South Ural State University

Link to this page

South Ural State University

Authors

Publications

La(OH)3 Multi-Walled Carbon Nanotube/Carbon Paste-Based Sensing Approach for the Detection of Uric Acid—A Product of Environmentally Stressed Cells

Knežević, Sara; Ognjanović, Miloš; Stanković, Vesna; Zlatanova, Milena; Nešić, Andrijana; Gavrović-Jankulović, Marija; Stanković, Dalibor

(MDPI AG, 2022)

TY  - JOUR
AU  - Knežević, Sara
AU  - Ognjanović, Miloš
AU  - Stanković, Vesna
AU  - Zlatanova, Milena
AU  - Nešić, Andrijana
AU  - Gavrović-Jankulović, Marija
AU  - Stanković, Dalibor
PY  - 2022
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/5596
AB  - This paper aims to develop an amperometric, non-enzymatic sensor for detecting and quantifying UA as an alert signal induced by allergens with protease activity in human cell lines (HEK293 and HeLa). Uric acid (UA) has been classified as a damage-associated molecular pattern (DAMP) molecule that serves a physiological purpose inside the cell, while outside the cell it can be an indicator of cell damage. Cell damage or stress can be caused by different health problems or by environmental irritants, such as allergens. We can act and prevent the events that generate stress by determining the extent to which cells are under stress. Amperometric calibration measurements were performed with a carbon paste electrode modified with La(OH)3@MWCNT, at the potential of 0.3 V. The calibration curve was constructed in a linear operating range from 0.67 μM to 121 μM UA. The proposed sensor displayed good reproducibility with an RSD of 3.65% calculated for five subsequent measurements, and a low detection limit of 64.28 nM, determined using the 3 S/m method. Interference studies and the real sample analysis of allergen-treated cell lines proved that the proposed sensing platform possesses excellent sensitivity, reproducibility, and stability. Therefore, it can potentially be used to evaluate stress factors in medical research and clinical practice.
PB  - MDPI AG
T2  - Biosensors
T1  - La(OH)3 Multi-Walled Carbon Nanotube/Carbon Paste-Based Sensing Approach for the Detection of Uric Acid—A Product of Environmentally Stressed Cells
VL  - 12
IS  - 9
SP  - 705
DO  - 10.3390/bios12090705
ER  - 
@article{
author = "Knežević, Sara and Ognjanović, Miloš and Stanković, Vesna and Zlatanova, Milena and Nešić, Andrijana and Gavrović-Jankulović, Marija and Stanković, Dalibor",
year = "2022",
abstract = "This paper aims to develop an amperometric, non-enzymatic sensor for detecting and quantifying UA as an alert signal induced by allergens with protease activity in human cell lines (HEK293 and HeLa). Uric acid (UA) has been classified as a damage-associated molecular pattern (DAMP) molecule that serves a physiological purpose inside the cell, while outside the cell it can be an indicator of cell damage. Cell damage or stress can be caused by different health problems or by environmental irritants, such as allergens. We can act and prevent the events that generate stress by determining the extent to which cells are under stress. Amperometric calibration measurements were performed with a carbon paste electrode modified with La(OH)3@MWCNT, at the potential of 0.3 V. The calibration curve was constructed in a linear operating range from 0.67 μM to 121 μM UA. The proposed sensor displayed good reproducibility with an RSD of 3.65% calculated for five subsequent measurements, and a low detection limit of 64.28 nM, determined using the 3 S/m method. Interference studies and the real sample analysis of allergen-treated cell lines proved that the proposed sensing platform possesses excellent sensitivity, reproducibility, and stability. Therefore, it can potentially be used to evaluate stress factors in medical research and clinical practice.",
publisher = "MDPI AG",
journal = "Biosensors",
title = "La(OH)3 Multi-Walled Carbon Nanotube/Carbon Paste-Based Sensing Approach for the Detection of Uric Acid—A Product of Environmentally Stressed Cells",
volume = "12",
number = "9",
pages = "705",
doi = "10.3390/bios12090705"
}
Knežević, S., Ognjanović, M., Stanković, V., Zlatanova, M., Nešić, A., Gavrović-Jankulović, M.,& Stanković, D.. (2022). La(OH)3 Multi-Walled Carbon Nanotube/Carbon Paste-Based Sensing Approach for the Detection of Uric Acid—A Product of Environmentally Stressed Cells. in Biosensors
MDPI AG., 12(9), 705.
https://doi.org/10.3390/bios12090705
Knežević S, Ognjanović M, Stanković V, Zlatanova M, Nešić A, Gavrović-Jankulović M, Stanković D. La(OH)3 Multi-Walled Carbon Nanotube/Carbon Paste-Based Sensing Approach for the Detection of Uric Acid—A Product of Environmentally Stressed Cells. in Biosensors. 2022;12(9):705.
doi:10.3390/bios12090705 .
Knežević, Sara, Ognjanović, Miloš, Stanković, Vesna, Zlatanova, Milena, Nešić, Andrijana, Gavrović-Jankulović, Marija, Stanković, Dalibor, "La(OH)3 Multi-Walled Carbon Nanotube/Carbon Paste-Based Sensing Approach for the Detection of Uric Acid—A Product of Environmentally Stressed Cells" in Biosensors, 12, no. 9 (2022):705,
https://doi.org/10.3390/bios12090705 . .
1
6
6

Synthesis and Application of Domestic Glassy Carbon TiO2 Nanocomposite for Electrocatalytic Triclosan Detection

Stanković, Vesna; Manojlović, Dragan; Roglić, Goran; Tolstoguzov, Dmitry S.; Zherebtsov, Dmitry A.; Uchaev, Daniel A.; Avdin, Viacheslav V.; Stanković, Dalibor

(MDPI AG, 2022)

TY  - JOUR
AU  - Stanković, Vesna
AU  - Manojlović, Dragan
AU  - Roglić, Goran
AU  - Tolstoguzov, Dmitry S.
AU  - Zherebtsov, Dmitry A.
AU  - Uchaev, Daniel A.
AU  - Avdin, Viacheslav V.
AU  - Stanković, Dalibor
PY  - 2022
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/5567
AB  - Nanoparticles of TiO2 are suitable for many catalytic and photocatalytic applications due to their extraordinary properties such as superhydrophobicity, semiconductivity, electron-rich, and environmental compatibility. The main crystalline phases of TiO2, anatase, and rutile possess different crystal structures, crystallinity, crystalline sizes, and specific surface areas, and these characteristics directly affect the catalytic performance of TiO2. In the present study, domestic carbon material enhanced with TiO2 nanoparticles was synthesized and used for the construction of a modified carbon paste electrode. The electrocatalytic activity of the modified electrodes was investigated depending on the TiO2 crystalline phases in the electrode material. Furthermore, the obtained working electrode was utilized for triclosan detection. Under optimized experimental conditions, the developed electrode showed a submicromolar triclosan detection limit of 0.07 µM and a wide linear range of 0.1 to 15 µM. The relative standard deviations for repeatability and reproducibility were lower than 4.1%, and with satisfactory selectivity, the proposed system was successfully applied to triclosan monitoring in groundwater. All these results confirm that the sustainable production of new and domestically prepared materials is of great benefit in the field of electrocatalysis and that the morphology of such produced materials is strongly related to their catalytic properties.
PB  - MDPI AG
T2  - Catalysts
T1  - Synthesis and Application of Domestic Glassy Carbon TiO2 Nanocomposite for Electrocatalytic Triclosan Detection
VL  - 12
IS  - 12
SP  - 1571
DO  - 10.3390/catal12121571
ER  - 
@article{
author = "Stanković, Vesna and Manojlović, Dragan and Roglić, Goran and Tolstoguzov, Dmitry S. and Zherebtsov, Dmitry A. and Uchaev, Daniel A. and Avdin, Viacheslav V. and Stanković, Dalibor",
year = "2022",
abstract = "Nanoparticles of TiO2 are suitable for many catalytic and photocatalytic applications due to their extraordinary properties such as superhydrophobicity, semiconductivity, electron-rich, and environmental compatibility. The main crystalline phases of TiO2, anatase, and rutile possess different crystal structures, crystallinity, crystalline sizes, and specific surface areas, and these characteristics directly affect the catalytic performance of TiO2. In the present study, domestic carbon material enhanced with TiO2 nanoparticles was synthesized and used for the construction of a modified carbon paste electrode. The electrocatalytic activity of the modified electrodes was investigated depending on the TiO2 crystalline phases in the electrode material. Furthermore, the obtained working electrode was utilized for triclosan detection. Under optimized experimental conditions, the developed electrode showed a submicromolar triclosan detection limit of 0.07 µM and a wide linear range of 0.1 to 15 µM. The relative standard deviations for repeatability and reproducibility were lower than 4.1%, and with satisfactory selectivity, the proposed system was successfully applied to triclosan monitoring in groundwater. All these results confirm that the sustainable production of new and domestically prepared materials is of great benefit in the field of electrocatalysis and that the morphology of such produced materials is strongly related to their catalytic properties.",
publisher = "MDPI AG",
journal = "Catalysts",
title = "Synthesis and Application of Domestic Glassy Carbon TiO2 Nanocomposite for Electrocatalytic Triclosan Detection",
volume = "12",
number = "12",
pages = "1571",
doi = "10.3390/catal12121571"
}
Stanković, V., Manojlović, D., Roglić, G., Tolstoguzov, D. S., Zherebtsov, D. A., Uchaev, D. A., Avdin, V. V.,& Stanković, D.. (2022). Synthesis and Application of Domestic Glassy Carbon TiO2 Nanocomposite for Electrocatalytic Triclosan Detection. in Catalysts
MDPI AG., 12(12), 1571.
https://doi.org/10.3390/catal12121571
Stanković V, Manojlović D, Roglić G, Tolstoguzov DS, Zherebtsov DA, Uchaev DA, Avdin VV, Stanković D. Synthesis and Application of Domestic Glassy Carbon TiO2 Nanocomposite for Electrocatalytic Triclosan Detection. in Catalysts. 2022;12(12):1571.
doi:10.3390/catal12121571 .
Stanković, Vesna, Manojlović, Dragan, Roglić, Goran, Tolstoguzov, Dmitry S., Zherebtsov, Dmitry A., Uchaev, Daniel A., Avdin, Viacheslav V., Stanković, Dalibor, "Synthesis and Application of Domestic Glassy Carbon TiO2 Nanocomposite for Electrocatalytic Triclosan Detection" in Catalysts, 12, no. 12 (2022):1571,
https://doi.org/10.3390/catal12121571 . .
1