hydroxamic acids collectors via UVA-B activated H2O2 and persulfate: Kinetics, transformation pathway, DFT calculation and toxicity evaluation. in Chemical Engineering Journal
Elsevier., 451, 138639.
https://doi.org/10.1016/j.cej.2022.138639
Pang W, Yao J, Šolević Knudsen T, Cao Y, Liu B, Li H, Li M, Zhu J. Degradation of three typical hydroxamic acids collectors via UVA-B activated H2O2 and persulfate: Kinetics, transformation pathway, DFT calculation and toxicity evaluation. in Chemical Engineering Journal. 2023;451:138639.
doi:10.1016/j.cej.2022.138639 .
Pang, Wancheng, Yao, Jun, Šolević Knudsen, Tatjana, Cao, Ying, Liu, Bang, Li, Hao, Li, Miaomiao, Zhu, Junjie, "Degradation of three typical hydroxamic acids collectors via UVA-B activated H2O2 and persulfate: Kinetics, transformation pathway, DFT calculation and toxicity evaluation" in Chemical Engineering Journal, 451 (2023):138639,
https://doi.org/10.1016/j.cej.2022.138639 . .
14
14