Serbian Academy of Sciences and Arts (01-2019-F128)

Link to this page

Serbian Academy of Sciences and Arts (01-2019-F128)

Authors

Publications

New minor groove covering DNA binding mode of dinuclear Pt(II) complexes with various pyridine-linked bridging ligands and dual anticancer-antiangiogenic activities

Franich, Andjela; Živković, Marija D.; Ilić-Tomić, Tatjana; Đorđević, Ivana; Nikodinović-Runić, Jasmina; Pavić, Aleksandar; Janjić, Goran; Rajković, Snežana

(Springer, 2020)

TY  - JOUR
AU  - Franich, Andjela
AU  - Živković, Marija D.
AU  - Ilić-Tomić, Tatjana
AU  - Đorđević, Ivana
AU  - Nikodinović-Runić, Jasmina
AU  - Pavić, Aleksandar
AU  - Janjić, Goran
AU  - Rajković, Snežana
PY  - 2020
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3883
AB  - New anticancer platinum(II) compounds simultaneously targeting tumor cells and tumor-derived neoangiogenesis, with new DNA interacting mode and large therapeutic window are appealing alternative to improve efficacy of clinical platinum chemotherapeutics. Herein, we describe three novel dinuclear [{Pt(en)Cl}2(μ-L)]2+ complexes with different pyridine-like bridging ligands (L), 4,4′-bipyridine (Pt1), 1,2-bis(4-pyridyl)ethane (Pt2) and 1,2-bis(4-pyridyl)ethene (Pt3), which highly, positively charged aqua derivatives, [{Pt(en)(H2O)}2(μ-L)]4+, interact with the phosphate backbone forming DNA-Pt adducts with an unique and previously undescribed binding mode, called a minor groove covering. The results of this study suggested that the new binding mode of the aqua-Pt(II) complexes with DNA could be attributed to the higher anticancer activities of their chloride analogues. All three compounds, particularly complex [{Pt(en)Cl}2(μ-4,4′-bipy)]Cl2·2H2O (4,4′-bipy is 4,4′-bipyridine) (Pt1), overcame cisplatin resistance in vivo in the zebrafish–mouse melanoma xenograft model, showed much higher therapeutic potential than antiangiogenic drug sunitinib malate, while effectively blocking tumor neovascularization and melanoma cell metastasis. Overall therapeutic profile showed new dinuclear Pt(II) complexes could be novel, effective and safe anticancer agents. Finally, the correlation with the structural characteristics of these complexes can serve as a useful tool for developing new and more effective anticancer drugs.
PB  - Springer
T2  - Journal of Biological Inorganic Chemistry
T1  - New minor groove covering DNA binding mode of dinuclear Pt(II) complexes with various pyridine-linked bridging ligands and dual anticancer-antiangiogenic activities
VL  - 409
IS  - 25
SP  - 395
EP  - 409
DO  - 10.1007/s00775-020-01770-7
ER  - 
@article{
author = "Franich, Andjela and Živković, Marija D. and Ilić-Tomić, Tatjana and Đorđević, Ivana and Nikodinović-Runić, Jasmina and Pavić, Aleksandar and Janjić, Goran and Rajković, Snežana",
year = "2020",
abstract = "New anticancer platinum(II) compounds simultaneously targeting tumor cells and tumor-derived neoangiogenesis, with new DNA interacting mode and large therapeutic window are appealing alternative to improve efficacy of clinical platinum chemotherapeutics. Herein, we describe three novel dinuclear [{Pt(en)Cl}2(μ-L)]2+ complexes with different pyridine-like bridging ligands (L), 4,4′-bipyridine (Pt1), 1,2-bis(4-pyridyl)ethane (Pt2) and 1,2-bis(4-pyridyl)ethene (Pt3), which highly, positively charged aqua derivatives, [{Pt(en)(H2O)}2(μ-L)]4+, interact with the phosphate backbone forming DNA-Pt adducts with an unique and previously undescribed binding mode, called a minor groove covering. The results of this study suggested that the new binding mode of the aqua-Pt(II) complexes with DNA could be attributed to the higher anticancer activities of their chloride analogues. All three compounds, particularly complex [{Pt(en)Cl}2(μ-4,4′-bipy)]Cl2·2H2O (4,4′-bipy is 4,4′-bipyridine) (Pt1), overcame cisplatin resistance in vivo in the zebrafish–mouse melanoma xenograft model, showed much higher therapeutic potential than antiangiogenic drug sunitinib malate, while effectively blocking tumor neovascularization and melanoma cell metastasis. Overall therapeutic profile showed new dinuclear Pt(II) complexes could be novel, effective and safe anticancer agents. Finally, the correlation with the structural characteristics of these complexes can serve as a useful tool for developing new and more effective anticancer drugs.",
publisher = "Springer",
journal = "Journal of Biological Inorganic Chemistry",
title = "New minor groove covering DNA binding mode of dinuclear Pt(II) complexes with various pyridine-linked bridging ligands and dual anticancer-antiangiogenic activities",
volume = "409",
number = "25",
pages = "395-409",
doi = "10.1007/s00775-020-01770-7"
}
Franich, A., Živković, M. D., Ilić-Tomić, T., Đorđević, I., Nikodinović-Runić, J., Pavić, A., Janjić, G.,& Rajković, S.. (2020). New minor groove covering DNA binding mode of dinuclear Pt(II) complexes with various pyridine-linked bridging ligands and dual anticancer-antiangiogenic activities. in Journal of Biological Inorganic Chemistry
Springer., 409(25), 395-409.
https://doi.org/10.1007/s00775-020-01770-7
Franich A, Živković MD, Ilić-Tomić T, Đorđević I, Nikodinović-Runić J, Pavić A, Janjić G, Rajković S. New minor groove covering DNA binding mode of dinuclear Pt(II) complexes with various pyridine-linked bridging ligands and dual anticancer-antiangiogenic activities. in Journal of Biological Inorganic Chemistry. 2020;409(25):395-409.
doi:10.1007/s00775-020-01770-7 .
Franich, Andjela, Živković, Marija D., Ilić-Tomić, Tatjana, Đorđević, Ivana, Nikodinović-Runić, Jasmina, Pavić, Aleksandar, Janjić, Goran, Rajković, Snežana, "New minor groove covering DNA binding mode of dinuclear Pt(II) complexes with various pyridine-linked bridging ligands and dual anticancer-antiangiogenic activities" in Journal of Biological Inorganic Chemistry, 409, no. 25 (2020):395-409,
https://doi.org/10.1007/s00775-020-01770-7 . .
20
9
20