Nanostructured multifunctional materials and nanocomposites

Link to this page

info:eu-repo/grantAgreement/MESTD/Integrated and Interdisciplinary Research (IIR or III)/45018/RS//

Nanostructured multifunctional materials and nanocomposites (en)
Наноструктурни мултифункционални материјали и нанокомпозити (sr)
Nanostrukturni multifunkcionalni materijali i nanokompoziti (sr_RS)
Authors

Publications

Adsorption and degradation of some psychiatric drugs by sol-gel synthesized titania-based photocatalysts: influence of tungsten and sodium content

Finčur, Nina L.; Šćepanović, Maja; Grujić-Brojčin, Mirjana; Abramović, Biljana F.; Krstić, Jugoslav; Kremenović, Aleksandar; Srećković, Tatjana; Golubović, Aleksandar

(Springer, 2019)

TY  - JOUR
AU  - Finčur, Nina L.
AU  - Šćepanović, Maja
AU  - Grujić-Brojčin, Mirjana
AU  - Abramović, Biljana F.
AU  - Krstić, Jugoslav
AU  - Kremenović, Aleksandar
AU  - Srećković, Tatjana
AU  - Golubović, Aleksandar
PY  - 2019
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3025
AB  - Mesoporous anatase nanopowders were doped with 0.05−0.5 mol% of W6+, in order to obtain more efficient photocatalyst than TiO2 Degussa P25 in the degradation of amitriptyline (AMI) under simulated solar irradiation (SSI). Dominant XRPD peaks were ascribed to anatase phase, with additional peaks which could correspond to brookite, TiO2 bronze and sodium titanate, Na2Ti9O19. The Raman scattering measurements have confirmed anatase as dominant phase, with broad Raman feature at ~270 cm−1 possibly related to Ti–O–Na stretching vibration. All W-doped nanopowders have shown enhanced adsorption and higher efficiency in photodegradation of AMI in comparison to TiO2 Degussa P25 under the same conditions. The catalyst doped with 0.4 mol% of W6+, which has shown the highest efficiency in degradation of AMI under SSI, has
also been tested in degradation of alprazolam (ALP). The effect of substrate type (AMI and ALP), catalyst loading, and initial substrate concentration on photocatalytic degradation using SSI was examined. The identification of the species responsible for the photocatalytic degradation of AMI and ALP by the catalyst doped with 0.4 mol% of W6+ was performed in the presence of various scavengers under SSI. The major role in degradation of AMI may be attributed to hydroxyl radicals, whereas superoxide anion radicals, singlet molecular oxygen and hydroxyl radicals contribute to degradation of ALP.
PB  - Springer
T2  - Journal of Sol-Gel Science and Technology
T1  - Adsorption and degradation of some psychiatric drugs by sol-gel synthesized titania-based photocatalysts: influence of tungsten and sodium content
VL  - 90
IS  - 3
SP  - 510
EP  - 524
DO  - 10.1007/s10971-019-04925-4
ER  - 
@article{
author = "Finčur, Nina L. and Šćepanović, Maja and Grujić-Brojčin, Mirjana and Abramović, Biljana F. and Krstić, Jugoslav and Kremenović, Aleksandar and Srećković, Tatjana and Golubović, Aleksandar",
year = "2019",
abstract = "Mesoporous anatase nanopowders were doped with 0.05−0.5 mol% of W6+, in order to obtain more efficient photocatalyst than TiO2 Degussa P25 in the degradation of amitriptyline (AMI) under simulated solar irradiation (SSI). Dominant XRPD peaks were ascribed to anatase phase, with additional peaks which could correspond to brookite, TiO2 bronze and sodium titanate, Na2Ti9O19. The Raman scattering measurements have confirmed anatase as dominant phase, with broad Raman feature at ~270 cm−1 possibly related to Ti–O–Na stretching vibration. All W-doped nanopowders have shown enhanced adsorption and higher efficiency in photodegradation of AMI in comparison to TiO2 Degussa P25 under the same conditions. The catalyst doped with 0.4 mol% of W6+, which has shown the highest efficiency in degradation of AMI under SSI, has
also been tested in degradation of alprazolam (ALP). The effect of substrate type (AMI and ALP), catalyst loading, and initial substrate concentration on photocatalytic degradation using SSI was examined. The identification of the species responsible for the photocatalytic degradation of AMI and ALP by the catalyst doped with 0.4 mol% of W6+ was performed in the presence of various scavengers under SSI. The major role in degradation of AMI may be attributed to hydroxyl radicals, whereas superoxide anion radicals, singlet molecular oxygen and hydroxyl radicals contribute to degradation of ALP.",
publisher = "Springer",
journal = "Journal of Sol-Gel Science and Technology",
title = "Adsorption and degradation of some psychiatric drugs by sol-gel synthesized titania-based photocatalysts: influence of tungsten and sodium content",
volume = "90",
number = "3",
pages = "510-524",
doi = "10.1007/s10971-019-04925-4"
}
Finčur, N. L., Šćepanović, M., Grujić-Brojčin, M., Abramović, B. F., Krstić, J., Kremenović, A., Srećković, T.,& Golubović, A.. (2019). Adsorption and degradation of some psychiatric drugs by sol-gel synthesized titania-based photocatalysts: influence of tungsten and sodium content. in Journal of Sol-Gel Science and Technology
Springer., 90(3), 510-524.
https://doi.org/10.1007/s10971-019-04925-4
Finčur NL, Šćepanović M, Grujić-Brojčin M, Abramović BF, Krstić J, Kremenović A, Srećković T, Golubović A. Adsorption and degradation of some psychiatric drugs by sol-gel synthesized titania-based photocatalysts: influence of tungsten and sodium content. in Journal of Sol-Gel Science and Technology. 2019;90(3):510-524.
doi:10.1007/s10971-019-04925-4 .
Finčur, Nina L., Šćepanović, Maja, Grujić-Brojčin, Mirjana, Abramović, Biljana F., Krstić, Jugoslav, Kremenović, Aleksandar, Srećković, Tatjana, Golubović, Aleksandar, "Adsorption and degradation of some psychiatric drugs by sol-gel synthesized titania-based photocatalysts: influence of tungsten and sodium content" in Journal of Sol-Gel Science and Technology, 90, no. 3 (2019):510-524,
https://doi.org/10.1007/s10971-019-04925-4 . .
7
5
7

Nitrate-assisted photocatalytic efficiency of defective Eu-doped Pr(OH)(3) nanostructures

Askrabic, S.; Araujo, V. D.; Passacantando, M.; Bernardi, M. I. B.; Tomić, N.; Dojčinović, Biljana; Manojlović, Dragan; Calija, B.; Miletic, M.; Dohcevic-Mitrovic, Z. D.

(Royal Soc Chemistry, Cambridge, 2017)

TY  - JOUR
AU  - Askrabic, S.
AU  - Araujo, V. D.
AU  - Passacantando, M.
AU  - Bernardi, M. I. B.
AU  - Tomić, N.
AU  - Dojčinović, Biljana
AU  - Manojlović, Dragan
AU  - Calija, B.
AU  - Miletic, M.
AU  - Dohcevic-Mitrovic, Z. D.
PY  - 2017
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/2938
AB  - Pr(OH)(3) one-dimensional nanostructures are a less studied member of lanthanide hydroxide nanostructures, which recently demonstrated an excellent adsorption capacity for organic pollutant removal from wastewater. In this study, Pr1-xEux(OH)(3) (x = 0, 0.01, 0.03, and 0.05) defective nanostructures were synthesized by a facile and scalable microwave-assisted hydrothermal method using KOH as an alkaline metal precursor. The phase and surface composition, morphology, vibrational, electronic and optical properties of the as-prepared samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), inductively coupled plasma optical emission spectrometry (ICP-OES), transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM), Raman, infrared (IR), photoluminescence (PL), and diffuse reflectance spectroscopy (DRS). It was deduced that the incorporation of Eu3+ ions promoted the formation of oxygen vacancies in the already defective Pr(OH)(3), subsequently changing the Pr(OH)(3) nanorod morphology. The presence of KNO3 phase was registered in the Eu-doped samples. The oxygendeficient Eu-doped Pr(OH)(3) nanostructures displayed an improved photocatalytic activity in the removal of reactive orange (RO16) dye under UV-vis light irradiation. An enhanced photocatalytic activity of the Eu-doped Pr(OH)(3) nanostructures was caused by the synergetic effect of oxygen vacancies and Eu3+ (NO3-) ions present on the Pr(OH)(3) surface, the charge separation efficiency and the formation of the reactive radicals. In addition, the 3% Eu-doped sample exhibited very good adsorptive properties due to different morphology and higher electrostatic attraction with the anionic dye. Pr1-xEux(OH)(3) nanostructures with the possibility of tuning their adsorption/photocatalytic properties present a great potential for wastewater treatment.
PB  - Royal Soc Chemistry, Cambridge
T2  - Physical Chemistry Chemical Physics
T1  - Nitrate-assisted photocatalytic efficiency of defective Eu-doped Pr(OH)(3) nanostructures
VL  - 19
IS  - 47
SP  - 31756
EP  - 31765
DO  - 10.1039/c7cp06440c
ER  - 
@article{
author = "Askrabic, S. and Araujo, V. D. and Passacantando, M. and Bernardi, M. I. B. and Tomić, N. and Dojčinović, Biljana and Manojlović, Dragan and Calija, B. and Miletic, M. and Dohcevic-Mitrovic, Z. D.",
year = "2017",
abstract = "Pr(OH)(3) one-dimensional nanostructures are a less studied member of lanthanide hydroxide nanostructures, which recently demonstrated an excellent adsorption capacity for organic pollutant removal from wastewater. In this study, Pr1-xEux(OH)(3) (x = 0, 0.01, 0.03, and 0.05) defective nanostructures were synthesized by a facile and scalable microwave-assisted hydrothermal method using KOH as an alkaline metal precursor. The phase and surface composition, morphology, vibrational, electronic and optical properties of the as-prepared samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), inductively coupled plasma optical emission spectrometry (ICP-OES), transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM), Raman, infrared (IR), photoluminescence (PL), and diffuse reflectance spectroscopy (DRS). It was deduced that the incorporation of Eu3+ ions promoted the formation of oxygen vacancies in the already defective Pr(OH)(3), subsequently changing the Pr(OH)(3) nanorod morphology. The presence of KNO3 phase was registered in the Eu-doped samples. The oxygendeficient Eu-doped Pr(OH)(3) nanostructures displayed an improved photocatalytic activity in the removal of reactive orange (RO16) dye under UV-vis light irradiation. An enhanced photocatalytic activity of the Eu-doped Pr(OH)(3) nanostructures was caused by the synergetic effect of oxygen vacancies and Eu3+ (NO3-) ions present on the Pr(OH)(3) surface, the charge separation efficiency and the formation of the reactive radicals. In addition, the 3% Eu-doped sample exhibited very good adsorptive properties due to different morphology and higher electrostatic attraction with the anionic dye. Pr1-xEux(OH)(3) nanostructures with the possibility of tuning their adsorption/photocatalytic properties present a great potential for wastewater treatment.",
publisher = "Royal Soc Chemistry, Cambridge",
journal = "Physical Chemistry Chemical Physics",
title = "Nitrate-assisted photocatalytic efficiency of defective Eu-doped Pr(OH)(3) nanostructures",
volume = "19",
number = "47",
pages = "31756-31765",
doi = "10.1039/c7cp06440c"
}
Askrabic, S., Araujo, V. D., Passacantando, M., Bernardi, M. I. B., Tomić, N., Dojčinović, B., Manojlović, D., Calija, B., Miletic, M.,& Dohcevic-Mitrovic, Z. D.. (2017). Nitrate-assisted photocatalytic efficiency of defective Eu-doped Pr(OH)(3) nanostructures. in Physical Chemistry Chemical Physics
Royal Soc Chemistry, Cambridge., 19(47), 31756-31765.
https://doi.org/10.1039/c7cp06440c
Askrabic S, Araujo VD, Passacantando M, Bernardi MIB, Tomić N, Dojčinović B, Manojlović D, Calija B, Miletic M, Dohcevic-Mitrovic ZD. Nitrate-assisted photocatalytic efficiency of defective Eu-doped Pr(OH)(3) nanostructures. in Physical Chemistry Chemical Physics. 2017;19(47):31756-31765.
doi:10.1039/c7cp06440c .
Askrabic, S., Araujo, V. D., Passacantando, M., Bernardi, M. I. B., Tomić, N., Dojčinović, Biljana, Manojlović, Dragan, Calija, B., Miletic, M., Dohcevic-Mitrovic, Z. D., "Nitrate-assisted photocatalytic efficiency of defective Eu-doped Pr(OH)(3) nanostructures" in Physical Chemistry Chemical Physics, 19, no. 47 (2017):31756-31765,
https://doi.org/10.1039/c7cp06440c . .
6
6
6

Nitrate-assisted photocatalytic efficiency of defective Eu-doped Pr(OH)(3) nanostructures

Askrabic, S.; Araujo, V. D.; Passacantando, M.; Bernardi, M. I. B.; Tomić, N.; Dojčinović, Biljana; Manojlović, Dragan; Calija, B.; Miletic, M.; Dohcevic-Mitrovic, Z. D.

(Royal Soc Chemistry, Cambridge, 2017)

TY  - JOUR
AU  - Askrabic, S.
AU  - Araujo, V. D.
AU  - Passacantando, M.
AU  - Bernardi, M. I. B.
AU  - Tomić, N.
AU  - Dojčinović, Biljana
AU  - Manojlović, Dragan
AU  - Calija, B.
AU  - Miletic, M.
AU  - Dohcevic-Mitrovic, Z. D.
PY  - 2017
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/2120
AB  - Pr(OH)(3) one-dimensional nanostructures are a less studied member of lanthanide hydroxide nanostructures, which recently demonstrated an excellent adsorption capacity for organic pollutant removal from wastewater. In this study, Pr1-xEux(OH)(3) (x = 0, 0.01, 0.03, and 0.05) defective nanostructures were synthesized by a facile and scalable microwave-assisted hydrothermal method using KOH as an alkaline metal precursor. The phase and surface composition, morphology, vibrational, electronic and optical properties of the as-prepared samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), inductively coupled plasma optical emission spectrometry (ICP-OES), transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM), Raman, infrared (IR), photoluminescence (PL), and diffuse reflectance spectroscopy (DRS). It was deduced that the incorporation of Eu3+ ions promoted the formation of oxygen vacancies in the already defective Pr(OH)(3), subsequently changing the Pr(OH)(3) nanorod morphology. The presence of KNO3 phase was registered in the Eu-doped samples. The oxygendeficient Eu-doped Pr(OH)(3) nanostructures displayed an improved photocatalytic activity in the removal of reactive orange (RO16) dye under UV-vis light irradiation. An enhanced photocatalytic activity of the Eu-doped Pr(OH)(3) nanostructures was caused by the synergetic effect of oxygen vacancies and Eu3+ (NO3-) ions present on the Pr(OH)(3) surface, the charge separation efficiency and the formation of the reactive radicals. In addition, the 3% Eu-doped sample exhibited very good adsorptive properties due to different morphology and higher electrostatic attraction with the anionic dye. Pr1-xEux(OH)(3) nanostructures with the possibility of tuning their adsorption/photocatalytic properties present a great potential for wastewater treatment.
PB  - Royal Soc Chemistry, Cambridge
T2  - Physical Chemistry Chemical Physics
T1  - Nitrate-assisted photocatalytic efficiency of defective Eu-doped Pr(OH)(3) nanostructures
VL  - 19
IS  - 47
SP  - 31756
EP  - 31765
DO  - 10.1039/c7cp06440c
ER  - 
@article{
author = "Askrabic, S. and Araujo, V. D. and Passacantando, M. and Bernardi, M. I. B. and Tomić, N. and Dojčinović, Biljana and Manojlović, Dragan and Calija, B. and Miletic, M. and Dohcevic-Mitrovic, Z. D.",
year = "2017",
abstract = "Pr(OH)(3) one-dimensional nanostructures are a less studied member of lanthanide hydroxide nanostructures, which recently demonstrated an excellent adsorption capacity for organic pollutant removal from wastewater. In this study, Pr1-xEux(OH)(3) (x = 0, 0.01, 0.03, and 0.05) defective nanostructures were synthesized by a facile and scalable microwave-assisted hydrothermal method using KOH as an alkaline metal precursor. The phase and surface composition, morphology, vibrational, electronic and optical properties of the as-prepared samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), inductively coupled plasma optical emission spectrometry (ICP-OES), transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM), Raman, infrared (IR), photoluminescence (PL), and diffuse reflectance spectroscopy (DRS). It was deduced that the incorporation of Eu3+ ions promoted the formation of oxygen vacancies in the already defective Pr(OH)(3), subsequently changing the Pr(OH)(3) nanorod morphology. The presence of KNO3 phase was registered in the Eu-doped samples. The oxygendeficient Eu-doped Pr(OH)(3) nanostructures displayed an improved photocatalytic activity in the removal of reactive orange (RO16) dye under UV-vis light irradiation. An enhanced photocatalytic activity of the Eu-doped Pr(OH)(3) nanostructures was caused by the synergetic effect of oxygen vacancies and Eu3+ (NO3-) ions present on the Pr(OH)(3) surface, the charge separation efficiency and the formation of the reactive radicals. In addition, the 3% Eu-doped sample exhibited very good adsorptive properties due to different morphology and higher electrostatic attraction with the anionic dye. Pr1-xEux(OH)(3) nanostructures with the possibility of tuning their adsorption/photocatalytic properties present a great potential for wastewater treatment.",
publisher = "Royal Soc Chemistry, Cambridge",
journal = "Physical Chemistry Chemical Physics",
title = "Nitrate-assisted photocatalytic efficiency of defective Eu-doped Pr(OH)(3) nanostructures",
volume = "19",
number = "47",
pages = "31756-31765",
doi = "10.1039/c7cp06440c"
}
Askrabic, S., Araujo, V. D., Passacantando, M., Bernardi, M. I. B., Tomić, N., Dojčinović, B., Manojlović, D., Calija, B., Miletic, M.,& Dohcevic-Mitrovic, Z. D.. (2017). Nitrate-assisted photocatalytic efficiency of defective Eu-doped Pr(OH)(3) nanostructures. in Physical Chemistry Chemical Physics
Royal Soc Chemistry, Cambridge., 19(47), 31756-31765.
https://doi.org/10.1039/c7cp06440c
Askrabic S, Araujo VD, Passacantando M, Bernardi MIB, Tomić N, Dojčinović B, Manojlović D, Calija B, Miletic M, Dohcevic-Mitrovic ZD. Nitrate-assisted photocatalytic efficiency of defective Eu-doped Pr(OH)(3) nanostructures. in Physical Chemistry Chemical Physics. 2017;19(47):31756-31765.
doi:10.1039/c7cp06440c .
Askrabic, S., Araujo, V. D., Passacantando, M., Bernardi, M. I. B., Tomić, N., Dojčinović, Biljana, Manojlović, Dragan, Calija, B., Miletic, M., Dohcevic-Mitrovic, Z. D., "Nitrate-assisted photocatalytic efficiency of defective Eu-doped Pr(OH)(3) nanostructures" in Physical Chemistry Chemical Physics, 19, no. 47 (2017):31756-31765,
https://doi.org/10.1039/c7cp06440c . .
6
6
6

Photocatalytic degradation of alprazolam in water suspension of brookite type TiO2 nanopowders prepared using hydrothermal route

Tomić, N.; Grujić-Brojčin, Mirjana; Finčur, Nina L.; Abramović, Biljana F.; Simovic, B; Krstić, Jugoslav; Matović, Branko; Scepanovic, M

(Elsevier Science Sa, Lausanne, 2015)

TY  - JOUR
AU  - Tomić, N.
AU  - Grujić-Brojčin, Mirjana
AU  - Finčur, Nina L.
AU  - Abramović, Biljana F.
AU  - Simovic, B
AU  - Krstić, Jugoslav
AU  - Matović, Branko
AU  - Scepanovic, M
PY  - 2015
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/1794
AB  - Two series of nanocrystalline brookite-type powders have been synthesized by using combined sal gel hydrothermal method with titanium tetrachloride (TiCI4) as a precursor and hydrothermal temperature and reaction time varied in the range of 120-200 degrees C and 12-48 h, respectively. The effects of chosen synthesis parameters on structural, morphological and optical properties of synthesized powders have been investigated by the XRPD, SEM, EDS and BET measurements, as well Raman spectroscopy and spectroscopic ellipsometry. The XRPD results have shown that pure brookite phase, with mean crystallite size of -33 nm, has been obtained only in the sample synthesized at 200 degrees C, after 24 h of hydrothermal process. In all other samples anatase phase also appears, whereas rutile and sodium titanate phases have been noticed in the samples synthesized at lower temperatures. The presence of different titania phases has also been confirmed and analyzed by Raman scattering measurements. The SEM measurements have shown spindle-like particles in brookite-rich samples synthesized at 200 degrees C, whereas BET measurements have detected mesoporous structure in these samples. The properties of synthesized powders have been correlated to their photocatalytic efficiency, tested in degradation of alprazolam, one of the 5th generation benzodiazepines. The sample consisted of pure brookite has shown the highest efficiency in the photodegradation of alprazolam, practically equal to the activity of Degussa P25.
PB  - Elsevier Science Sa, Lausanne
T2  - Materials Chemistry and Physics
T1  - Photocatalytic degradation of alprazolam in water suspension of brookite type TiO2 nanopowders prepared using hydrothermal route
VL  - 163
SP  - 518
EP  - 528
DO  - 10.1016/j.matchemphys.2015.08.008
ER  - 
@article{
author = "Tomić, N. and Grujić-Brojčin, Mirjana and Finčur, Nina L. and Abramović, Biljana F. and Simovic, B and Krstić, Jugoslav and Matović, Branko and Scepanovic, M",
year = "2015",
abstract = "Two series of nanocrystalline brookite-type powders have been synthesized by using combined sal gel hydrothermal method with titanium tetrachloride (TiCI4) as a precursor and hydrothermal temperature and reaction time varied in the range of 120-200 degrees C and 12-48 h, respectively. The effects of chosen synthesis parameters on structural, morphological and optical properties of synthesized powders have been investigated by the XRPD, SEM, EDS and BET measurements, as well Raman spectroscopy and spectroscopic ellipsometry. The XRPD results have shown that pure brookite phase, with mean crystallite size of -33 nm, has been obtained only in the sample synthesized at 200 degrees C, after 24 h of hydrothermal process. In all other samples anatase phase also appears, whereas rutile and sodium titanate phases have been noticed in the samples synthesized at lower temperatures. The presence of different titania phases has also been confirmed and analyzed by Raman scattering measurements. The SEM measurements have shown spindle-like particles in brookite-rich samples synthesized at 200 degrees C, whereas BET measurements have detected mesoporous structure in these samples. The properties of synthesized powders have been correlated to their photocatalytic efficiency, tested in degradation of alprazolam, one of the 5th generation benzodiazepines. The sample consisted of pure brookite has shown the highest efficiency in the photodegradation of alprazolam, practically equal to the activity of Degussa P25.",
publisher = "Elsevier Science Sa, Lausanne",
journal = "Materials Chemistry and Physics",
title = "Photocatalytic degradation of alprazolam in water suspension of brookite type TiO2 nanopowders prepared using hydrothermal route",
volume = "163",
pages = "518-528",
doi = "10.1016/j.matchemphys.2015.08.008"
}
Tomić, N., Grujić-Brojčin, M., Finčur, N. L., Abramović, B. F., Simovic, B., Krstić, J., Matović, B.,& Scepanovic, M.. (2015). Photocatalytic degradation of alprazolam in water suspension of brookite type TiO2 nanopowders prepared using hydrothermal route. in Materials Chemistry and Physics
Elsevier Science Sa, Lausanne., 163, 518-528.
https://doi.org/10.1016/j.matchemphys.2015.08.008
Tomić N, Grujić-Brojčin M, Finčur NL, Abramović BF, Simovic B, Krstić J, Matović B, Scepanovic M. Photocatalytic degradation of alprazolam in water suspension of brookite type TiO2 nanopowders prepared using hydrothermal route. in Materials Chemistry and Physics. 2015;163:518-528.
doi:10.1016/j.matchemphys.2015.08.008 .
Tomić, N., Grujić-Brojčin, Mirjana, Finčur, Nina L., Abramović, Biljana F., Simovic, B, Krstić, Jugoslav, Matović, Branko, Scepanovic, M, "Photocatalytic degradation of alprazolam in water suspension of brookite type TiO2 nanopowders prepared using hydrothermal route" in Materials Chemistry and Physics, 163 (2015):518-528,
https://doi.org/10.1016/j.matchemphys.2015.08.008 . .
35
30
37

Nanocrystalline CeO2-delta as Effective Adsorbent of Azo Dyes

Tomić, Nataša M.; Dohcevic-Mitrovic, Zorana D; Paunović, Novica M; Mijin, Dušan; Radić, Nenad; Grbić, Boško; Askrabic, Sonja M; Babić, Biljana M.; Bajuk-Bogdanovic, Danica V

(American Chemical Society (ACS), 2014)

TY  - JOUR
AU  - Tomić, Nataša M.
AU  - Dohcevic-Mitrovic, Zorana D
AU  - Paunović, Novica M
AU  - Mijin, Dušan
AU  - Radić, Nenad
AU  - Grbić, Boško
AU  - Askrabic, Sonja M
AU  - Babić, Biljana M.
AU  - Bajuk-Bogdanovic, Danica V
PY  - 2014
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/1392
AB  - Ultrafine CeO2-delta nanopowder, prepared by a simple and cost-effective self-propagating room temperature synthesis method (SPRT), showed high adsorption capability for removal of different azo dyes. Batch type of adsorption experiments with fixed initial pH value were conducted for the removal of Reactive Orange 16 (RO16), Methyl Orange (MO), and Mordant Blue 9 (MB9). The equilibrium adsorption data were evaluated using Freundlich and Langmuir isotherm models. The Langmuir model slightly better describes isotherm data for RO16 and MO, whereas the Freundlich model was found to best fit the isotherm data for MB9 over the whole concentration range. The maximum adsorption capacities, determined from isotherm data for MO, MB9, and RO16 were 113, 101, and 91 mg g(1) respectively. The adsorption process follows the pseudo-second-order kinetic model indicating the coexistence of chemisorption and physisorption. The mechanism of azo dye adsorption is also discussed.
PB  - American Chemical Society (ACS)
T2  - Langmuir
T1  - Nanocrystalline CeO2-delta as Effective Adsorbent of Azo Dyes
VL  - 30
IS  - 39
SP  - 11582
EP  - 11590
DO  - 10.1021/la502969w
ER  - 
@article{
author = "Tomić, Nataša M. and Dohcevic-Mitrovic, Zorana D and Paunović, Novica M and Mijin, Dušan and Radić, Nenad and Grbić, Boško and Askrabic, Sonja M and Babić, Biljana M. and Bajuk-Bogdanovic, Danica V",
year = "2014",
abstract = "Ultrafine CeO2-delta nanopowder, prepared by a simple and cost-effective self-propagating room temperature synthesis method (SPRT), showed high adsorption capability for removal of different azo dyes. Batch type of adsorption experiments with fixed initial pH value were conducted for the removal of Reactive Orange 16 (RO16), Methyl Orange (MO), and Mordant Blue 9 (MB9). The equilibrium adsorption data were evaluated using Freundlich and Langmuir isotherm models. The Langmuir model slightly better describes isotherm data for RO16 and MO, whereas the Freundlich model was found to best fit the isotherm data for MB9 over the whole concentration range. The maximum adsorption capacities, determined from isotherm data for MO, MB9, and RO16 were 113, 101, and 91 mg g(1) respectively. The adsorption process follows the pseudo-second-order kinetic model indicating the coexistence of chemisorption and physisorption. The mechanism of azo dye adsorption is also discussed.",
publisher = "American Chemical Society (ACS)",
journal = "Langmuir",
title = "Nanocrystalline CeO2-delta as Effective Adsorbent of Azo Dyes",
volume = "30",
number = "39",
pages = "11582-11590",
doi = "10.1021/la502969w"
}
Tomić, N. M., Dohcevic-Mitrovic, Z. D., Paunović, N. M., Mijin, D., Radić, N., Grbić, B., Askrabic, S. M., Babić, B. M.,& Bajuk-Bogdanovic, D. V.. (2014). Nanocrystalline CeO2-delta as Effective Adsorbent of Azo Dyes. in Langmuir
American Chemical Society (ACS)., 30(39), 11582-11590.
https://doi.org/10.1021/la502969w
Tomić NM, Dohcevic-Mitrovic ZD, Paunović NM, Mijin D, Radić N, Grbić B, Askrabic SM, Babić BM, Bajuk-Bogdanovic DV. Nanocrystalline CeO2-delta as Effective Adsorbent of Azo Dyes. in Langmuir. 2014;30(39):11582-11590.
doi:10.1021/la502969w .
Tomić, Nataša M., Dohcevic-Mitrovic, Zorana D, Paunović, Novica M, Mijin, Dušan, Radić, Nenad, Grbić, Boško, Askrabic, Sonja M, Babić, Biljana M., Bajuk-Bogdanovic, Danica V, "Nanocrystalline CeO2-delta as Effective Adsorbent of Azo Dyes" in Langmuir, 30, no. 39 (2014):11582-11590,
https://doi.org/10.1021/la502969w . .
49
37
49

Nanocrystalline CeO2-delta as Effective Adsorbent of Azo Dyes

Tomić, Nataša M.; Dohcevic-Mitrovic, Zorana D; Paunović, Novica M; Mijin, Dušan; Radić, Nenad; Grbić, Boško; Askrabic, Sonja M; Babić, Biljana M.; Bajuk-Bogdanovic, Danica V

(American Chemical Society (ACS), 2014)

TY  - JOUR
AU  - Tomić, Nataša M.
AU  - Dohcevic-Mitrovic, Zorana D
AU  - Paunović, Novica M
AU  - Mijin, Dušan
AU  - Radić, Nenad
AU  - Grbić, Boško
AU  - Askrabic, Sonja M
AU  - Babić, Biljana M.
AU  - Bajuk-Bogdanovic, Danica V
PY  - 2014
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3170
AB  - Ultrafine CeO2-delta nanopowder, prepared by a simple and cost-effective self-propagating room temperature synthesis method (SPRT), showed high adsorption capability for removal of different azo dyes. Batch type of adsorption experiments with fixed initial pH value were conducted for the removal of Reactive Orange 16 (RO16), Methyl Orange (MO), and Mordant Blue 9 (MB9). The equilibrium adsorption data were evaluated using Freundlich and Langmuir isotherm models. The Langmuir model slightly better describes isotherm data for RO16 and MO, whereas the Freundlich model was found to best fit the isotherm data for MB9 over the whole concentration range. The maximum adsorption capacities, determined from isotherm data for MO, MB9, and RO16 were 113, 101, and 91 mg g(1) respectively. The adsorption process follows the pseudo-second-order kinetic model indicating the coexistence of chemisorption and physisorption. The mechanism of azo dye adsorption is also discussed.
PB  - American Chemical Society (ACS)
T2  - Langmuir
T1  - Nanocrystalline CeO2-delta as Effective Adsorbent of Azo Dyes
VL  - 30
IS  - 39
SP  - 11582
EP  - 11590
DO  - 10.1021/la502969w
ER  - 
@article{
author = "Tomić, Nataša M. and Dohcevic-Mitrovic, Zorana D and Paunović, Novica M and Mijin, Dušan and Radić, Nenad and Grbić, Boško and Askrabic, Sonja M and Babić, Biljana M. and Bajuk-Bogdanovic, Danica V",
year = "2014",
abstract = "Ultrafine CeO2-delta nanopowder, prepared by a simple and cost-effective self-propagating room temperature synthesis method (SPRT), showed high adsorption capability for removal of different azo dyes. Batch type of adsorption experiments with fixed initial pH value were conducted for the removal of Reactive Orange 16 (RO16), Methyl Orange (MO), and Mordant Blue 9 (MB9). The equilibrium adsorption data were evaluated using Freundlich and Langmuir isotherm models. The Langmuir model slightly better describes isotherm data for RO16 and MO, whereas the Freundlich model was found to best fit the isotherm data for MB9 over the whole concentration range. The maximum adsorption capacities, determined from isotherm data for MO, MB9, and RO16 were 113, 101, and 91 mg g(1) respectively. The adsorption process follows the pseudo-second-order kinetic model indicating the coexistence of chemisorption and physisorption. The mechanism of azo dye adsorption is also discussed.",
publisher = "American Chemical Society (ACS)",
journal = "Langmuir",
title = "Nanocrystalline CeO2-delta as Effective Adsorbent of Azo Dyes",
volume = "30",
number = "39",
pages = "11582-11590",
doi = "10.1021/la502969w"
}
Tomić, N. M., Dohcevic-Mitrovic, Z. D., Paunović, N. M., Mijin, D., Radić, N., Grbić, B., Askrabic, S. M., Babić, B. M.,& Bajuk-Bogdanovic, D. V.. (2014). Nanocrystalline CeO2-delta as Effective Adsorbent of Azo Dyes. in Langmuir
American Chemical Society (ACS)., 30(39), 11582-11590.
https://doi.org/10.1021/la502969w
Tomić NM, Dohcevic-Mitrovic ZD, Paunović NM, Mijin D, Radić N, Grbić B, Askrabic SM, Babić BM, Bajuk-Bogdanovic DV. Nanocrystalline CeO2-delta as Effective Adsorbent of Azo Dyes. in Langmuir. 2014;30(39):11582-11590.
doi:10.1021/la502969w .
Tomić, Nataša M., Dohcevic-Mitrovic, Zorana D, Paunović, Novica M, Mijin, Dušan, Radić, Nenad, Grbić, Boško, Askrabic, Sonja M, Babić, Biljana M., Bajuk-Bogdanovic, Danica V, "Nanocrystalline CeO2-delta as Effective Adsorbent of Azo Dyes" in Langmuir, 30, no. 39 (2014):11582-11590,
https://doi.org/10.1021/la502969w . .
49
37
49