VRE for regional Interdisciplinary communities in Southeast Europe and the Eastern Mediterranean

Link to this page

info:eu-repo/grantAgreement/EC/H2020/675121/EU//

VRE for regional Interdisciplinary communities in Southeast Europe and the Eastern Mediterranean (en)
Authors

Publications

The significance of the metal cation in guanine-quartet - metalloporphyrin complexes

Stanojević, Ana; Milovanović, Branislav; Stanković, Ivana; Etinski, Mihajlo; Petković, Milena

(Royal Society of Chemistry, 2021)

TY  - JOUR
AU  - Stanojević, Ana
AU  - Milovanović, Branislav
AU  - Stanković, Ivana
AU  - Etinski, Mihajlo
AU  - Petković, Milena
PY  - 2021
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/4838
AB  - The planarity and the appropriate size of the porphyrin ring make porphyrin derivatives ideal ligands for stacking to guanine quartets and they could thus be used as anti-cancer drugs. In this contribution we analyzed complexes of a guanine quartet with a porphyrin molecule, magnesium porphyrin and calcium porphyrin. As magnesium and calcium ions are located in the center and above the porphyrin ring, respectively, the two metalloporphyrins are expected to have different impacts on the target. The optimized structures of the three systems revealed geometrical changes in the guanine quartet upon complexation: while stacking of porphyrin and magnesium porphyrin does not induce significant changes, calcium porphyrin considerably distorts the quartet's structure, which has significant implications for the binding properties among guanine molecules. Ab initio molecular dynamics simulations revealed that the systems perform small fluctuations around the equilibrium structures. The largest atom displacements are performed by the calcium ion. The interacting quantum atoms methodology enabled analysis of the binding properties in the studied complexes. Interestingly, although the proximity of the calcium ion is responsible for the quartet's pronounced deformation and weakening of guanine-guanine binding, it also enables stronger binding of the metal ion to the quartet, resulting in a more stable complex. These results imply that metalloporphyrin-like ligands with out-of-plane central ions might represent promising drug candidates in anti-tumor treatment.
PB  - Royal Society of Chemistry
T2  - Physical Chemistry Chemical Physics
T1  - The significance of the metal cation in guanine-quartet - metalloporphyrin complexes
VL  - 23
IS  - 1
IS  - 574
EP  - 584
DO  - 10.1039/d0cp05798c
ER  - 
@article{
author = "Stanojević, Ana and Milovanović, Branislav and Stanković, Ivana and Etinski, Mihajlo and Petković, Milena",
year = "2021",
abstract = "The planarity and the appropriate size of the porphyrin ring make porphyrin derivatives ideal ligands for stacking to guanine quartets and they could thus be used as anti-cancer drugs. In this contribution we analyzed complexes of a guanine quartet with a porphyrin molecule, magnesium porphyrin and calcium porphyrin. As magnesium and calcium ions are located in the center and above the porphyrin ring, respectively, the two metalloporphyrins are expected to have different impacts on the target. The optimized structures of the three systems revealed geometrical changes in the guanine quartet upon complexation: while stacking of porphyrin and magnesium porphyrin does not induce significant changes, calcium porphyrin considerably distorts the quartet's structure, which has significant implications for the binding properties among guanine molecules. Ab initio molecular dynamics simulations revealed that the systems perform small fluctuations around the equilibrium structures. The largest atom displacements are performed by the calcium ion. The interacting quantum atoms methodology enabled analysis of the binding properties in the studied complexes. Interestingly, although the proximity of the calcium ion is responsible for the quartet's pronounced deformation and weakening of guanine-guanine binding, it also enables stronger binding of the metal ion to the quartet, resulting in a more stable complex. These results imply that metalloporphyrin-like ligands with out-of-plane central ions might represent promising drug candidates in anti-tumor treatment.",
publisher = "Royal Society of Chemistry",
journal = "Physical Chemistry Chemical Physics",
title = "The significance of the metal cation in guanine-quartet - metalloporphyrin complexes",
volume = "23",
number = "1, 574",
pages = "584",
doi = "10.1039/d0cp05798c"
}
Stanojević, A., Milovanović, B., Stanković, I., Etinski, M.,& Petković, M.. (2021). The significance of the metal cation in guanine-quartet - metalloporphyrin complexes. in Physical Chemistry Chemical Physics
Royal Society of Chemistry., 23(1).
https://doi.org/10.1039/d0cp05798c
Stanojević A, Milovanović B, Stanković I, Etinski M, Petković M. The significance of the metal cation in guanine-quartet - metalloporphyrin complexes. in Physical Chemistry Chemical Physics. 2021;23(1):null-584.
doi:10.1039/d0cp05798c .
Stanojević, Ana, Milovanović, Branislav, Stanković, Ivana, Etinski, Mihajlo, Petković, Milena, "The significance of the metal cation in guanine-quartet - metalloporphyrin complexes" in Physical Chemistry Chemical Physics, 23, no. 1 (2021),
https://doi.org/10.1039/d0cp05798c . .
4
7
3
8

Modulating Excited Charge-Transfer States of G‑Quartet Self- Assemblies by Earth Alkaline Cations and Hydration

Milovanović, Branislav; Stanković, Ivana; Petković, Milena; Etinski, Mihajlo

(American Chemical Society (ACS), 2020)

TY  - JOUR
AU  - Milovanović, Branislav
AU  - Stanković, Ivana
AU  - Petković, Milena
AU  - Etinski, Mihajlo
PY  - 2020
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3733
AB  - Guanine self-assemblies are promising supramolecular
platforms for optoelectronic applications. The study (Hua et al., J. Phys. Chem. C 2012, 116, 14,682−14,689) reported that alkaline cations cannot modulate the electronic absorption spectrum of G-quadruplexes, although a cation effect is observable
during electronic relaxation due to different mobility of Na+ and K+ cations. In this work, we theoretically examined whether divalent Mg2+ and Ca2+ cations and hydration might shift excited charge-transfer states of a cation-templated stacked G-quartet to the absorption red tail. Our results showed that earth alkaline cations
blue-shifted nπ* states and stabilized charge-transfer ππ* states relative to those of complexes with alkaline cations, although the number of charge-separation states was not significantly modified. Earth alkaline cations were not able to considerably increase the
amount of charge-transfer states below the Lb excitonic states. Hydration shifted charge-transfer states of the Na+-coordinated Goctet to the absorption red tail, although this part of the spectrum was still dominated by monomer-like excitations. We found Goctet electron detachment states at low excitation energies in aqueous solution. These states were distributed over a broad range of excitation energies and could be responsible for oxidative damage observed upon UV irradiation of biological G-quadruplexes.
PB  - American Chemical Society (ACS)
T2  - The Journal of Physical Chemistry A
T1  - Modulating Excited Charge-Transfer States of G‑Quartet Self- Assemblies by Earth Alkaline Cations and Hydration
VL  - 124
IS  - 40
SP  - 8101
EP  - 8111
DO  - 10.1021/acs.jpca.0c05022
ER  - 
@article{
author = "Milovanović, Branislav and Stanković, Ivana and Petković, Milena and Etinski, Mihajlo",
year = "2020",
abstract = "Guanine self-assemblies are promising supramolecular
platforms for optoelectronic applications. The study (Hua et al., J. Phys. Chem. C 2012, 116, 14,682−14,689) reported that alkaline cations cannot modulate the electronic absorption spectrum of G-quadruplexes, although a cation effect is observable
during electronic relaxation due to different mobility of Na+ and K+ cations. In this work, we theoretically examined whether divalent Mg2+ and Ca2+ cations and hydration might shift excited charge-transfer states of a cation-templated stacked G-quartet to the absorption red tail. Our results showed that earth alkaline cations
blue-shifted nπ* states and stabilized charge-transfer ππ* states relative to those of complexes with alkaline cations, although the number of charge-separation states was not significantly modified. Earth alkaline cations were not able to considerably increase the
amount of charge-transfer states below the Lb excitonic states. Hydration shifted charge-transfer states of the Na+-coordinated Goctet to the absorption red tail, although this part of the spectrum was still dominated by monomer-like excitations. We found Goctet electron detachment states at low excitation energies in aqueous solution. These states were distributed over a broad range of excitation energies and could be responsible for oxidative damage observed upon UV irradiation of biological G-quadruplexes.",
publisher = "American Chemical Society (ACS)",
journal = "The Journal of Physical Chemistry A",
title = "Modulating Excited Charge-Transfer States of G‑Quartet Self- Assemblies by Earth Alkaline Cations and Hydration",
volume = "124",
number = "40",
pages = "8101-8111",
doi = "10.1021/acs.jpca.0c05022"
}
Milovanović, B., Stanković, I., Petković, M.,& Etinski, M.. (2020). Modulating Excited Charge-Transfer States of G‑Quartet Self- Assemblies by Earth Alkaline Cations and Hydration. in The Journal of Physical Chemistry A
American Chemical Society (ACS)., 124(40), 8101-8111.
https://doi.org/10.1021/acs.jpca.0c05022
Milovanović B, Stanković I, Petković M, Etinski M. Modulating Excited Charge-Transfer States of G‑Quartet Self- Assemblies by Earth Alkaline Cations and Hydration. in The Journal of Physical Chemistry A. 2020;124(40):8101-8111.
doi:10.1021/acs.jpca.0c05022 .
Milovanović, Branislav, Stanković, Ivana, Petković, Milena, Etinski, Mihajlo, "Modulating Excited Charge-Transfer States of G‑Quartet Self- Assemblies by Earth Alkaline Cations and Hydration" in The Journal of Physical Chemistry A, 124, no. 40 (2020):8101-8111,
https://doi.org/10.1021/acs.jpca.0c05022 . .
1
4
3
3

Modulating Excited Charge-Transfer States of G‑Quartet Self- Assemblies by Earth Alkaline Cations and Hydration

Milovanović, Branislav; Stanković, Ivana; Petković, Milena; Etinski, Mihajlo

(American Chemical Society (ACS), 2020)

TY  - JOUR
AU  - Milovanović, Branislav
AU  - Stanković, Ivana
AU  - Petković, Milena
AU  - Etinski, Mihajlo
PY  - 2020
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3734
AB  - Guanine self-assemblies are promising supramolecularplatforms for optoelectronic applications. The study (Hua et al., J. Phys. Chem. C 2012, 116, 14,682−14,689) reported that alkaline cations cannot modulate the electronic absorption spectrum of G-quadruplexes, although a cation effect is observableduring electronic relaxation due to different mobility of Na+ and K+ cations. In this work, we theoretically examined whether divalent Mg2+ and Ca2+ cations and hydration might shift excited charge-transfer states of a cation-templated stacked G-quartet to the absorption red tail. Our results showed that earth alkaline cationsblue-shifted nπ* states and stabilized charge-transfer ππ* states relative to those of complexes with alkaline cations, although the number of charge-separation states was not significantly modified. Earth alkaline cations were not able to considerably increase theamount of charge-transfer states below the Lb excitonic states. Hydration shifted charge-transfer states of the Na+-coordinated Goctet to the absorption red tail, although this part of the spectrum was still dominated by monomer-like excitations. We found Goctet electron detachment states at low excitation energies in aqueous solution. These states were distributed over a broad range of excitation energies and could be responsible for oxidative damage observed upon UV irradiation of biological G-quadruplexes.
PB  - American Chemical Society (ACS)
T2  - The Journal of Physical Chemistry A
T1  - Modulating Excited Charge-Transfer States of G‑Quartet Self- Assemblies by Earth Alkaline Cations and Hydration
VL  - 124
IS  - 40
SP  - 8101
EP  - 8111
DO  - 10.1021/acs.jpca.0c05022
ER  - 
@article{
author = "Milovanović, Branislav and Stanković, Ivana and Petković, Milena and Etinski, Mihajlo",
year = "2020",
abstract = "Guanine self-assemblies are promising supramolecularplatforms for optoelectronic applications. The study (Hua et al., J. Phys. Chem. C 2012, 116, 14,682−14,689) reported that alkaline cations cannot modulate the electronic absorption spectrum of G-quadruplexes, although a cation effect is observableduring electronic relaxation due to different mobility of Na+ and K+ cations. In this work, we theoretically examined whether divalent Mg2+ and Ca2+ cations and hydration might shift excited charge-transfer states of a cation-templated stacked G-quartet to the absorption red tail. Our results showed that earth alkaline cationsblue-shifted nπ* states and stabilized charge-transfer ππ* states relative to those of complexes with alkaline cations, although the number of charge-separation states was not significantly modified. Earth alkaline cations were not able to considerably increase theamount of charge-transfer states below the Lb excitonic states. Hydration shifted charge-transfer states of the Na+-coordinated Goctet to the absorption red tail, although this part of the spectrum was still dominated by monomer-like excitations. We found Goctet electron detachment states at low excitation energies in aqueous solution. These states were distributed over a broad range of excitation energies and could be responsible for oxidative damage observed upon UV irradiation of biological G-quadruplexes.",
publisher = "American Chemical Society (ACS)",
journal = "The Journal of Physical Chemistry A",
title = "Modulating Excited Charge-Transfer States of G‑Quartet Self- Assemblies by Earth Alkaline Cations and Hydration",
volume = "124",
number = "40",
pages = "8101-8111",
doi = "10.1021/acs.jpca.0c05022"
}
Milovanović, B., Stanković, I., Petković, M.,& Etinski, M.. (2020). Modulating Excited Charge-Transfer States of G‑Quartet Self- Assemblies by Earth Alkaline Cations and Hydration. in The Journal of Physical Chemistry A
American Chemical Society (ACS)., 124(40), 8101-8111.
https://doi.org/10.1021/acs.jpca.0c05022
Milovanović B, Stanković I, Petković M, Etinski M. Modulating Excited Charge-Transfer States of G‑Quartet Self- Assemblies by Earth Alkaline Cations and Hydration. in The Journal of Physical Chemistry A. 2020;124(40):8101-8111.
doi:10.1021/acs.jpca.0c05022 .
Milovanović, Branislav, Stanković, Ivana, Petković, Milena, Etinski, Mihajlo, "Modulating Excited Charge-Transfer States of G‑Quartet Self- Assemblies by Earth Alkaline Cations and Hydration" in The Journal of Physical Chemistry A, 124, no. 40 (2020):8101-8111,
https://doi.org/10.1021/acs.jpca.0c05022 . .
1
4
3
3