The Italian Ministry of University and Research (MURST, ex-MIUR): PON “AIM: Attrazione e Mobilità Internazionale”, call AIM1809078-2, CUP B78D19000280001

Link to this page

The Italian Ministry of University and Research (MURST, ex-MIUR): PON “AIM: Attrazione e Mobilità Internazionale”, call AIM1809078-2, CUP B78D19000280001

Authors

Publications

Gamma irradiation of graphene quantum dots with ethylenediamine: Antioxidant for ion sensing

Jovanović, Svetlana; Dorontić, Slađana; Jovanović, Dragana; Ciasca, Gabriele; Budimir, Milica; Bonasera, Aurelio; Scopelliti, Michelangelo; Marković, Olivera; Todorović Marković, Biljana

(Elsevier, 2020)

TY  - JOUR
AU  - Jovanović, Svetlana
AU  - Dorontić, Slađana
AU  - Jovanović, Dragana
AU  - Ciasca, Gabriele
AU  - Budimir, Milica
AU  - Bonasera, Aurelio
AU  - Scopelliti, Michelangelo
AU  - Marković, Olivera
AU  - Todorović Marković, Biljana
PY  - 2020
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3593
AB  - Due to the low consumption of chemicals, the absence of toxic residual side products, the procedure simplicity and time-saving aspects, gamma irradiation offers advantages over the classical chemical protocols. We successfully employed gamma irradiation in order to introduce N-atoms in Graphene Quantum Dots (GQDs). By irradiating GQDs water dispersions in the presence of isopropyl alcohol and ethylenediamine, at doses of 25, 50 and 200 kGy, we attached amino groups onto GQDs in a single synthetic step. At the same time, a chemical reduction is achieved, too. Selected conditions induced incorporation of N-atoms within GDQs atomic lattice (around 3 at%), at all applied doses. Additionally, the C-atoms percentage was highly increased, from 63 to 79 at % or higher. The zeta potential of dots changed from −34.6 to +9.1 mV, due to the modification of functionalizing groups localized at the surface. Produced chemical changes lead to the desired alteration of the GQDs optical properties, such as an increased photoluminescence intensity, a higher photoluminescence quantum yields (from 2.07 to 18.40%) and a narrowing of the spectral features in the emission spectra. The ability of gamma-irradiated GQDs to quench free radical species was investigated and positively assessed; additionally, non-enzymatic optical detection of Cu(II) ions using GQDs as a sensor was studied and the detection limits are
herein reported. These results suggest that GQDs can be potentially applied as smart photoluminescent sensors for metal cations.
PB  - Elsevier
T2  - Ceramics International
T1  - Gamma irradiation of graphene quantum dots with ethylenediamine: Antioxidant for ion sensing
VL  - 46
IS  - 15
SP  - 23611
EP  - 23622
DO  - 10.1016/j.ceramint.2020.06.133
ER  - 
@article{
author = "Jovanović, Svetlana and Dorontić, Slađana and Jovanović, Dragana and Ciasca, Gabriele and Budimir, Milica and Bonasera, Aurelio and Scopelliti, Michelangelo and Marković, Olivera and Todorović Marković, Biljana",
year = "2020",
abstract = "Due to the low consumption of chemicals, the absence of toxic residual side products, the procedure simplicity and time-saving aspects, gamma irradiation offers advantages over the classical chemical protocols. We successfully employed gamma irradiation in order to introduce N-atoms in Graphene Quantum Dots (GQDs). By irradiating GQDs water dispersions in the presence of isopropyl alcohol and ethylenediamine, at doses of 25, 50 and 200 kGy, we attached amino groups onto GQDs in a single synthetic step. At the same time, a chemical reduction is achieved, too. Selected conditions induced incorporation of N-atoms within GDQs atomic lattice (around 3 at%), at all applied doses. Additionally, the C-atoms percentage was highly increased, from 63 to 79 at % or higher. The zeta potential of dots changed from −34.6 to +9.1 mV, due to the modification of functionalizing groups localized at the surface. Produced chemical changes lead to the desired alteration of the GQDs optical properties, such as an increased photoluminescence intensity, a higher photoluminescence quantum yields (from 2.07 to 18.40%) and a narrowing of the spectral features in the emission spectra. The ability of gamma-irradiated GQDs to quench free radical species was investigated and positively assessed; additionally, non-enzymatic optical detection of Cu(II) ions using GQDs as a sensor was studied and the detection limits are
herein reported. These results suggest that GQDs can be potentially applied as smart photoluminescent sensors for metal cations.",
publisher = "Elsevier",
journal = "Ceramics International",
title = "Gamma irradiation of graphene quantum dots with ethylenediamine: Antioxidant for ion sensing",
volume = "46",
number = "15",
pages = "23611-23622",
doi = "10.1016/j.ceramint.2020.06.133"
}
Jovanović, S., Dorontić, S., Jovanović, D., Ciasca, G., Budimir, M., Bonasera, A., Scopelliti, M., Marković, O.,& Todorović Marković, B.. (2020). Gamma irradiation of graphene quantum dots with ethylenediamine: Antioxidant for ion sensing. in Ceramics International
Elsevier., 46(15), 23611-23622.
https://doi.org/10.1016/j.ceramint.2020.06.133
Jovanović S, Dorontić S, Jovanović D, Ciasca G, Budimir M, Bonasera A, Scopelliti M, Marković O, Todorović Marković B. Gamma irradiation of graphene quantum dots with ethylenediamine: Antioxidant for ion sensing. in Ceramics International. 2020;46(15):23611-23622.
doi:10.1016/j.ceramint.2020.06.133 .
Jovanović, Svetlana, Dorontić, Slađana, Jovanović, Dragana, Ciasca, Gabriele, Budimir, Milica, Bonasera, Aurelio, Scopelliti, Michelangelo, Marković, Olivera, Todorović Marković, Biljana, "Gamma irradiation of graphene quantum dots with ethylenediamine: Antioxidant for ion sensing" in Ceramics International, 46, no. 15 (2020):23611-23622,
https://doi.org/10.1016/j.ceramint.2020.06.133 . .
18
7
17

Gamma irradiation of graphene quantum dots with ethylenediamine: Antioxidant for ion sensing

Jovanović, Svetlana; Dorontić, Slađana; Jovanović, Dragana; Ciasca, Gabriele; Budimir, Milica; Bonasera, Aurelio; Scopelliti, Michelangelo; Marković, Olivera; Todorović Marković, Biljana

(Elsevier, 2020)

TY  - JOUR
AU  - Jovanović, Svetlana
AU  - Dorontić, Slađana
AU  - Jovanović, Dragana
AU  - Ciasca, Gabriele
AU  - Budimir, Milica
AU  - Bonasera, Aurelio
AU  - Scopelliti, Michelangelo
AU  - Marković, Olivera
AU  - Todorović Marković, Biljana
PY  - 2020
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3621
AB  - Due to the low consumption of chemicals, the absence of toxic residual side products, the procedure simplicity and time-saving aspects, gamma irradiation offers advantages over the classical chemical protocols. We successfully employed gamma irradiation in order to introduce N-atoms in Graphene Quantum Dots (GQDs). By irradiating GQDs water dispersions in the presence of isopropyl alcohol and ethylenediamine, at doses of 25, 50 and 200 kGy, we attached amino groups onto GQDs in a single synthetic step. At the same time, a chemical reduction is achieved, too. Selected conditions induced incorporation of N-atoms within GDQs atomic lattice (around 3 at%), at all applied doses. Additionally, the C-atoms percentage was highly increased, from 63 to 79 at % or higher. The zeta potential of dots changed from −34.6 to +9.1 mV, due to the modification of functionalizing groups localized at the surface. Produced chemical changes lead to the desired alteration of the GQDs optical properties, such as an increased photoluminescence intensity, a higher photoluminescence quantum yields (from 2.07 to 18.40%) and a narrowing of the spectral features in the emission spectra. The ability of gamma-irradiated GQDs to quench free radical species was investigated and positively assessed; additionally, non-enzymatic optical detection of Cu(II) ions using GQDs as a sensor was studied and the detection limits areherein reported. These results suggest that GQDs can be potentially applied as smart photoluminescent sensors for metal cations.
PB  - Elsevier
T2  - Ceramics International
T1  - Gamma irradiation of graphene quantum dots with ethylenediamine: Antioxidant for ion sensing
VL  - 46
IS  - 15
SP  - 23611
EP  - 23622
DO  - 10.1016/j.ceramint.2020.06.133
ER  - 
@article{
author = "Jovanović, Svetlana and Dorontić, Slađana and Jovanović, Dragana and Ciasca, Gabriele and Budimir, Milica and Bonasera, Aurelio and Scopelliti, Michelangelo and Marković, Olivera and Todorović Marković, Biljana",
year = "2020",
abstract = "Due to the low consumption of chemicals, the absence of toxic residual side products, the procedure simplicity and time-saving aspects, gamma irradiation offers advantages over the classical chemical protocols. We successfully employed gamma irradiation in order to introduce N-atoms in Graphene Quantum Dots (GQDs). By irradiating GQDs water dispersions in the presence of isopropyl alcohol and ethylenediamine, at doses of 25, 50 and 200 kGy, we attached amino groups onto GQDs in a single synthetic step. At the same time, a chemical reduction is achieved, too. Selected conditions induced incorporation of N-atoms within GDQs atomic lattice (around 3 at%), at all applied doses. Additionally, the C-atoms percentage was highly increased, from 63 to 79 at % or higher. The zeta potential of dots changed from −34.6 to +9.1 mV, due to the modification of functionalizing groups localized at the surface. Produced chemical changes lead to the desired alteration of the GQDs optical properties, such as an increased photoluminescence intensity, a higher photoluminescence quantum yields (from 2.07 to 18.40%) and a narrowing of the spectral features in the emission spectra. The ability of gamma-irradiated GQDs to quench free radical species was investigated and positively assessed; additionally, non-enzymatic optical detection of Cu(II) ions using GQDs as a sensor was studied and the detection limits areherein reported. These results suggest that GQDs can be potentially applied as smart photoluminescent sensors for metal cations.",
publisher = "Elsevier",
journal = "Ceramics International",
title = "Gamma irradiation of graphene quantum dots with ethylenediamine: Antioxidant for ion sensing",
volume = "46",
number = "15",
pages = "23611-23622",
doi = "10.1016/j.ceramint.2020.06.133"
}
Jovanović, S., Dorontić, S., Jovanović, D., Ciasca, G., Budimir, M., Bonasera, A., Scopelliti, M., Marković, O.,& Todorović Marković, B.. (2020). Gamma irradiation of graphene quantum dots with ethylenediamine: Antioxidant for ion sensing. in Ceramics International
Elsevier., 46(15), 23611-23622.
https://doi.org/10.1016/j.ceramint.2020.06.133
Jovanović S, Dorontić S, Jovanović D, Ciasca G, Budimir M, Bonasera A, Scopelliti M, Marković O, Todorović Marković B. Gamma irradiation of graphene quantum dots with ethylenediamine: Antioxidant for ion sensing. in Ceramics International. 2020;46(15):23611-23622.
doi:10.1016/j.ceramint.2020.06.133 .
Jovanović, Svetlana, Dorontić, Slađana, Jovanović, Dragana, Ciasca, Gabriele, Budimir, Milica, Bonasera, Aurelio, Scopelliti, Michelangelo, Marković, Olivera, Todorović Marković, Biljana, "Gamma irradiation of graphene quantum dots with ethylenediamine: Antioxidant for ion sensing" in Ceramics International, 46, no. 15 (2020):23611-23622,
https://doi.org/10.1016/j.ceramint.2020.06.133 . .
18
7
18