Development of micro- and nanosystems as carriers for drugs with anti-inflammatory effect and methods for their characterization

Link to this page

info:eu-repo/grantAgreement/MESTD/Technological Development (TD or TR)/34031/RS//

Development of micro- and nanosystems as carriers for drugs with anti-inflammatory effect and methods for their characterization (en)
Развој микро- и наносистема као носача за лекове са антиинфламаторним деловањем и метода за њихову карактеризацију (sr)
Razvoj mikro- i nanosistema kao nosača za lekove sa antiinflamatornim delovanjem i metoda za njihovu karakterizaciju (sr_RS)
Authors

Publications

Polyglycerol Ester-Based Low Energy Nanoemulsions with Red Raspberry Seed Oil and Fruit Extracts: Formulation Development toward Effective In Vitro/In Vivo Bioperformance

Gledović, Ana; Janošević Ležaić, Aleksandra; Nikolić, Ines; Tasić-Kostov, Marija Z.; Antić-Stanković, Jelena; Krstonošić, Veljko S.; Randjelović, Danijela; Božić, Dragana; Ilić, Dušan; Tamburić, Slobodanka D.; Savić, Snežana

(MDPI, 2021)

TY  - JOUR
AU  - Gledović, Ana
AU  - Janošević Ležaić, Aleksandra
AU  - Nikolić, Ines
AU  - Tasić-Kostov, Marija Z.
AU  - Antić-Stanković, Jelena
AU  - Krstonošić, Veljko S.
AU  - Randjelović, Danijela
AU  - Božić, Dragana
AU  - Ilić, Dušan
AU  - Tamburić, Slobodanka D.
AU  - Savić, Snežana
PY  - 2021
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/4243
AB  - This study focuses on the development of biocompatible oil-in-water (O/W) nanoemulsions
based on polyglycerol esters, as promising carriers for natural actives: red raspberry seed oil—RO
and hydro-glycolic fruit extracts from red raspberry—RE and French oak—FE. Nanoemulsions
were obtained via phase inversion composition (PIC) method at room temperature by dilution of
microemulsion phase, confirmed by visual appearance, percentage of transmittance, microscopic,
rheological and differential scanning calorimetry (DSC) investigations. The results have shown that
the basic RO-loaded formulation could be further enriched with hydro-glycolic fruit extracts from
red raspberry or French oak, while keeping a semi-transparent appearance due to the fine droplet
size (Z-ave: 50 to 70 nm, PDI value _ 0.1). The highest antioxidant activity (~92% inhibition of the
DPPH radical) was achieved in the formulation containing both lipophilic (RO) and hydrophilic
antioxidants (FE), due to their synergistic effect. The nanoemulsion carrier significantly increased
the selective cytotoxic effect of RO towards malignant melanoma (Fem-X) cells, compared to normal
human keratinocytes (HaCaT). In vivo study on human volunteers showed satisfactory safety profiles
and significant improvement in skin hydration during 2 h after application for all nanoemulsions.
Therefore, polyglycerol ester-based nanoemulsions can be promoted as effective carriers for red
raspberry seed oil and/or hydro-glycolic fruit extracts in topical formulations intended for skin
protection and hydration.
PB  - MDPI
T2  - Nanomaterials
T1  - Polyglycerol Ester-Based Low Energy Nanoemulsions with Red Raspberry Seed Oil and Fruit Extracts: Formulation Development toward Effective In Vitro/In Vivo Bioperformance
VL  - 11
IS  - 1
SP  - 1
EP  - 21
DO  - 10.3390/nano11010217
ER  - 
@article{
author = "Gledović, Ana and Janošević Ležaić, Aleksandra and Nikolić, Ines and Tasić-Kostov, Marija Z. and Antić-Stanković, Jelena and Krstonošić, Veljko S. and Randjelović, Danijela and Božić, Dragana and Ilić, Dušan and Tamburić, Slobodanka D. and Savić, Snežana",
year = "2021",
abstract = "This study focuses on the development of biocompatible oil-in-water (O/W) nanoemulsions
based on polyglycerol esters, as promising carriers for natural actives: red raspberry seed oil—RO
and hydro-glycolic fruit extracts from red raspberry—RE and French oak—FE. Nanoemulsions
were obtained via phase inversion composition (PIC) method at room temperature by dilution of
microemulsion phase, confirmed by visual appearance, percentage of transmittance, microscopic,
rheological and differential scanning calorimetry (DSC) investigations. The results have shown that
the basic RO-loaded formulation could be further enriched with hydro-glycolic fruit extracts from
red raspberry or French oak, while keeping a semi-transparent appearance due to the fine droplet
size (Z-ave: 50 to 70 nm, PDI value _ 0.1). The highest antioxidant activity (~92% inhibition of the
DPPH radical) was achieved in the formulation containing both lipophilic (RO) and hydrophilic
antioxidants (FE), due to their synergistic effect. The nanoemulsion carrier significantly increased
the selective cytotoxic effect of RO towards malignant melanoma (Fem-X) cells, compared to normal
human keratinocytes (HaCaT). In vivo study on human volunteers showed satisfactory safety profiles
and significant improvement in skin hydration during 2 h after application for all nanoemulsions.
Therefore, polyglycerol ester-based nanoemulsions can be promoted as effective carriers for red
raspberry seed oil and/or hydro-glycolic fruit extracts in topical formulations intended for skin
protection and hydration.",
publisher = "MDPI",
journal = "Nanomaterials",
title = "Polyglycerol Ester-Based Low Energy Nanoemulsions with Red Raspberry Seed Oil and Fruit Extracts: Formulation Development toward Effective In Vitro/In Vivo Bioperformance",
volume = "11",
number = "1",
pages = "1-21",
doi = "10.3390/nano11010217"
}
Gledović, A., Janošević Ležaić, A., Nikolić, I., Tasić-Kostov, M. Z., Antić-Stanković, J., Krstonošić, V. S., Randjelović, D., Božić, D., Ilić, D., Tamburić, S. D.,& Savić, S.. (2021). Polyglycerol Ester-Based Low Energy Nanoemulsions with Red Raspberry Seed Oil and Fruit Extracts: Formulation Development toward Effective In Vitro/In Vivo Bioperformance. in Nanomaterials
MDPI., 11(1), 1-21.
https://doi.org/10.3390/nano11010217
Gledović A, Janošević Ležaić A, Nikolić I, Tasić-Kostov MZ, Antić-Stanković J, Krstonošić VS, Randjelović D, Božić D, Ilić D, Tamburić SD, Savić S. Polyglycerol Ester-Based Low Energy Nanoemulsions with Red Raspberry Seed Oil and Fruit Extracts: Formulation Development toward Effective In Vitro/In Vivo Bioperformance. in Nanomaterials. 2021;11(1):1-21.
doi:10.3390/nano11010217 .
Gledović, Ana, Janošević Ležaić, Aleksandra, Nikolić, Ines, Tasić-Kostov, Marija Z., Antić-Stanković, Jelena, Krstonošić, Veljko S., Randjelović, Danijela, Božić, Dragana, Ilić, Dušan, Tamburić, Slobodanka D., Savić, Snežana, "Polyglycerol Ester-Based Low Energy Nanoemulsions with Red Raspberry Seed Oil and Fruit Extracts: Formulation Development toward Effective In Vitro/In Vivo Bioperformance" in Nanomaterials, 11, no. 1 (2021):1-21,
https://doi.org/10.3390/nano11010217 . .
3
14
3
14

Low-energy nanoemulsions as carriers for red raspberry seed oil: Formulation approach based on Raman spectroscopy and textural analysis, physicochemical properties, stability and in vitro antioxidant/ biological activity

Gledović, Ana; Janošević Ležaić, Aleksandra; Krstonosic, Veljko; Djokovic, Jelena; Nikolić, Ines; Bajuk-Bogdanovic, Danica; Antić Stanković, Jelena; Randjelović, Danijela; Savić, Sanela M.; Filipović, Mila; Tamburic, Slobodanka; Savić, Snežana D.

(Public Library of Science (PLoS), 2020)

TY  - JOUR
AU  - Gledović, Ana
AU  - Janošević Ležaić, Aleksandra
AU  - Krstonosic, Veljko
AU  - Djokovic, Jelena
AU  - Nikolić, Ines
AU  - Bajuk-Bogdanovic, Danica
AU  - Antić Stanković, Jelena
AU  - Randjelović, Danijela
AU  - Savić, Sanela M.
AU  - Filipović, Mila
AU  - Tamburic, Slobodanka
AU  - Savić, Snežana D.
PY  - 2020
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3516
AB  - Considering a growing demand for medicinal/cosmetic products with natural actives, this study focuses on the low-energy nanoemulsions (LE-NEs) prepared via the Phase inversion composition (PIC) method at room temperature as potential carriers for natural oil. Four different red raspberry seed oils (ROs) were tested, as follows: cold-pressed vs. CO2-extracted, organic vs. non-organic, refined vs. unrefined. The oil phase was optimized with Tocopheryl acetate and Isostearyl isostearate, while water phase was adjusted with either glycerol or an antioxidant hydro-glycolic extract. This study has used a combined approach to formulation development, employing both conventional methods (pseudo-ternary phase diagram − PTPD, electrical conductivity, particle size measurements, microscopical analysis, and rheological measurements) and the methods novel to this area, such as textural analysis and Raman spectroscopy. Raman spectroscopy has detected fine differences in chemical composition among ROs, and it detected the interactions within nanoemulsions. It was shown that the cold-pressed, unrefined, organic grade oil (RO2) with 6.62% saturated fatty acids and 92.25% unsaturated fatty acids, was optimal for the LE-NEs. Textural analysis confirmed the existence of cubic gel-like phase as a crucial step in the formation of stable RO2-loaded LE-NEs, with droplets in the narrow nano-range (125 to 135 nm; PDI ≤ 0.1). The DPPH test in methanol and ABTS in aqueous medium have revealed a synergistic free radical scavenging effect between lipophilic and hydrophilic antioxidants in LE-NEs. The nanoemulsion carrier has improved the biological effect of raw materials on HeLa cervical adenocarcinoma cells, while exhibiting good safety profile, as confirmed on MRC-5 normal human lung fibroblasts. Overall, this study has shown that low-energy nanoemulsions present very promising carriers for topical delivery of natural bioactives. Raman spectroscopy and textural analysis have proven to be a useful addition to the arsenal of methods used in the formulation and characterization of nanoemulsion systems.
PB  - Public Library of Science (PLoS)
T2  - PLOS ONE
T1  - Low-energy nanoemulsions as carriers for red raspberry seed oil: Formulation approach based on Raman spectroscopy and textural analysis, physicochemical properties, stability and in vitro antioxidant/ biological activity
VL  - 15
IS  - 4
SP  - e0230993
DO  - 10.1371/journal.pone.0230993
ER  - 
@article{
author = "Gledović, Ana and Janošević Ležaić, Aleksandra and Krstonosic, Veljko and Djokovic, Jelena and Nikolić, Ines and Bajuk-Bogdanovic, Danica and Antić Stanković, Jelena and Randjelović, Danijela and Savić, Sanela M. and Filipović, Mila and Tamburic, Slobodanka and Savić, Snežana D.",
year = "2020",
abstract = "Considering a growing demand for medicinal/cosmetic products with natural actives, this study focuses on the low-energy nanoemulsions (LE-NEs) prepared via the Phase inversion composition (PIC) method at room temperature as potential carriers for natural oil. Four different red raspberry seed oils (ROs) were tested, as follows: cold-pressed vs. CO2-extracted, organic vs. non-organic, refined vs. unrefined. The oil phase was optimized with Tocopheryl acetate and Isostearyl isostearate, while water phase was adjusted with either glycerol or an antioxidant hydro-glycolic extract. This study has used a combined approach to formulation development, employing both conventional methods (pseudo-ternary phase diagram − PTPD, electrical conductivity, particle size measurements, microscopical analysis, and rheological measurements) and the methods novel to this area, such as textural analysis and Raman spectroscopy. Raman spectroscopy has detected fine differences in chemical composition among ROs, and it detected the interactions within nanoemulsions. It was shown that the cold-pressed, unrefined, organic grade oil (RO2) with 6.62% saturated fatty acids and 92.25% unsaturated fatty acids, was optimal for the LE-NEs. Textural analysis confirmed the existence of cubic gel-like phase as a crucial step in the formation of stable RO2-loaded LE-NEs, with droplets in the narrow nano-range (125 to 135 nm; PDI ≤ 0.1). The DPPH test in methanol and ABTS in aqueous medium have revealed a synergistic free radical scavenging effect between lipophilic and hydrophilic antioxidants in LE-NEs. The nanoemulsion carrier has improved the biological effect of raw materials on HeLa cervical adenocarcinoma cells, while exhibiting good safety profile, as confirmed on MRC-5 normal human lung fibroblasts. Overall, this study has shown that low-energy nanoemulsions present very promising carriers for topical delivery of natural bioactives. Raman spectroscopy and textural analysis have proven to be a useful addition to the arsenal of methods used in the formulation and characterization of nanoemulsion systems.",
publisher = "Public Library of Science (PLoS)",
journal = "PLOS ONE",
title = "Low-energy nanoemulsions as carriers for red raspberry seed oil: Formulation approach based on Raman spectroscopy and textural analysis, physicochemical properties, stability and in vitro antioxidant/ biological activity",
volume = "15",
number = "4",
pages = "e0230993",
doi = "10.1371/journal.pone.0230993"
}
Gledović, A., Janošević Ležaić, A., Krstonosic, V., Djokovic, J., Nikolić, I., Bajuk-Bogdanovic, D., Antić Stanković, J., Randjelović, D., Savić, S. M., Filipović, M., Tamburic, S.,& Savić, S. D.. (2020). Low-energy nanoemulsions as carriers for red raspberry seed oil: Formulation approach based on Raman spectroscopy and textural analysis, physicochemical properties, stability and in vitro antioxidant/ biological activity. in PLOS ONE
Public Library of Science (PLoS)., 15(4), e0230993.
https://doi.org/10.1371/journal.pone.0230993
Gledović A, Janošević Ležaić A, Krstonosic V, Djokovic J, Nikolić I, Bajuk-Bogdanovic D, Antić Stanković J, Randjelović D, Savić SM, Filipović M, Tamburic S, Savić SD. Low-energy nanoemulsions as carriers for red raspberry seed oil: Formulation approach based on Raman spectroscopy and textural analysis, physicochemical properties, stability and in vitro antioxidant/ biological activity. in PLOS ONE. 2020;15(4):e0230993.
doi:10.1371/journal.pone.0230993 .
Gledović, Ana, Janošević Ležaić, Aleksandra, Krstonosic, Veljko, Djokovic, Jelena, Nikolić, Ines, Bajuk-Bogdanovic, Danica, Antić Stanković, Jelena, Randjelović, Danijela, Savić, Sanela M., Filipović, Mila, Tamburic, Slobodanka, Savić, Snežana D., "Low-energy nanoemulsions as carriers for red raspberry seed oil: Formulation approach based on Raman spectroscopy and textural analysis, physicochemical properties, stability and in vitro antioxidant/ biological activity" in PLOS ONE, 15, no. 4 (2020):e0230993,
https://doi.org/10.1371/journal.pone.0230993 . .
1
21
6
20

Nanocrystal dispersion of DK-I-56–1, a poorly soluble pyrazoloquinolinone positive modulator of α6 GABAA receptors: Formulation approach toward improved in vivo performance

Mitrović, Jelena; Divović, Branka; Knutson, Daniel; Đoković, Jelena; Vulić, Predrag; Randjelović, Danijela; Dobričić, Vladimir; Čalija, Bojan; Cook, James; Savić, Miroslav M.; Savić, Snežana

(Elsevier, 2020)

TY  - JOUR
AU  - Mitrović, Jelena
AU  - Divović, Branka
AU  - Knutson, Daniel
AU  - Đoković, Jelena
AU  - Vulić, Predrag
AU  - Randjelović, Danijela
AU  - Dobričić, Vladimir
AU  - Čalija, Bojan
AU  - Cook, James
AU  - Savić, Miroslav M.
AU  - Savić, Snežana
PY  - 2020
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3714
AB  - DK-I-56–1 (7‑methoxy‑2-(4‑methoxy‑d3-phenyl)-2,5-dihydro-3H-pyrazolo[4,3-c]quinolin-3-one), a recently developed deuterated pyrazoloquinolinone, has been recognized as a lead candidate for treatment of various neuropsychiatric disorders. During preclinical investigation of poorly water-soluble compounds such as DK-I-56–1, the application of nanotechnology could be advantageous due to improved safety and possibly increased bioavailability of nanosized formulation. DK-I-56–1 nanosuspensions stabilized by polysorbate 80, alone or in combination with poloxamers 188 i.e. 407 or D-α-tocopheryl polyethylene glycol 1000 succinate, were prepared using a small-scale media milling device. With particle size 208.7–250.6 nm and polydispersity index <0.250, selected nanodiseprsions were stable for three weeks. Pharmacokinetic and biodistribution studies following intraperitoneal administration of three types of formulation in mice indicated high plasma DK-I-56–1 levels after solution (10,228.6 ± 1037.2 ngh/ml) and nanosuspension (6770.4 ± 770.7 ngh/ml) but not suspension administration (966.0 ± 58.1 ngh/ml). However, distribution of DK-I-56–1 after solution was heavily influenced by its composition, and brain availability of nanosuspension was superior to that of solution formulation. In spontaneous locomotor activity test, the expected hyperlocomotor effect was observed after nanosuspension administration, without compromising impact of the vehicle/excipients used. Therefore, nanonization of drug compound assembled with proper selection of stabilizers may seemingly contribute further thorough testing of DK-I-56–1 preclinical efficacy.
PB  - Elsevier
T2  - European Journal of Pharmaceutical Science
T1  - Nanocrystal dispersion of DK-I-56–1, a poorly soluble pyrazoloquinolinone positive modulator of α6 GABAA receptors: Formulation approach toward improved in vivo performance
VL  - 152
SP  - 105432
DO  - 10.1016/j.ejps.2020.105432
ER  - 
@article{
author = "Mitrović, Jelena and Divović, Branka and Knutson, Daniel and Đoković, Jelena and Vulić, Predrag and Randjelović, Danijela and Dobričić, Vladimir and Čalija, Bojan and Cook, James and Savić, Miroslav M. and Savić, Snežana",
year = "2020",
abstract = "DK-I-56–1 (7‑methoxy‑2-(4‑methoxy‑d3-phenyl)-2,5-dihydro-3H-pyrazolo[4,3-c]quinolin-3-one), a recently developed deuterated pyrazoloquinolinone, has been recognized as a lead candidate for treatment of various neuropsychiatric disorders. During preclinical investigation of poorly water-soluble compounds such as DK-I-56–1, the application of nanotechnology could be advantageous due to improved safety and possibly increased bioavailability of nanosized formulation. DK-I-56–1 nanosuspensions stabilized by polysorbate 80, alone or in combination with poloxamers 188 i.e. 407 or D-α-tocopheryl polyethylene glycol 1000 succinate, were prepared using a small-scale media milling device. With particle size 208.7–250.6 nm and polydispersity index <0.250, selected nanodiseprsions were stable for three weeks. Pharmacokinetic and biodistribution studies following intraperitoneal administration of three types of formulation in mice indicated high plasma DK-I-56–1 levels after solution (10,228.6 ± 1037.2 ngh/ml) and nanosuspension (6770.4 ± 770.7 ngh/ml) but not suspension administration (966.0 ± 58.1 ngh/ml). However, distribution of DK-I-56–1 after solution was heavily influenced by its composition, and brain availability of nanosuspension was superior to that of solution formulation. In spontaneous locomotor activity test, the expected hyperlocomotor effect was observed after nanosuspension administration, without compromising impact of the vehicle/excipients used. Therefore, nanonization of drug compound assembled with proper selection of stabilizers may seemingly contribute further thorough testing of DK-I-56–1 preclinical efficacy.",
publisher = "Elsevier",
journal = "European Journal of Pharmaceutical Science",
title = "Nanocrystal dispersion of DK-I-56–1, a poorly soluble pyrazoloquinolinone positive modulator of α6 GABAA receptors: Formulation approach toward improved in vivo performance",
volume = "152",
pages = "105432",
doi = "10.1016/j.ejps.2020.105432"
}
Mitrović, J., Divović, B., Knutson, D., Đoković, J., Vulić, P., Randjelović, D., Dobričić, V., Čalija, B., Cook, J., Savić, M. M.,& Savić, S.. (2020). Nanocrystal dispersion of DK-I-56–1, a poorly soluble pyrazoloquinolinone positive modulator of α6 GABAA receptors: Formulation approach toward improved in vivo performance. in European Journal of Pharmaceutical Science
Elsevier., 152, 105432.
https://doi.org/10.1016/j.ejps.2020.105432
Mitrović J, Divović B, Knutson D, Đoković J, Vulić P, Randjelović D, Dobričić V, Čalija B, Cook J, Savić MM, Savić S. Nanocrystal dispersion of DK-I-56–1, a poorly soluble pyrazoloquinolinone positive modulator of α6 GABAA receptors: Formulation approach toward improved in vivo performance. in European Journal of Pharmaceutical Science. 2020;152:105432.
doi:10.1016/j.ejps.2020.105432 .
Mitrović, Jelena, Divović, Branka, Knutson, Daniel, Đoković, Jelena, Vulić, Predrag, Randjelović, Danijela, Dobričić, Vladimir, Čalija, Bojan, Cook, James, Savić, Miroslav M., Savić, Snežana, "Nanocrystal dispersion of DK-I-56–1, a poorly soluble pyrazoloquinolinone positive modulator of α6 GABAA receptors: Formulation approach toward improved in vivo performance" in European Journal of Pharmaceutical Science, 152 (2020):105432,
https://doi.org/10.1016/j.ejps.2020.105432 . .
7
3
7

Nanocrystal dispersion of DK-I-56–1, a poorly soluble pyrazoloquinolinone positive modulator of α6 GABAA receptors: Formulation approach toward improved in vivo performance

Mitrović, Jelena; Divović, Branka; Knutson, Daniel; Đoković, Jelena; Vulić, Predrag; Randjelović, Danijela; Dobričić, Vladimir; Čalija, Bojan; Cook, James; Savić, Miroslav M.; Savić, Snežana

(Elsevier, 2020)

TY  - JOUR
AU  - Mitrović, Jelena
AU  - Divović, Branka
AU  - Knutson, Daniel
AU  - Đoković, Jelena
AU  - Vulić, Predrag
AU  - Randjelović, Danijela
AU  - Dobričić, Vladimir
AU  - Čalija, Bojan
AU  - Cook, James
AU  - Savić, Miroslav M.
AU  - Savić, Snežana
PY  - 2020
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3635
AB  - DK-I-56–1 (7‑methoxy‑2-(4‑methoxy‑d3-phenyl)-2,5-dihydro-3H-pyrazolo[4,3-c]quinolin-3-one), a recently developed deuterated pyrazoloquinolinone, has been recognized as a lead candidate for treatment of various neuropsychiatric disorders. During preclinical investigation of poorly water-soluble compounds such as DK-I-56–1, the application of nanotechnology could be advantageous due to improved safety and possibly increased bioavailability of nanosized formulation. DK-I-56–1 nanosuspensions stabilized by polysorbate 80, alone or in combination with poloxamers 188 i.e. 407 or D-α-tocopheryl polyethylene glycol 1000 succinate, were prepared using a small-scale media milling device. With particle size 208.7–250.6 nm and polydispersity index <0.250, selected nanodiseprsions were stable for three weeks. Pharmacokinetic and biodistribution studies following intraperitoneal administration of three types of formulation in mice indicated high plasma DK-I-56–1 levels after solution (10,228.6 ± 1037.2 ngh/ml) and nanosuspension (6770.4 ± 770.7 ngh/ml) but not suspension administration (966.0 ± 58.1 ngh/ml). However, distribution of DK-I-56–1 after solution was heavily influenced by its composition, and brain availability of nanosuspension was superior to that of solution formulation. In spontaneous locomotor activity test, the expected hyperlocomotor effect was observed after nanosuspension administration, without compromising impact of the vehicle/excipients used. Therefore, nanonization of drug compound assembled with proper selection of stabilizers may seemingly contribute further thorough testing of DK-I-56–1 preclinical efficacy.
PB  - Elsevier
T2  - European Journal of Pharmaceutical Science
T1  - Nanocrystal dispersion of DK-I-56–1, a poorly soluble pyrazoloquinolinone positive modulator of α6 GABAA receptors: Formulation approach toward improved in vivo performance
VL  - 152
SP  - 105432
DO  - 10.1016/j.ejps.2020.105432
ER  - 
@article{
author = "Mitrović, Jelena and Divović, Branka and Knutson, Daniel and Đoković, Jelena and Vulić, Predrag and Randjelović, Danijela and Dobričić, Vladimir and Čalija, Bojan and Cook, James and Savić, Miroslav M. and Savić, Snežana",
year = "2020",
abstract = "DK-I-56–1 (7‑methoxy‑2-(4‑methoxy‑d3-phenyl)-2,5-dihydro-3H-pyrazolo[4,3-c]quinolin-3-one), a recently developed deuterated pyrazoloquinolinone, has been recognized as a lead candidate for treatment of various neuropsychiatric disorders. During preclinical investigation of poorly water-soluble compounds such as DK-I-56–1, the application of nanotechnology could be advantageous due to improved safety and possibly increased bioavailability of nanosized formulation. DK-I-56–1 nanosuspensions stabilized by polysorbate 80, alone or in combination with poloxamers 188 i.e. 407 or D-α-tocopheryl polyethylene glycol 1000 succinate, were prepared using a small-scale media milling device. With particle size 208.7–250.6 nm and polydispersity index <0.250, selected nanodiseprsions were stable for three weeks. Pharmacokinetic and biodistribution studies following intraperitoneal administration of three types of formulation in mice indicated high plasma DK-I-56–1 levels after solution (10,228.6 ± 1037.2 ngh/ml) and nanosuspension (6770.4 ± 770.7 ngh/ml) but not suspension administration (966.0 ± 58.1 ngh/ml). However, distribution of DK-I-56–1 after solution was heavily influenced by its composition, and brain availability of nanosuspension was superior to that of solution formulation. In spontaneous locomotor activity test, the expected hyperlocomotor effect was observed after nanosuspension administration, without compromising impact of the vehicle/excipients used. Therefore, nanonization of drug compound assembled with proper selection of stabilizers may seemingly contribute further thorough testing of DK-I-56–1 preclinical efficacy.",
publisher = "Elsevier",
journal = "European Journal of Pharmaceutical Science",
title = "Nanocrystal dispersion of DK-I-56–1, a poorly soluble pyrazoloquinolinone positive modulator of α6 GABAA receptors: Formulation approach toward improved in vivo performance",
volume = "152",
pages = "105432",
doi = "10.1016/j.ejps.2020.105432"
}
Mitrović, J., Divović, B., Knutson, D., Đoković, J., Vulić, P., Randjelović, D., Dobričić, V., Čalija, B., Cook, J., Savić, M. M.,& Savić, S.. (2020). Nanocrystal dispersion of DK-I-56–1, a poorly soluble pyrazoloquinolinone positive modulator of α6 GABAA receptors: Formulation approach toward improved in vivo performance. in European Journal of Pharmaceutical Science
Elsevier., 152, 105432.
https://doi.org/10.1016/j.ejps.2020.105432
Mitrović J, Divović B, Knutson D, Đoković J, Vulić P, Randjelović D, Dobričić V, Čalija B, Cook J, Savić MM, Savić S. Nanocrystal dispersion of DK-I-56–1, a poorly soluble pyrazoloquinolinone positive modulator of α6 GABAA receptors: Formulation approach toward improved in vivo performance. in European Journal of Pharmaceutical Science. 2020;152:105432.
doi:10.1016/j.ejps.2020.105432 .
Mitrović, Jelena, Divović, Branka, Knutson, Daniel, Đoković, Jelena, Vulić, Predrag, Randjelović, Danijela, Dobričić, Vladimir, Čalija, Bojan, Cook, James, Savić, Miroslav M., Savić, Snežana, "Nanocrystal dispersion of DK-I-56–1, a poorly soluble pyrazoloquinolinone positive modulator of α6 GABAA receptors: Formulation approach toward improved in vivo performance" in European Journal of Pharmaceutical Science, 152 (2020):105432,
https://doi.org/10.1016/j.ejps.2020.105432 . .
7
3
7

Microstructure and biopharmaceutical performances of curcumin-loaded low-energy nanoemulsions containing eucalyptol and pinene: Terpenes’ role overcome penetration enhancement effect?

Nikolić, Ines; Mitsou, Evgenia; Pantelić, Ivana; Randjelović, Danijela; Marković, Bojan D.; Papadimitriou, Vassiliki; Xenakis, Aristotelis; Lunter, Dominique Jasmin; Žugić, Ana; Savić, Snežana D.

(Elsevier, 2020)

TY  - JOUR
AU  - Nikolić, Ines
AU  - Mitsou, Evgenia
AU  - Pantelić, Ivana
AU  - Randjelović, Danijela
AU  - Marković, Bojan D.
AU  - Papadimitriou, Vassiliki
AU  - Xenakis, Aristotelis
AU  - Lunter, Dominique Jasmin
AU  - Žugić, Ana
AU  - Savić, Snežana D.
PY  - 2020
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3386
AB  - The objective of this work was to develop low-energy nanoemulsions for enhanced dermal delivery of curcumin, using monoterpene compounds eucalyptol (EUC) and pinene (PIN) as chemical penetration enhancers.  Spontaneous emulsification was the preparation method. All formulations contained 10% of the oil phase (medium-chain triglycerides (MCT), or their mixture with EUC or PIN). Formulations were stabilized by the combination of polysorbate 80 and soybean lecithin (surfactant-to-oil-ratio=1). Concentration of curcumin was set to 3 mg/ml.  Average droplet diameter of all tested formulations ranged from 102 nm to 132 nm, but the ones containing monoterpenes had significantly smaller size compared to the MCT formulation. Such finding was profoundly studied through electron paramagnetic resonance spectroscopy, which proved that the presence of monoterpenes modified the nanoemulsions’ interfacial environment, resulting in droplet size reduction. The release study of curcumin (using Franz cells) demonstrated that the cumulative amount released after 6 h of the experiment was 10.1 ± 0.2% for the MCT nanoemulsions, 13.9 ± 0.1% and 14.0 ± 0.2% for PIN and EUC formulations, respectively. In vivo tape stripping revealed their performances in delivering curcumin into the skin, indicating the following order: EUC>MCT>PIN. The formulation with EUC was clearly the most successful, giving the highest cumulative amount of curcumin that penetrated per surface unit: 34.24±5.68 µg/cm2. The MCT formulation followed (30.62±2.61 µg/cm2) and, finally, the one with PIN (21.61±0.11 µg/cm2). These results corelated with curcumin's solubility in the chosen oils: 4.18±0.02 mg/ml for EUC, 1.67±0.04 mg/ml for MCT and 0.21±0.01 mg/ml for PIN. Probably, higher solubility in the oil phase of the nanoemulsion promoted curcumin's solubility in the superficial skin layers, providing enhanced penetration.
PB  - Elsevier
T2  - European Journal of Pharmaceutical Sciences
T1  - Microstructure and biopharmaceutical performances of curcumin-loaded low-energy nanoemulsions containing eucalyptol and pinene: Terpenes’ role overcome penetration enhancement effect?
VL  - 142
SP  - 105135
DO  - 10.1016/j.ejps.2019.105135
ER  - 
@article{
author = "Nikolić, Ines and Mitsou, Evgenia and Pantelić, Ivana and Randjelović, Danijela and Marković, Bojan D. and Papadimitriou, Vassiliki and Xenakis, Aristotelis and Lunter, Dominique Jasmin and Žugić, Ana and Savić, Snežana D.",
year = "2020",
abstract = "The objective of this work was to develop low-energy nanoemulsions for enhanced dermal delivery of curcumin, using monoterpene compounds eucalyptol (EUC) and pinene (PIN) as chemical penetration enhancers.  Spontaneous emulsification was the preparation method. All formulations contained 10% of the oil phase (medium-chain triglycerides (MCT), or their mixture with EUC or PIN). Formulations were stabilized by the combination of polysorbate 80 and soybean lecithin (surfactant-to-oil-ratio=1). Concentration of curcumin was set to 3 mg/ml.  Average droplet diameter of all tested formulations ranged from 102 nm to 132 nm, but the ones containing monoterpenes had significantly smaller size compared to the MCT formulation. Such finding was profoundly studied through electron paramagnetic resonance spectroscopy, which proved that the presence of monoterpenes modified the nanoemulsions’ interfacial environment, resulting in droplet size reduction. The release study of curcumin (using Franz cells) demonstrated that the cumulative amount released after 6 h of the experiment was 10.1 ± 0.2% for the MCT nanoemulsions, 13.9 ± 0.1% and 14.0 ± 0.2% for PIN and EUC formulations, respectively. In vivo tape stripping revealed their performances in delivering curcumin into the skin, indicating the following order: EUC>MCT>PIN. The formulation with EUC was clearly the most successful, giving the highest cumulative amount of curcumin that penetrated per surface unit: 34.24±5.68 µg/cm2. The MCT formulation followed (30.62±2.61 µg/cm2) and, finally, the one with PIN (21.61±0.11 µg/cm2). These results corelated with curcumin's solubility in the chosen oils: 4.18±0.02 mg/ml for EUC, 1.67±0.04 mg/ml for MCT and 0.21±0.01 mg/ml for PIN. Probably, higher solubility in the oil phase of the nanoemulsion promoted curcumin's solubility in the superficial skin layers, providing enhanced penetration.",
publisher = "Elsevier",
journal = "European Journal of Pharmaceutical Sciences",
title = "Microstructure and biopharmaceutical performances of curcumin-loaded low-energy nanoemulsions containing eucalyptol and pinene: Terpenes’ role overcome penetration enhancement effect?",
volume = "142",
pages = "105135",
doi = "10.1016/j.ejps.2019.105135"
}
Nikolić, I., Mitsou, E., Pantelić, I., Randjelović, D., Marković, B. D., Papadimitriou, V., Xenakis, A., Lunter, D. J., Žugić, A.,& Savić, S. D.. (2020). Microstructure and biopharmaceutical performances of curcumin-loaded low-energy nanoemulsions containing eucalyptol and pinene: Terpenes’ role overcome penetration enhancement effect?. in European Journal of Pharmaceutical Sciences
Elsevier., 142, 105135.
https://doi.org/10.1016/j.ejps.2019.105135
Nikolić I, Mitsou E, Pantelić I, Randjelović D, Marković BD, Papadimitriou V, Xenakis A, Lunter DJ, Žugić A, Savić SD. Microstructure and biopharmaceutical performances of curcumin-loaded low-energy nanoemulsions containing eucalyptol and pinene: Terpenes’ role overcome penetration enhancement effect?. in European Journal of Pharmaceutical Sciences. 2020;142:105135.
doi:10.1016/j.ejps.2019.105135 .
Nikolić, Ines, Mitsou, Evgenia, Pantelić, Ivana, Randjelović, Danijela, Marković, Bojan D., Papadimitriou, Vassiliki, Xenakis, Aristotelis, Lunter, Dominique Jasmin, Žugić, Ana, Savić, Snežana D., "Microstructure and biopharmaceutical performances of curcumin-loaded low-energy nanoemulsions containing eucalyptol and pinene: Terpenes’ role overcome penetration enhancement effect?" in European Journal of Pharmaceutical Sciences, 142 (2020):105135,
https://doi.org/10.1016/j.ejps.2019.105135 . .
1
31
18
28

Microstructure and biopharmaceutical performances of curcumin-loaded low-energy nanoemulsions containing eucalyptol and pinene: Terpenes’ role overcome penetration enhancement effect?

Nikolić, Ines; Mitsou, Evgenia; Pantelić, Ivana; Randjelović, Danijela; Marković, Bojan D.; Papadimitriou, Vassiliki; Xenakis, Aristotelis; Lunter, Dominique Jasmin; Žugić, Ana; Savić, Snežana D.

(Elsevier, 2020)

TY  - JOUR
AU  - Nikolić, Ines
AU  - Mitsou, Evgenia
AU  - Pantelić, Ivana
AU  - Randjelović, Danijela
AU  - Marković, Bojan D.
AU  - Papadimitriou, Vassiliki
AU  - Xenakis, Aristotelis
AU  - Lunter, Dominique Jasmin
AU  - Žugić, Ana
AU  - Savić, Snežana D.
PY  - 2020
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3309
AB  - he objective of this work was to develop low-energy nanoemulsions for enhanced dermal delivery of curcumin, using monoterpene compounds eucalyptol (EUC) and pinene (PIN) as chemical penetration enhancers.  Spontaneous emulsification was the preparation method. All formulations contained 10% of the oil phase (medium-chain triglycerides (MCT), or their mixture with EUC or PIN). Formulations were stabilized by the combination of polysorbate 80 and soybean lecithin (surfactant-to-oil-ratio=1). Concentration of curcumin was set to 3 mg/ml.  Average droplet diameter of all tested formulations ranged from 102 nm to 132 nm, but the ones containing monoterpenes had significantly smaller size compared to the MCT formulation. Such finding was profoundly studied through electron paramagnetic resonance spectroscopy, which proved that the presence of monoterpenes modified the nanoemulsions’ interfacial environment, resulting in droplet size reduction. The release study of curcumin (using Franz cells) demonstrated that the cumulative amount released after 6 h of the experiment was 10.1 ± 0.2% for the MCT nanoemulsions, 13.9 ± 0.1% and 14.0 ± 0.2% for PIN and EUC formulations, respectively. In vivo tape stripping revealed their performances in delivering curcumin into the skin, indicating the following order: EUC>MCT>PIN. The formulation with EUC was clearly the most successful, giving the highest cumulative amount of curcumin that penetrated per surface unit: 34.24±5.68 µg/cm2. The MCT formulation followed (30.62±2.61 µg/cm2) and, finally, the one with PIN (21.61±0.11 µg/cm2). These results corelated with curcumin's solubility in the chosen oils: 4.18±0.02 mg/ml for EUC, 1.67±0.04 mg/ml for MCT and 0.21±0.01 mg/ml for PIN. Probably, higher solubility in the oil phase of the nanoemulsion promoted curcumin's solubility in the superficial skin layers, providing enhanced penetration.
PB  - Elsevier
T2  - European Journal of Pharmaceutical Sciences
T1  - Microstructure and biopharmaceutical performances of curcumin-loaded low-energy nanoemulsions containing eucalyptol and pinene: Terpenes’ role overcome penetration enhancement effect?
VL  - 142
SP  - 105135
DO  - 10.1016/j.ejps.2019.105135
ER  - 
@article{
author = "Nikolić, Ines and Mitsou, Evgenia and Pantelić, Ivana and Randjelović, Danijela and Marković, Bojan D. and Papadimitriou, Vassiliki and Xenakis, Aristotelis and Lunter, Dominique Jasmin and Žugić, Ana and Savić, Snežana D.",
year = "2020",
abstract = "he objective of this work was to develop low-energy nanoemulsions for enhanced dermal delivery of curcumin, using monoterpene compounds eucalyptol (EUC) and pinene (PIN) as chemical penetration enhancers.  Spontaneous emulsification was the preparation method. All formulations contained 10% of the oil phase (medium-chain triglycerides (MCT), or their mixture with EUC or PIN). Formulations were stabilized by the combination of polysorbate 80 and soybean lecithin (surfactant-to-oil-ratio=1). Concentration of curcumin was set to 3 mg/ml.  Average droplet diameter of all tested formulations ranged from 102 nm to 132 nm, but the ones containing monoterpenes had significantly smaller size compared to the MCT formulation. Such finding was profoundly studied through electron paramagnetic resonance spectroscopy, which proved that the presence of monoterpenes modified the nanoemulsions’ interfacial environment, resulting in droplet size reduction. The release study of curcumin (using Franz cells) demonstrated that the cumulative amount released after 6 h of the experiment was 10.1 ± 0.2% for the MCT nanoemulsions, 13.9 ± 0.1% and 14.0 ± 0.2% for PIN and EUC formulations, respectively. In vivo tape stripping revealed their performances in delivering curcumin into the skin, indicating the following order: EUC>MCT>PIN. The formulation with EUC was clearly the most successful, giving the highest cumulative amount of curcumin that penetrated per surface unit: 34.24±5.68 µg/cm2. The MCT formulation followed (30.62±2.61 µg/cm2) and, finally, the one with PIN (21.61±0.11 µg/cm2). These results corelated with curcumin's solubility in the chosen oils: 4.18±0.02 mg/ml for EUC, 1.67±0.04 mg/ml for MCT and 0.21±0.01 mg/ml for PIN. Probably, higher solubility in the oil phase of the nanoemulsion promoted curcumin's solubility in the superficial skin layers, providing enhanced penetration.",
publisher = "Elsevier",
journal = "European Journal of Pharmaceutical Sciences",
title = "Microstructure and biopharmaceutical performances of curcumin-loaded low-energy nanoemulsions containing eucalyptol and pinene: Terpenes’ role overcome penetration enhancement effect?",
volume = "142",
pages = "105135",
doi = "10.1016/j.ejps.2019.105135"
}
Nikolić, I., Mitsou, E., Pantelić, I., Randjelović, D., Marković, B. D., Papadimitriou, V., Xenakis, A., Lunter, D. J., Žugić, A.,& Savić, S. D.. (2020). Microstructure and biopharmaceutical performances of curcumin-loaded low-energy nanoemulsions containing eucalyptol and pinene: Terpenes’ role overcome penetration enhancement effect?. in European Journal of Pharmaceutical Sciences
Elsevier., 142, 105135.
https://doi.org/10.1016/j.ejps.2019.105135
Nikolić I, Mitsou E, Pantelić I, Randjelović D, Marković BD, Papadimitriou V, Xenakis A, Lunter DJ, Žugić A, Savić SD. Microstructure and biopharmaceutical performances of curcumin-loaded low-energy nanoemulsions containing eucalyptol and pinene: Terpenes’ role overcome penetration enhancement effect?. in European Journal of Pharmaceutical Sciences. 2020;142:105135.
doi:10.1016/j.ejps.2019.105135 .
Nikolić, Ines, Mitsou, Evgenia, Pantelić, Ivana, Randjelović, Danijela, Marković, Bojan D., Papadimitriou, Vassiliki, Xenakis, Aristotelis, Lunter, Dominique Jasmin, Žugić, Ana, Savić, Snežana D., "Microstructure and biopharmaceutical performances of curcumin-loaded low-energy nanoemulsions containing eucalyptol and pinene: Terpenes’ role overcome penetration enhancement effect?" in European Journal of Pharmaceutical Sciences, 142 (2020):105135,
https://doi.org/10.1016/j.ejps.2019.105135 . .
1
31
18
28

Bacillus licheniformis levan as a functional biopolymer in topical drug dosage forms: From basic colloidal considerations to actual pharmaceutical application

Pantelić, Ivana; Lukić, Milica; Gojgić-Cvijović, Gordana; Jakovljević, Dragica; Nikolić, Ines; Jasmin Lunterc, Dominique; Daniels, Rolf; Savić, Snežana D.

(Elsevier, 2020)

TY  - JOUR
AU  - Pantelić, Ivana
AU  - Lukić, Milica
AU  - Gojgić-Cvijović, Gordana
AU  - Jakovljević, Dragica
AU  - Nikolić, Ines
AU  - Jasmin Lunterc, Dominique
AU  - Daniels, Rolf
AU  - Savić, Snežana D.
PY  - 2020
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3349
AB  - Ongoing demand in sustainable and biocompatible drug dosage forms is reflected in the search for novel pharmaceutical excipients with equal properties. A group of microbial exopolysaccharides offers a variety of biopolymers with many alleged uses and effects. This study aims to assess applicative properties of levan obtained from Bacillus licheniformis NS032, focusing on its potential co-stabilizing and drug release-controlling functions in pertaining emulsion systems. Despite its high molecular weight and partial existence in globular nanometric structures (180-190 nm), levan was successfully incorporated into both tested colloidal systems: those stabilized with synthetic/anionic or natural-origin/non-ionic emulsifiers. In the tested levan concentrations range (0.2-3.0% w/w) the monitored flow and thermal parameters failed to show linear concentration dependence, which prompted us to revisit certain colloidal fundamentals of this biopolymer. Being a part of the external phase of the investigated emulsion systems, levan contributed to formation of a matrix-like environment, offering additional stabilization of the microstructure and rheology modifying properties (hysteresis loop elevation as high as 4167±98 to 20792±3166 Pa•s−1), especially in case of the samples where lamellar liquid crystalline formation occurred. Apart from its good water solubility and considerable conformational flexibility, the investigated homofructan easily saturated the external phase of the samples stabilized with a conventional anionic emulsifier, leading to similar properties of 0.2% and 3.0% levan-containing samples. After closer consideration of thermal and release behavior, this was considered as a favorable property for a novel excipient, offering tailored formulation characteristics even with lower levan concentrations, consequently not compromising the potential cost of the final drug dosage form.
PB  - Elsevier
T2  - European Journal of Pharmaceutical Sciences
T1  - Bacillus licheniformis levan as a functional biopolymer in topical drug dosage forms: From basic colloidal considerations to actual pharmaceutical application
VL  - 142
SP  - 105109
DO  - 10.1016/j.ejps.2019.105109
ER  - 
@article{
author = "Pantelić, Ivana and Lukić, Milica and Gojgić-Cvijović, Gordana and Jakovljević, Dragica and Nikolić, Ines and Jasmin Lunterc, Dominique and Daniels, Rolf and Savić, Snežana D.",
year = "2020",
abstract = "Ongoing demand in sustainable and biocompatible drug dosage forms is reflected in the search for novel pharmaceutical excipients with equal properties. A group of microbial exopolysaccharides offers a variety of biopolymers with many alleged uses and effects. This study aims to assess applicative properties of levan obtained from Bacillus licheniformis NS032, focusing on its potential co-stabilizing and drug release-controlling functions in pertaining emulsion systems. Despite its high molecular weight and partial existence in globular nanometric structures (180-190 nm), levan was successfully incorporated into both tested colloidal systems: those stabilized with synthetic/anionic or natural-origin/non-ionic emulsifiers. In the tested levan concentrations range (0.2-3.0% w/w) the monitored flow and thermal parameters failed to show linear concentration dependence, which prompted us to revisit certain colloidal fundamentals of this biopolymer. Being a part of the external phase of the investigated emulsion systems, levan contributed to formation of a matrix-like environment, offering additional stabilization of the microstructure and rheology modifying properties (hysteresis loop elevation as high as 4167±98 to 20792±3166 Pa•s−1), especially in case of the samples where lamellar liquid crystalline formation occurred. Apart from its good water solubility and considerable conformational flexibility, the investigated homofructan easily saturated the external phase of the samples stabilized with a conventional anionic emulsifier, leading to similar properties of 0.2% and 3.0% levan-containing samples. After closer consideration of thermal and release behavior, this was considered as a favorable property for a novel excipient, offering tailored formulation characteristics even with lower levan concentrations, consequently not compromising the potential cost of the final drug dosage form.",
publisher = "Elsevier",
journal = "European Journal of Pharmaceutical Sciences",
title = "Bacillus licheniformis levan as a functional biopolymer in topical drug dosage forms: From basic colloidal considerations to actual pharmaceutical application",
volume = "142",
pages = "105109",
doi = "10.1016/j.ejps.2019.105109"
}
Pantelić, I., Lukić, M., Gojgić-Cvijović, G., Jakovljević, D., Nikolić, I., Jasmin Lunterc, D., Daniels, R.,& Savić, S. D.. (2020). Bacillus licheniformis levan as a functional biopolymer in topical drug dosage forms: From basic colloidal considerations to actual pharmaceutical application. in European Journal of Pharmaceutical Sciences
Elsevier., 142, 105109.
https://doi.org/10.1016/j.ejps.2019.105109
Pantelić I, Lukić M, Gojgić-Cvijović G, Jakovljević D, Nikolić I, Jasmin Lunterc D, Daniels R, Savić SD. Bacillus licheniformis levan as a functional biopolymer in topical drug dosage forms: From basic colloidal considerations to actual pharmaceutical application. in European Journal of Pharmaceutical Sciences. 2020;142:105109.
doi:10.1016/j.ejps.2019.105109 .
Pantelić, Ivana, Lukić, Milica, Gojgić-Cvijović, Gordana, Jakovljević, Dragica, Nikolić, Ines, Jasmin Lunterc, Dominique, Daniels, Rolf, Savić, Snežana D., "Bacillus licheniformis levan as a functional biopolymer in topical drug dosage forms: From basic colloidal considerations to actual pharmaceutical application" in European Journal of Pharmaceutical Sciences, 142 (2020):105109,
https://doi.org/10.1016/j.ejps.2019.105109 . .
25
6
24

Biocompatible microemulsions for improved dermal delivery of sertaconazole nitrate: Phase behavior study and microstructure influence on drug biopharamaceutical properties

Pajic, Natasa Bubic; Nikolić, Ines; Mitsou, Evgenia; Papadimitriou, Vassiliki; Xenakis, Aristotelis; Randjelović, Danijela; Dobricic, Vladimir; Smitran, Aleksandra; Cekic, Nebojsa; Calija, Bojan; Savić, Snežana D.

(Elsevier, 2018)

TY  - JOUR
AU  - Pajic, Natasa Bubic
AU  - Nikolić, Ines
AU  - Mitsou, Evgenia
AU  - Papadimitriou, Vassiliki
AU  - Xenakis, Aristotelis
AU  - Randjelović, Danijela
AU  - Dobricic, Vladimir
AU  - Smitran, Aleksandra
AU  - Cekic, Nebojsa
AU  - Calija, Bojan
AU  - Savić, Snežana D.
PY  - 2018
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/4291
AB  - The aim of this study was development of biocompatible topical microemulsions (MEs) for incorporation and improved dermal delivery of sertaconazole nitrate (SN). For this purpose, phase behavior and microstructure of pseudo-ternary glycereth-7-caprylate/caprate (Emanon EV-E, EV)/cosurfactant/Capryol (TM) 90/water systems were investigated. Furhermore, the influence of these properties on the drug skin delivery was also assessed. Expansion of ME single-phase regions with the use of short chain alcohols was a consequence of the more fluid interface when compared to other investigated systems, which was confirmed by electron paramagnetic resonance spectroscopy-EPR. The chosen bicontinuous to inverted bicontinuous formulations were assessed against the ME based on polysorbate 80 as referent sample. Despite incorporation of SN within the selected formulations induced similar alternations in electrical conductivity, viscosity and pH values, obtained EPR spectra suggested different SN localization: within the oil phase (for most of the EV based formulations), or interacting with the interface (polysorbate 80 based formulation). Due to higher in vitro drug release (12.24%-18.53%), ex vivo SN penetration into porcine ear skin (dermal retention Enhancement Ratio (ERO) ranged from 2.66 to 4.25) and pronounced antifungal activity, the chosen MEs represent promising vehicles for dermal delivery of SN in treatment of cutaneous fungal infections. The biopharmaceutical and skin performance differences obtained with different formulations were possible to be explained on the basis of their physicochemical characteristics.
PB  - Elsevier
T2  - Journal of Molecular Liquids
T1  - Biocompatible microemulsions for improved dermal delivery of sertaconazole nitrate: Phase behavior study and microstructure influence on drug biopharamaceutical properties
VL  - 272
SP  - 746
EP  - 758
DO  - 10.1016/j.molliq.2018.10.002
ER  - 
@article{
author = "Pajic, Natasa Bubic and Nikolić, Ines and Mitsou, Evgenia and Papadimitriou, Vassiliki and Xenakis, Aristotelis and Randjelović, Danijela and Dobricic, Vladimir and Smitran, Aleksandra and Cekic, Nebojsa and Calija, Bojan and Savić, Snežana D.",
year = "2018",
abstract = "The aim of this study was development of biocompatible topical microemulsions (MEs) for incorporation and improved dermal delivery of sertaconazole nitrate (SN). For this purpose, phase behavior and microstructure of pseudo-ternary glycereth-7-caprylate/caprate (Emanon EV-E, EV)/cosurfactant/Capryol (TM) 90/water systems were investigated. Furhermore, the influence of these properties on the drug skin delivery was also assessed. Expansion of ME single-phase regions with the use of short chain alcohols was a consequence of the more fluid interface when compared to other investigated systems, which was confirmed by electron paramagnetic resonance spectroscopy-EPR. The chosen bicontinuous to inverted bicontinuous formulations were assessed against the ME based on polysorbate 80 as referent sample. Despite incorporation of SN within the selected formulations induced similar alternations in electrical conductivity, viscosity and pH values, obtained EPR spectra suggested different SN localization: within the oil phase (for most of the EV based formulations), or interacting with the interface (polysorbate 80 based formulation). Due to higher in vitro drug release (12.24%-18.53%), ex vivo SN penetration into porcine ear skin (dermal retention Enhancement Ratio (ERO) ranged from 2.66 to 4.25) and pronounced antifungal activity, the chosen MEs represent promising vehicles for dermal delivery of SN in treatment of cutaneous fungal infections. The biopharmaceutical and skin performance differences obtained with different formulations were possible to be explained on the basis of their physicochemical characteristics.",
publisher = "Elsevier",
journal = "Journal of Molecular Liquids",
title = "Biocompatible microemulsions for improved dermal delivery of sertaconazole nitrate: Phase behavior study and microstructure influence on drug biopharamaceutical properties",
volume = "272",
pages = "746-758",
doi = "10.1016/j.molliq.2018.10.002"
}
Pajic, N. B., Nikolić, I., Mitsou, E., Papadimitriou, V., Xenakis, A., Randjelović, D., Dobricic, V., Smitran, A., Cekic, N., Calija, B.,& Savić, S. D.. (2018). Biocompatible microemulsions for improved dermal delivery of sertaconazole nitrate: Phase behavior study and microstructure influence on drug biopharamaceutical properties. in Journal of Molecular Liquids
Elsevier., 272, 746-758.
https://doi.org/10.1016/j.molliq.2018.10.002
Pajic NB, Nikolić I, Mitsou E, Papadimitriou V, Xenakis A, Randjelović D, Dobricic V, Smitran A, Cekic N, Calija B, Savić SD. Biocompatible microemulsions for improved dermal delivery of sertaconazole nitrate: Phase behavior study and microstructure influence on drug biopharamaceutical properties. in Journal of Molecular Liquids. 2018;272:746-758.
doi:10.1016/j.molliq.2018.10.002 .
Pajic, Natasa Bubic, Nikolić, Ines, Mitsou, Evgenia, Papadimitriou, Vassiliki, Xenakis, Aristotelis, Randjelović, Danijela, Dobricic, Vladimir, Smitran, Aleksandra, Cekic, Nebojsa, Calija, Bojan, Savić, Snežana D., "Biocompatible microemulsions for improved dermal delivery of sertaconazole nitrate: Phase behavior study and microstructure influence on drug biopharamaceutical properties" in Journal of Molecular Liquids, 272 (2018):746-758,
https://doi.org/10.1016/j.molliq.2018.10.002 . .
21
16
20

Curcumin-loaded low-energy nanoemulsions as a prototype of multifunctional vehicles for different administration routes: Physicochemical and in vitro peculiarities important for dermal application

Nikolić, Ines; Lunter, Dominique Jasmin; Randjelović, Danijela; Žugić, Ana; Tadić, Vanja; Marković, Bojan D.; Cekic, Nebojsa; Živković, Lada; Topalovic, Dijana; Spremo-Potparević, Biljana; Daniels, Rolf; Savić, Snežana D.

(Elsevier, 2018)

TY  - JOUR
AU  - Nikolić, Ines
AU  - Lunter, Dominique Jasmin
AU  - Randjelović, Danijela
AU  - Žugić, Ana
AU  - Tadić, Vanja
AU  - Marković, Bojan D.
AU  - Cekic, Nebojsa
AU  - Živković, Lada
AU  - Topalovic, Dijana
AU  - Spremo-Potparević, Biljana
AU  - Daniels, Rolf
AU  - Savić, Snežana D.
PY  - 2018
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3719
AB  - The objective of this work was to investigate and profoundly characterize low-energy nanoemulsions as multifunctional carriers, with slight reference to dermal administration. An evidence-based approach was offered for deepening the knowledge on their formation via spontaneous emulsification. Curcumin, a compound of natural origin, potentially powerful therapeutic, was chosen as a model API. Due to curcumin's demanding properties (instability, poor solubility, low permeability), its potentials remain unreached. Low-energy nanoemulsions were considered carriers capable of overcoming imposed obstacles. Formulation consisting of Polysorbate 80 and soybean lecithin as stabilizers (9:1, 10%), medium-chain triglycerides as the oil phase (10%) and ultrapure water was selected for curcumin incorporation in 3 different concentrations (1, 2 and 3 mg/mL). Physicochemical stability was demonstrated during 3 months of monitoring (mean droplet size: 111.3-146.8 nm; PDI  LT  0.2; pH: 4.73-5.73). Curcumin's release from developed vehicles followed Higuchi's kinetics. DPPH (IC50 = 0.1187 mg/ mL) and FRAP (1.19 +/- 0.02 mmol/g) assays confirmed that curcumin acts as a potent antioxidant through different mechanisms, with no alterations after incorporation in the formulation. High biocompatibility in line with antigenotoxic activity of curcumin-loaded formulations (protective and reparative) was estimated through Comet assay. A multidisciplinary approach is needed to fully characterize developed systems, directing them to more concrete application possibilities.
PB  - Elsevier
T2  - International Journal of Pharmaceutics
T1  - Curcumin-loaded low-energy nanoemulsions as a prototype of multifunctional vehicles for different administration routes: Physicochemical and in vitro peculiarities important for dermal application
VL  - 550
IS  - 1-2
SP  - 333
EP  - 346
DO  - 10.1016/j.ijpharm.2018.08.060
ER  - 
@article{
author = "Nikolić, Ines and Lunter, Dominique Jasmin and Randjelović, Danijela and Žugić, Ana and Tadić, Vanja and Marković, Bojan D. and Cekic, Nebojsa and Živković, Lada and Topalovic, Dijana and Spremo-Potparević, Biljana and Daniels, Rolf and Savić, Snežana D.",
year = "2018",
abstract = "The objective of this work was to investigate and profoundly characterize low-energy nanoemulsions as multifunctional carriers, with slight reference to dermal administration. An evidence-based approach was offered for deepening the knowledge on their formation via spontaneous emulsification. Curcumin, a compound of natural origin, potentially powerful therapeutic, was chosen as a model API. Due to curcumin's demanding properties (instability, poor solubility, low permeability), its potentials remain unreached. Low-energy nanoemulsions were considered carriers capable of overcoming imposed obstacles. Formulation consisting of Polysorbate 80 and soybean lecithin as stabilizers (9:1, 10%), medium-chain triglycerides as the oil phase (10%) and ultrapure water was selected for curcumin incorporation in 3 different concentrations (1, 2 and 3 mg/mL). Physicochemical stability was demonstrated during 3 months of monitoring (mean droplet size: 111.3-146.8 nm; PDI  LT  0.2; pH: 4.73-5.73). Curcumin's release from developed vehicles followed Higuchi's kinetics. DPPH (IC50 = 0.1187 mg/ mL) and FRAP (1.19 +/- 0.02 mmol/g) assays confirmed that curcumin acts as a potent antioxidant through different mechanisms, with no alterations after incorporation in the formulation. High biocompatibility in line with antigenotoxic activity of curcumin-loaded formulations (protective and reparative) was estimated through Comet assay. A multidisciplinary approach is needed to fully characterize developed systems, directing them to more concrete application possibilities.",
publisher = "Elsevier",
journal = "International Journal of Pharmaceutics",
title = "Curcumin-loaded low-energy nanoemulsions as a prototype of multifunctional vehicles for different administration routes: Physicochemical and in vitro peculiarities important for dermal application",
volume = "550",
number = "1-2",
pages = "333-346",
doi = "10.1016/j.ijpharm.2018.08.060"
}
Nikolić, I., Lunter, D. J., Randjelović, D., Žugić, A., Tadić, V., Marković, B. D., Cekic, N., Živković, L., Topalovic, D., Spremo-Potparević, B., Daniels, R.,& Savić, S. D.. (2018). Curcumin-loaded low-energy nanoemulsions as a prototype of multifunctional vehicles for different administration routes: Physicochemical and in vitro peculiarities important for dermal application. in International Journal of Pharmaceutics
Elsevier., 550(1-2), 333-346.
https://doi.org/10.1016/j.ijpharm.2018.08.060
Nikolić I, Lunter DJ, Randjelović D, Žugić A, Tadić V, Marković BD, Cekic N, Živković L, Topalovic D, Spremo-Potparević B, Daniels R, Savić SD. Curcumin-loaded low-energy nanoemulsions as a prototype of multifunctional vehicles for different administration routes: Physicochemical and in vitro peculiarities important for dermal application. in International Journal of Pharmaceutics. 2018;550(1-2):333-346.
doi:10.1016/j.ijpharm.2018.08.060 .
Nikolić, Ines, Lunter, Dominique Jasmin, Randjelović, Danijela, Žugić, Ana, Tadić, Vanja, Marković, Bojan D., Cekic, Nebojsa, Živković, Lada, Topalovic, Dijana, Spremo-Potparević, Biljana, Daniels, Rolf, Savić, Snežana D., "Curcumin-loaded low-energy nanoemulsions as a prototype of multifunctional vehicles for different administration routes: Physicochemical and in vitro peculiarities important for dermal application" in International Journal of Pharmaceutics, 550, no. 1-2 (2018):333-346,
https://doi.org/10.1016/j.ijpharm.2018.08.060 . .
30
21
28

Biocompatible microemulsions for improved dermal delivery of sertaconazole nitrate: Phase behavior study and microstructure influence on drug biopharamaceutical properties

Pajic, Natasa Bubic; Nikolić, Ines; Mitsou, Evgenia; Papadimitriou, Vassiliki; Xenakis, Aristotelis; Randjelović, Danijela; Dobricic, Vladimir; Smitran, Aleksandra; Cekic, Nebojsa; Calija, Bojan; Savić, Snežana D.

(Elsevier, 2018)

TY  - JOUR
AU  - Pajic, Natasa Bubic
AU  - Nikolić, Ines
AU  - Mitsou, Evgenia
AU  - Papadimitriou, Vassiliki
AU  - Xenakis, Aristotelis
AU  - Randjelović, Danijela
AU  - Dobricic, Vladimir
AU  - Smitran, Aleksandra
AU  - Cekic, Nebojsa
AU  - Calija, Bojan
AU  - Savić, Snežana D.
PY  - 2018
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/2360
AB  - The aim of this study was development of biocompatible topical microemulsions (MEs) for incorporation and improved dermal delivery of sertaconazole nitrate (SN). For this purpose, phase behavior and microstructure of pseudo-ternary glycereth-7-caprylate/caprate (Emanon EV-E, EV)/cosurfactant/Capryol (TM) 90/water systems were investigated. Furhermore, the influence of these properties on the drug skin delivery was also assessed. Expansion of ME single-phase regions with the use of short chain alcohols was a consequence of the more fluid interface when compared to other investigated systems, which was confirmed by electron paramagnetic resonance spectroscopy-EPR. The chosen bicontinuous to inverted bicontinuous formulations were assessed against the ME based on polysorbate 80 as referent sample. Despite incorporation of SN within the selected formulations induced similar alternations in electrical conductivity, viscosity and pH values, obtained EPR spectra suggested different SN localization: within the oil phase (for most of the EV based formulations), or interacting with the interface (polysorbate 80 based formulation). Due to higher in vitro drug release (12.24%-18.53%), ex vivo SN penetration into porcine ear skin (dermal retention Enhancement Ratio (ERO) ranged from 2.66 to 4.25) and pronounced antifungal activity, the chosen MEs represent promising vehicles for dermal delivery of SN in treatment of cutaneous fungal infections. The biopharmaceutical and skin performance differences obtained with different formulations were possible to be explained on the basis of their physicochemical characteristics.
PB  - Elsevier
T2  - Journal of Molecular Liquids
T1  - Biocompatible microemulsions for improved dermal delivery of sertaconazole nitrate: Phase behavior study and microstructure influence on drug biopharamaceutical properties
VL  - 272
SP  - 746
EP  - 758
DO  - 10.1016/j.molliq.2018.10.002
ER  - 
@article{
author = "Pajic, Natasa Bubic and Nikolić, Ines and Mitsou, Evgenia and Papadimitriou, Vassiliki and Xenakis, Aristotelis and Randjelović, Danijela and Dobricic, Vladimir and Smitran, Aleksandra and Cekic, Nebojsa and Calija, Bojan and Savić, Snežana D.",
year = "2018",
abstract = "The aim of this study was development of biocompatible topical microemulsions (MEs) for incorporation and improved dermal delivery of sertaconazole nitrate (SN). For this purpose, phase behavior and microstructure of pseudo-ternary glycereth-7-caprylate/caprate (Emanon EV-E, EV)/cosurfactant/Capryol (TM) 90/water systems were investigated. Furhermore, the influence of these properties on the drug skin delivery was also assessed. Expansion of ME single-phase regions with the use of short chain alcohols was a consequence of the more fluid interface when compared to other investigated systems, which was confirmed by electron paramagnetic resonance spectroscopy-EPR. The chosen bicontinuous to inverted bicontinuous formulations were assessed against the ME based on polysorbate 80 as referent sample. Despite incorporation of SN within the selected formulations induced similar alternations in electrical conductivity, viscosity and pH values, obtained EPR spectra suggested different SN localization: within the oil phase (for most of the EV based formulations), or interacting with the interface (polysorbate 80 based formulation). Due to higher in vitro drug release (12.24%-18.53%), ex vivo SN penetration into porcine ear skin (dermal retention Enhancement Ratio (ERO) ranged from 2.66 to 4.25) and pronounced antifungal activity, the chosen MEs represent promising vehicles for dermal delivery of SN in treatment of cutaneous fungal infections. The biopharmaceutical and skin performance differences obtained with different formulations were possible to be explained on the basis of their physicochemical characteristics.",
publisher = "Elsevier",
journal = "Journal of Molecular Liquids",
title = "Biocompatible microemulsions for improved dermal delivery of sertaconazole nitrate: Phase behavior study and microstructure influence on drug biopharamaceutical properties",
volume = "272",
pages = "746-758",
doi = "10.1016/j.molliq.2018.10.002"
}
Pajic, N. B., Nikolić, I., Mitsou, E., Papadimitriou, V., Xenakis, A., Randjelović, D., Dobricic, V., Smitran, A., Cekic, N., Calija, B.,& Savić, S. D.. (2018). Biocompatible microemulsions for improved dermal delivery of sertaconazole nitrate: Phase behavior study and microstructure influence on drug biopharamaceutical properties. in Journal of Molecular Liquids
Elsevier., 272, 746-758.
https://doi.org/10.1016/j.molliq.2018.10.002
Pajic NB, Nikolić I, Mitsou E, Papadimitriou V, Xenakis A, Randjelović D, Dobricic V, Smitran A, Cekic N, Calija B, Savić SD. Biocompatible microemulsions for improved dermal delivery of sertaconazole nitrate: Phase behavior study and microstructure influence on drug biopharamaceutical properties. in Journal of Molecular Liquids. 2018;272:746-758.
doi:10.1016/j.molliq.2018.10.002 .
Pajic, Natasa Bubic, Nikolić, Ines, Mitsou, Evgenia, Papadimitriou, Vassiliki, Xenakis, Aristotelis, Randjelović, Danijela, Dobricic, Vladimir, Smitran, Aleksandra, Cekic, Nebojsa, Calija, Bojan, Savić, Snežana D., "Biocompatible microemulsions for improved dermal delivery of sertaconazole nitrate: Phase behavior study and microstructure influence on drug biopharamaceutical properties" in Journal of Molecular Liquids, 272 (2018):746-758,
https://doi.org/10.1016/j.molliq.2018.10.002 . .
21
16
20

Curcumin-loaded low-energy nanoemulsions as a prototype of multifunctional vehicles for different administration routes: Physicochemical and in vitro peculiarities important for dermal application

Nikolić, Ines; Lunter, Dominique Jasmin; Randjelović, Danijela; Žugić, Ana; Tadić, Vanja; Marković, Bojan D.; Cekic, Nebojsa; Živković, Lada; Topalovic, Dijana; Spremo-Potparević, Biljana; Daniels, Rolf; Savić, Snežana D.

(Elsevier, 2018)

TY  - JOUR
AU  - Nikolić, Ines
AU  - Lunter, Dominique Jasmin
AU  - Randjelović, Danijela
AU  - Žugić, Ana
AU  - Tadić, Vanja
AU  - Marković, Bojan D.
AU  - Cekic, Nebojsa
AU  - Živković, Lada
AU  - Topalovic, Dijana
AU  - Spremo-Potparević, Biljana
AU  - Daniels, Rolf
AU  - Savić, Snežana D.
PY  - 2018
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/2425
AB  - The objective of this work was to investigate and profoundly characterize low-energy nanoemulsions as multifunctional carriers, with slight reference to dermal administration. An evidence-based approach was offered for deepening the knowledge on their formation via spontaneous emulsification. Curcumin, a compound of natural origin, potentially powerful therapeutic, was chosen as a model API. Due to curcumin's demanding properties (instability, poor solubility, low permeability), its potentials remain unreached. Low-energy nanoemulsions were considered carriers capable of overcoming imposed obstacles. Formulation consisting of Polysorbate 80 and soybean lecithin as stabilizers (9:1, 10%), medium-chain triglycerides as the oil phase (10%) and ultrapure water was selected for curcumin incorporation in 3 different concentrations (1, 2 and 3 mg/mL). Physicochemical stability was demonstrated during 3 months of monitoring (mean droplet size: 111.3-146.8 nm; PDI  LT  0.2; pH: 4.73-5.73). Curcumin's release from developed vehicles followed Higuchi's kinetics. DPPH (IC50 = 0.1187 mg/ mL) and FRAP (1.19 +/- 0.02 mmol/g) assays confirmed that curcumin acts as a potent antioxidant through different mechanisms, with no alterations after incorporation in the formulation. High biocompatibility in line with antigenotoxic activity of curcumin-loaded formulations (protective and reparative) was estimated through Comet assay. A multidisciplinary approach is needed to fully characterize developed systems, directing them to more concrete application possibilities.
PB  - Elsevier
T2  - International Journal of Pharmaceutics
T1  - Curcumin-loaded low-energy nanoemulsions as a prototype of multifunctional vehicles for different administration routes: Physicochemical and in vitro peculiarities important for dermal application
VL  - 550
IS  - 1-2
SP  - 333
EP  - 346
DO  - 10.1016/j.ijpharm.2018.08.060
ER  - 
@article{
author = "Nikolić, Ines and Lunter, Dominique Jasmin and Randjelović, Danijela and Žugić, Ana and Tadić, Vanja and Marković, Bojan D. and Cekic, Nebojsa and Živković, Lada and Topalovic, Dijana and Spremo-Potparević, Biljana and Daniels, Rolf and Savić, Snežana D.",
year = "2018",
abstract = "The objective of this work was to investigate and profoundly characterize low-energy nanoemulsions as multifunctional carriers, with slight reference to dermal administration. An evidence-based approach was offered for deepening the knowledge on their formation via spontaneous emulsification. Curcumin, a compound of natural origin, potentially powerful therapeutic, was chosen as a model API. Due to curcumin's demanding properties (instability, poor solubility, low permeability), its potentials remain unreached. Low-energy nanoemulsions were considered carriers capable of overcoming imposed obstacles. Formulation consisting of Polysorbate 80 and soybean lecithin as stabilizers (9:1, 10%), medium-chain triglycerides as the oil phase (10%) and ultrapure water was selected for curcumin incorporation in 3 different concentrations (1, 2 and 3 mg/mL). Physicochemical stability was demonstrated during 3 months of monitoring (mean droplet size: 111.3-146.8 nm; PDI  LT  0.2; pH: 4.73-5.73). Curcumin's release from developed vehicles followed Higuchi's kinetics. DPPH (IC50 = 0.1187 mg/ mL) and FRAP (1.19 +/- 0.02 mmol/g) assays confirmed that curcumin acts as a potent antioxidant through different mechanisms, with no alterations after incorporation in the formulation. High biocompatibility in line with antigenotoxic activity of curcumin-loaded formulations (protective and reparative) was estimated through Comet assay. A multidisciplinary approach is needed to fully characterize developed systems, directing them to more concrete application possibilities.",
publisher = "Elsevier",
journal = "International Journal of Pharmaceutics",
title = "Curcumin-loaded low-energy nanoemulsions as a prototype of multifunctional vehicles for different administration routes: Physicochemical and in vitro peculiarities important for dermal application",
volume = "550",
number = "1-2",
pages = "333-346",
doi = "10.1016/j.ijpharm.2018.08.060"
}
Nikolić, I., Lunter, D. J., Randjelović, D., Žugić, A., Tadić, V., Marković, B. D., Cekic, N., Živković, L., Topalovic, D., Spremo-Potparević, B., Daniels, R.,& Savić, S. D.. (2018). Curcumin-loaded low-energy nanoemulsions as a prototype of multifunctional vehicles for different administration routes: Physicochemical and in vitro peculiarities important for dermal application. in International Journal of Pharmaceutics
Elsevier., 550(1-2), 333-346.
https://doi.org/10.1016/j.ijpharm.2018.08.060
Nikolić I, Lunter DJ, Randjelović D, Žugić A, Tadić V, Marković BD, Cekic N, Živković L, Topalovic D, Spremo-Potparević B, Daniels R, Savić SD. Curcumin-loaded low-energy nanoemulsions as a prototype of multifunctional vehicles for different administration routes: Physicochemical and in vitro peculiarities important for dermal application. in International Journal of Pharmaceutics. 2018;550(1-2):333-346.
doi:10.1016/j.ijpharm.2018.08.060 .
Nikolić, Ines, Lunter, Dominique Jasmin, Randjelović, Danijela, Žugić, Ana, Tadić, Vanja, Marković, Bojan D., Cekic, Nebojsa, Živković, Lada, Topalovic, Dijana, Spremo-Potparević, Biljana, Daniels, Rolf, Savić, Snežana D., "Curcumin-loaded low-energy nanoemulsions as a prototype of multifunctional vehicles for different administration routes: Physicochemical and in vitro peculiarities important for dermal application" in International Journal of Pharmaceutics, 550, no. 1-2 (2018):333-346,
https://doi.org/10.1016/j.ijpharm.2018.08.060 . .
30
21
28

Biocompatible Nanoemulsions for Improved Aceclofenac Skin Delivery: Formulation Approach Using Combined Mixture-Process Experimental Design

Isailovic, Tanja; Dordevic, Sanela; Marković, Bojan D.; Randjelović, Danijela; Cekic, Nebojsa; Lukić, Milica; Pantelić, Ivana; Daniels, Rolf; Savić, Snežana D.

(Wiley, Hoboken, 2016)

TY  - JOUR
AU  - Isailovic, Tanja
AU  - Dordevic, Sanela
AU  - Marković, Bojan D.
AU  - Randjelović, Danijela
AU  - Cekic, Nebojsa
AU  - Lukić, Milica
AU  - Pantelić, Ivana
AU  - Daniels, Rolf
AU  - Savić, Snežana D.
PY  - 2016
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/1846
AB  - We aimed to develop lecithin-based nanoemulsions intended for effective aceclofenac (ACF) skin delivery utilizing sucrose esters [sucrose palmitate (SP) and sucrose stearate (SS)] as additional stabilizers and penetration enhancers. To find the suitable surfactant mixtures and levels of process variables (homogenization pressure and number of cycles-high pressure homogenization manufacturing method) that result in drug-loaded nanoemulsions with minimal droplet size and narrow size distribution, a combined mixture-process experimental design was employed. Based on optimization data, selected nanoemulsions were evaluated regarding morphology, surface charge, drug-excipient interactions, physical stability, and in vivo skin performances (skin penetration and irritation potential). The predicted physicochemical properties and storage stability were proved satisfying for ACF-loaded nanoemulsions containing 2% of SP in the blend with 0%-1% of SS and 1%-2% of egg lecithin (produced at 50 degrees C/20 cycles/800 bar). Additionally, the in vivo tape stripping demonstrated superior ACF skin absorption from these nanoemulsions, particularly from those containing 2% of SP, 0.5% of SS, and 1.5% of egg lecithin, when comparing with the sample costabilized by conventional surfactant-polysorbate 80. In summary, the combined mixture-process experimental design was shown as a feasible tool for formulation development of multisurfactant-based nanosized delivery systems with potentially improved overall product performances.
PB  - Wiley, Hoboken
T2  - Journal of Pharmaceutical Sciences
T1  - Biocompatible Nanoemulsions for Improved Aceclofenac Skin Delivery: Formulation Approach Using Combined Mixture-Process Experimental Design
VL  - 105
IS  - 1
SP  - 308
EP  - 323
DO  - 10.1002/jps.24706
ER  - 
@article{
author = "Isailovic, Tanja and Dordevic, Sanela and Marković, Bojan D. and Randjelović, Danijela and Cekic, Nebojsa and Lukić, Milica and Pantelić, Ivana and Daniels, Rolf and Savić, Snežana D.",
year = "2016",
abstract = "We aimed to develop lecithin-based nanoemulsions intended for effective aceclofenac (ACF) skin delivery utilizing sucrose esters [sucrose palmitate (SP) and sucrose stearate (SS)] as additional stabilizers and penetration enhancers. To find the suitable surfactant mixtures and levels of process variables (homogenization pressure and number of cycles-high pressure homogenization manufacturing method) that result in drug-loaded nanoemulsions with minimal droplet size and narrow size distribution, a combined mixture-process experimental design was employed. Based on optimization data, selected nanoemulsions were evaluated regarding morphology, surface charge, drug-excipient interactions, physical stability, and in vivo skin performances (skin penetration and irritation potential). The predicted physicochemical properties and storage stability were proved satisfying for ACF-loaded nanoemulsions containing 2% of SP in the blend with 0%-1% of SS and 1%-2% of egg lecithin (produced at 50 degrees C/20 cycles/800 bar). Additionally, the in vivo tape stripping demonstrated superior ACF skin absorption from these nanoemulsions, particularly from those containing 2% of SP, 0.5% of SS, and 1.5% of egg lecithin, when comparing with the sample costabilized by conventional surfactant-polysorbate 80. In summary, the combined mixture-process experimental design was shown as a feasible tool for formulation development of multisurfactant-based nanosized delivery systems with potentially improved overall product performances.",
publisher = "Wiley, Hoboken",
journal = "Journal of Pharmaceutical Sciences",
title = "Biocompatible Nanoemulsions for Improved Aceclofenac Skin Delivery: Formulation Approach Using Combined Mixture-Process Experimental Design",
volume = "105",
number = "1",
pages = "308-323",
doi = "10.1002/jps.24706"
}
Isailovic, T., Dordevic, S., Marković, B. D., Randjelović, D., Cekic, N., Lukić, M., Pantelić, I., Daniels, R.,& Savić, S. D.. (2016). Biocompatible Nanoemulsions for Improved Aceclofenac Skin Delivery: Formulation Approach Using Combined Mixture-Process Experimental Design. in Journal of Pharmaceutical Sciences
Wiley, Hoboken., 105(1), 308-323.
https://doi.org/10.1002/jps.24706
Isailovic T, Dordevic S, Marković BD, Randjelović D, Cekic N, Lukić M, Pantelić I, Daniels R, Savić SD. Biocompatible Nanoemulsions for Improved Aceclofenac Skin Delivery: Formulation Approach Using Combined Mixture-Process Experimental Design. in Journal of Pharmaceutical Sciences. 2016;105(1):308-323.
doi:10.1002/jps.24706 .
Isailovic, Tanja, Dordevic, Sanela, Marković, Bojan D., Randjelović, Danijela, Cekic, Nebojsa, Lukić, Milica, Pantelić, Ivana, Daniels, Rolf, Savić, Snežana D., "Biocompatible Nanoemulsions for Improved Aceclofenac Skin Delivery: Formulation Approach Using Combined Mixture-Process Experimental Design" in Journal of Pharmaceutical Sciences, 105, no. 1 (2016):308-323,
https://doi.org/10.1002/jps.24706 . .
26
15
22

Parenteral nanoemulsions as promising carriers for brain delivery of risperidone: Design, characterization and in vivo pharmacokinetic evaluation

Dordevic, Sanela M; Cekic, Nebojsa; Savić, Miroslav M.; Isailovic, Tanja M; Randjelović, Danijela; Marković, Bojan D.; Savić, Saša R.; Stamenic, Tamara Timic; Daniels, Rolf; Savić, Snežana D.

(Elsevier, 2015)

TY  - JOUR
AU  - Dordevic, Sanela M
AU  - Cekic, Nebojsa
AU  - Savić, Miroslav M.
AU  - Isailovic, Tanja M
AU  - Randjelović, Danijela
AU  - Marković, Bojan D.
AU  - Savić, Saša R.
AU  - Stamenic, Tamara Timic
AU  - Daniels, Rolf
AU  - Savić, Snežana D.
PY  - 2015
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/1697
AB  - This paper describes design and evaluation of parenteral lecithin-based nanoemulsions intended for brain delivery of risperidone, a poorly water-soluble psychopharmacological drug. The nanoemulsions were prepared through cold/hot high pressure homogenization and characterized regarding droplet size, polydispersity, surface charge, morphology, drug-vehicle interactions, and physical stability. To estimate the simultaneous influence of nanoemulsion formulation and preparation parameters-co-emulsifier type, aqueous phase type, homogenization temperature-on the critical quality attributes of developed nanoemulsions, a general factorial experimental design was applied. From the established design space and stability data, promising risperidone-loaded nanoemulsions (mean size about 160 nm, size distribution  LT 0.15, zeta potential around -50 mV), containing sodium oleate in the aqueous phase and polysorbate 80, poloxamer 188 or Solutol (R) HS15 as co-emulsifier, were produced by hot homogenization and their ability to improve risperidone delivery to the brain was assessed in rats. Pharmacokinetic study demonstrated erratic brain profiles of risperidone following intraperitoneal administration in selected nanoemulsions, most probably due to their different droplet surface properties (different composition of the stabilizing layer). Namely, polysorbate 80-costabilized nanoemulsion showed increased (1.4-7.4-fold higher) risperidone brain availability compared to other nanoemulsions and drug solution, suggesting this nanoemulsion as a promising carrier worth exploring further for brain targeting.
PB  - Elsevier
T2  - International Journal of Pharmaceutics
T1  - Parenteral nanoemulsions as promising carriers for brain delivery of risperidone: Design, characterization and in vivo pharmacokinetic evaluation
VL  - 493
IS  - 1-2
SP  - 40
EP  - 54
DO  - 10.1016/j.ijpharm.2015.07.007
ER  - 
@article{
author = "Dordevic, Sanela M and Cekic, Nebojsa and Savić, Miroslav M. and Isailovic, Tanja M and Randjelović, Danijela and Marković, Bojan D. and Savić, Saša R. and Stamenic, Tamara Timic and Daniels, Rolf and Savić, Snežana D.",
year = "2015",
abstract = "This paper describes design and evaluation of parenteral lecithin-based nanoemulsions intended for brain delivery of risperidone, a poorly water-soluble psychopharmacological drug. The nanoemulsions were prepared through cold/hot high pressure homogenization and characterized regarding droplet size, polydispersity, surface charge, morphology, drug-vehicle interactions, and physical stability. To estimate the simultaneous influence of nanoemulsion formulation and preparation parameters-co-emulsifier type, aqueous phase type, homogenization temperature-on the critical quality attributes of developed nanoemulsions, a general factorial experimental design was applied. From the established design space and stability data, promising risperidone-loaded nanoemulsions (mean size about 160 nm, size distribution  LT 0.15, zeta potential around -50 mV), containing sodium oleate in the aqueous phase and polysorbate 80, poloxamer 188 or Solutol (R) HS15 as co-emulsifier, were produced by hot homogenization and their ability to improve risperidone delivery to the brain was assessed in rats. Pharmacokinetic study demonstrated erratic brain profiles of risperidone following intraperitoneal administration in selected nanoemulsions, most probably due to their different droplet surface properties (different composition of the stabilizing layer). Namely, polysorbate 80-costabilized nanoemulsion showed increased (1.4-7.4-fold higher) risperidone brain availability compared to other nanoemulsions and drug solution, suggesting this nanoemulsion as a promising carrier worth exploring further for brain targeting.",
publisher = "Elsevier",
journal = "International Journal of Pharmaceutics",
title = "Parenteral nanoemulsions as promising carriers for brain delivery of risperidone: Design, characterization and in vivo pharmacokinetic evaluation",
volume = "493",
number = "1-2",
pages = "40-54",
doi = "10.1016/j.ijpharm.2015.07.007"
}
Dordevic, S. M., Cekic, N., Savić, M. M., Isailovic, T. M., Randjelović, D., Marković, B. D., Savić, S. R., Stamenic, T. T., Daniels, R.,& Savić, S. D.. (2015). Parenteral nanoemulsions as promising carriers for brain delivery of risperidone: Design, characterization and in vivo pharmacokinetic evaluation. in International Journal of Pharmaceutics
Elsevier., 493(1-2), 40-54.
https://doi.org/10.1016/j.ijpharm.2015.07.007
Dordevic SM, Cekic N, Savić MM, Isailovic TM, Randjelović D, Marković BD, Savić SR, Stamenic TT, Daniels R, Savić SD. Parenteral nanoemulsions as promising carriers for brain delivery of risperidone: Design, characterization and in vivo pharmacokinetic evaluation. in International Journal of Pharmaceutics. 2015;493(1-2):40-54.
doi:10.1016/j.ijpharm.2015.07.007 .
Dordevic, Sanela M, Cekic, Nebojsa, Savić, Miroslav M., Isailovic, Tanja M, Randjelović, Danijela, Marković, Bojan D., Savić, Saša R., Stamenic, Tamara Timic, Daniels, Rolf, Savić, Snežana D., "Parenteral nanoemulsions as promising carriers for brain delivery of risperidone: Design, characterization and in vivo pharmacokinetic evaluation" in International Journal of Pharmaceutics, 493, no. 1-2 (2015):40-54,
https://doi.org/10.1016/j.ijpharm.2015.07.007 . .
69
38
67

Biocompatible microemulsions of a model NSAID for skin delivery: A decisive role of surfactants in skin penetration/irritation profiles and pharmacokinetic performance

Todosijević, Marija; Savić, Miroslav M.; Batinić, Bojan B.; Marković, Bojan D.; Gasperlin, Mirjana; Randjelović, Danijela; Lukić, Milica; Savić, Snežana D.

(Elsevier, 2015)

TY  - JOUR
AU  - Todosijević, Marija
AU  - Savić, Miroslav M.
AU  - Batinić, Bojan B.
AU  - Marković, Bojan D.
AU  - Gasperlin, Mirjana
AU  - Randjelović, Danijela
AU  - Lukić, Milica
AU  - Savić, Snežana D.
PY  - 2015
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/1805
AB  - To elaborate the decisive role of surfactants in promotion of aceclofenac' skin absorption, potentially avoiding irritation, we developed non-ionic microemulsions varying natural or synthetic surfactants: sucrose esters (laurate or myristate) vs. polysorbate 80. A comprehensive physicochemical characterization indicated no significant influence of the solubilized nonsteroidal anti-inflammatory drug on the bicontinuous structure of blank formulations. To evaluate skin tolerability of isopropyl alcohol, a sucrose ester-based microemulsion containing transcutol P as a cosurfactant was also developed. The measured skin parameters strongly depended on the (co)surfactant type, showing higher compatibility of the microemulsions containing sucrose ester and isopropyl alcohol. In vitro release results, in vivo tape stripping and pharmacokinetics in rats confirmed superiority of the sucrose ester-over polysorbate-based microemulsions (total amounts of aceclofenac penetrated 60.81 +/- 5.97 and 60.86 +/- 3.67 vs. 27.00 +/- 5.09 mu g/cm(2), and its maximum plasma concentrations 275.57 +/- 109.49 and 281.31 +/- 76.76 vs. 150.23 +/- 69.74 ng/ml for sucrose laurate- and myristate- vs. polysorbate 80-based microemulsions, respectively). Hence, sugar-based excipients increased delivery of aceclofenac through stratum corneum by increasing its fluidity, showing overall more satisfying safety profiles. In conclusion, sucrose ester-based microemulsions proved to be promising carriers for dermal/transdermal aceclofenac delivery.
PB  - Elsevier
T2  - International Journal of Pharmaceutics
T1  - Biocompatible microemulsions of a model NSAID for skin delivery: A decisive role of surfactants in skin penetration/irritation profiles and pharmacokinetic performance
VL  - 496
IS  - 2
SP  - 931
EP  - 941
DO  - 10.1016/j.ijpharm.2015.10.048
ER  - 
@article{
author = "Todosijević, Marija and Savić, Miroslav M. and Batinić, Bojan B. and Marković, Bojan D. and Gasperlin, Mirjana and Randjelović, Danijela and Lukić, Milica and Savić, Snežana D.",
year = "2015",
abstract = "To elaborate the decisive role of surfactants in promotion of aceclofenac' skin absorption, potentially avoiding irritation, we developed non-ionic microemulsions varying natural or synthetic surfactants: sucrose esters (laurate or myristate) vs. polysorbate 80. A comprehensive physicochemical characterization indicated no significant influence of the solubilized nonsteroidal anti-inflammatory drug on the bicontinuous structure of blank formulations. To evaluate skin tolerability of isopropyl alcohol, a sucrose ester-based microemulsion containing transcutol P as a cosurfactant was also developed. The measured skin parameters strongly depended on the (co)surfactant type, showing higher compatibility of the microemulsions containing sucrose ester and isopropyl alcohol. In vitro release results, in vivo tape stripping and pharmacokinetics in rats confirmed superiority of the sucrose ester-over polysorbate-based microemulsions (total amounts of aceclofenac penetrated 60.81 +/- 5.97 and 60.86 +/- 3.67 vs. 27.00 +/- 5.09 mu g/cm(2), and its maximum plasma concentrations 275.57 +/- 109.49 and 281.31 +/- 76.76 vs. 150.23 +/- 69.74 ng/ml for sucrose laurate- and myristate- vs. polysorbate 80-based microemulsions, respectively). Hence, sugar-based excipients increased delivery of aceclofenac through stratum corneum by increasing its fluidity, showing overall more satisfying safety profiles. In conclusion, sucrose ester-based microemulsions proved to be promising carriers for dermal/transdermal aceclofenac delivery.",
publisher = "Elsevier",
journal = "International Journal of Pharmaceutics",
title = "Biocompatible microemulsions of a model NSAID for skin delivery: A decisive role of surfactants in skin penetration/irritation profiles and pharmacokinetic performance",
volume = "496",
number = "2",
pages = "931-941",
doi = "10.1016/j.ijpharm.2015.10.048"
}
Todosijević, M., Savić, M. M., Batinić, B. B., Marković, B. D., Gasperlin, M., Randjelović, D., Lukić, M.,& Savić, S. D.. (2015). Biocompatible microemulsions of a model NSAID for skin delivery: A decisive role of surfactants in skin penetration/irritation profiles and pharmacokinetic performance. in International Journal of Pharmaceutics
Elsevier., 496(2), 931-941.
https://doi.org/10.1016/j.ijpharm.2015.10.048
Todosijević M, Savić MM, Batinić BB, Marković BD, Gasperlin M, Randjelović D, Lukić M, Savić SD. Biocompatible microemulsions of a model NSAID for skin delivery: A decisive role of surfactants in skin penetration/irritation profiles and pharmacokinetic performance. in International Journal of Pharmaceutics. 2015;496(2):931-941.
doi:10.1016/j.ijpharm.2015.10.048 .
Todosijević, Marija, Savić, Miroslav M., Batinić, Bojan B., Marković, Bojan D., Gasperlin, Mirjana, Randjelović, Danijela, Lukić, Milica, Savić, Snežana D., "Biocompatible microemulsions of a model NSAID for skin delivery: A decisive role of surfactants in skin penetration/irritation profiles and pharmacokinetic performance" in International Journal of Pharmaceutics, 496, no. 2 (2015):931-941,
https://doi.org/10.1016/j.ijpharm.2015.10.048 . .
43
33
42

Parenteral nanoemulsions as promising carriers for brain delivery of risperidone: Design, characterization and in vivo pharmacokinetic evaluation

Dordevic, Sanela M; Cekic, Nebojsa; Savić, Miroslav M.; Isailovic, Tanja M; Randjelović, Danijela; Marković, Bojan D.; Savić, Saša R.; Stamenic, Tamara Timic; Daniels, Rolf; Savić, Snežana D.

(Elsevier, 2015)

TY  - JOUR
AU  - Dordevic, Sanela M
AU  - Cekic, Nebojsa
AU  - Savić, Miroslav M.
AU  - Isailovic, Tanja M
AU  - Randjelović, Danijela
AU  - Marković, Bojan D.
AU  - Savić, Saša R.
AU  - Stamenic, Tamara Timic
AU  - Daniels, Rolf
AU  - Savić, Snežana D.
PY  - 2015
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3201
AB  - This paper describes design and evaluation of parenteral lecithin-based nanoemulsions intended for brain delivery of risperidone, a poorly water-soluble psychopharmacological drug. The nanoemulsions were prepared through cold/hot high pressure homogenization and characterized regarding droplet size, polydispersity, surface charge, morphology, drug-vehicle interactions, and physical stability. To estimate the simultaneous influence of nanoemulsion formulation and preparation parameters-co-emulsifier type, aqueous phase type, homogenization temperature-on the critical quality attributes of developed nanoemulsions, a general factorial experimental design was applied. From the established design space and stability data, promising risperidone-loaded nanoemulsions (mean size about 160 nm, size distribution  LT 0.15, zeta potential around -50 mV), containing sodium oleate in the aqueous phase and polysorbate 80, poloxamer 188 or Solutol (R) HS15 as co-emulsifier, were produced by hot homogenization and their ability to improve risperidone delivery to the brain was assessed in rats. Pharmacokinetic study demonstrated erratic brain profiles of risperidone following intraperitoneal administration in selected nanoemulsions, most probably due to their different droplet surface properties (different composition of the stabilizing layer). Namely, polysorbate 80-costabilized nanoemulsion showed increased (1.4-7.4-fold higher) risperidone brain availability compared to other nanoemulsions and drug solution, suggesting this nanoemulsion as a promising carrier worth exploring further for brain targeting.
PB  - Elsevier
T2  - International Journal of Pharmaceutics
T1  - Parenteral nanoemulsions as promising carriers for brain delivery of risperidone: Design, characterization and in vivo pharmacokinetic evaluation
VL  - 493
IS  - 1-2
SP  - 40
EP  - 54
DO  - 10.1016/j.ijpharm.2015.07.007
ER  - 
@article{
author = "Dordevic, Sanela M and Cekic, Nebojsa and Savić, Miroslav M. and Isailovic, Tanja M and Randjelović, Danijela and Marković, Bojan D. and Savić, Saša R. and Stamenic, Tamara Timic and Daniels, Rolf and Savić, Snežana D.",
year = "2015",
abstract = "This paper describes design and evaluation of parenteral lecithin-based nanoemulsions intended for brain delivery of risperidone, a poorly water-soluble psychopharmacological drug. The nanoemulsions were prepared through cold/hot high pressure homogenization and characterized regarding droplet size, polydispersity, surface charge, morphology, drug-vehicle interactions, and physical stability. To estimate the simultaneous influence of nanoemulsion formulation and preparation parameters-co-emulsifier type, aqueous phase type, homogenization temperature-on the critical quality attributes of developed nanoemulsions, a general factorial experimental design was applied. From the established design space and stability data, promising risperidone-loaded nanoemulsions (mean size about 160 nm, size distribution  LT 0.15, zeta potential around -50 mV), containing sodium oleate in the aqueous phase and polysorbate 80, poloxamer 188 or Solutol (R) HS15 as co-emulsifier, were produced by hot homogenization and their ability to improve risperidone delivery to the brain was assessed in rats. Pharmacokinetic study demonstrated erratic brain profiles of risperidone following intraperitoneal administration in selected nanoemulsions, most probably due to their different droplet surface properties (different composition of the stabilizing layer). Namely, polysorbate 80-costabilized nanoemulsion showed increased (1.4-7.4-fold higher) risperidone brain availability compared to other nanoemulsions and drug solution, suggesting this nanoemulsion as a promising carrier worth exploring further for brain targeting.",
publisher = "Elsevier",
journal = "International Journal of Pharmaceutics",
title = "Parenteral nanoemulsions as promising carriers for brain delivery of risperidone: Design, characterization and in vivo pharmacokinetic evaluation",
volume = "493",
number = "1-2",
pages = "40-54",
doi = "10.1016/j.ijpharm.2015.07.007"
}
Dordevic, S. M., Cekic, N., Savić, M. M., Isailovic, T. M., Randjelović, D., Marković, B. D., Savić, S. R., Stamenic, T. T., Daniels, R.,& Savić, S. D.. (2015). Parenteral nanoemulsions as promising carriers for brain delivery of risperidone: Design, characterization and in vivo pharmacokinetic evaluation. in International Journal of Pharmaceutics
Elsevier., 493(1-2), 40-54.
https://doi.org/10.1016/j.ijpharm.2015.07.007
Dordevic SM, Cekic N, Savić MM, Isailovic TM, Randjelović D, Marković BD, Savić SR, Stamenic TT, Daniels R, Savić SD. Parenteral nanoemulsions as promising carriers for brain delivery of risperidone: Design, characterization and in vivo pharmacokinetic evaluation. in International Journal of Pharmaceutics. 2015;493(1-2):40-54.
doi:10.1016/j.ijpharm.2015.07.007 .
Dordevic, Sanela M, Cekic, Nebojsa, Savić, Miroslav M., Isailovic, Tanja M, Randjelović, Danijela, Marković, Bojan D., Savić, Saša R., Stamenic, Tamara Timic, Daniels, Rolf, Savić, Snežana D., "Parenteral nanoemulsions as promising carriers for brain delivery of risperidone: Design, characterization and in vivo pharmacokinetic evaluation" in International Journal of Pharmaceutics, 493, no. 1-2 (2015):40-54,
https://doi.org/10.1016/j.ijpharm.2015.07.007 . .
69
38
68

Biocompatible microemulsions of a model NSAID for skin delivery: A decisive role of surfactants in skin penetration/irritation profiles and pharmacokinetic performance

Todosijević, Marija; Savić, Miroslav M.; Batinić, Bojan B.; Marković, Bojan D.; Gasperlin, Mirjana; Randjelović, Danijela; Lukić, Milica; Savić, Snežana D.

(Elsevier, 2015)

TY  - JOUR
AU  - Todosijević, Marija
AU  - Savić, Miroslav M.
AU  - Batinić, Bojan B.
AU  - Marković, Bojan D.
AU  - Gasperlin, Mirjana
AU  - Randjelović, Danijela
AU  - Lukić, Milica
AU  - Savić, Snežana D.
PY  - 2015
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3202
AB  - To elaborate the decisive role of surfactants in promotion of aceclofenac' skin absorption, potentially avoiding irritation, we developed non-ionic microemulsions varying natural or synthetic surfactants: sucrose esters (laurate or myristate) vs. polysorbate 80. A comprehensive physicochemical characterization indicated no significant influence of the solubilized nonsteroidal anti-inflammatory drug on the bicontinuous structure of blank formulations. To evaluate skin tolerability of isopropyl alcohol, a sucrose ester-based microemulsion containing transcutol P as a cosurfactant was also developed. The measured skin parameters strongly depended on the (co)surfactant type, showing higher compatibility of the microemulsions containing sucrose ester and isopropyl alcohol. In vitro release results, in vivo tape stripping and pharmacokinetics in rats confirmed superiority of the sucrose ester-over polysorbate-based microemulsions (total amounts of aceclofenac penetrated 60.81 +/- 5.97 and 60.86 +/- 3.67 vs. 27.00 +/- 5.09 mu g/cm(2), and its maximum plasma concentrations 275.57 +/- 109.49 and 281.31 +/- 76.76 vs. 150.23 +/- 69.74 ng/ml for sucrose laurate- and myristate- vs. polysorbate 80-based microemulsions, respectively). Hence, sugar-based excipients increased delivery of aceclofenac through stratum corneum by increasing its fluidity, showing overall more satisfying safety profiles. In conclusion, sucrose ester-based microemulsions proved to be promising carriers for dermal/transdermal aceclofenac delivery.
PB  - Elsevier
T2  - International Journal of Pharmaceutics
T1  - Biocompatible microemulsions of a model NSAID for skin delivery: A decisive role of surfactants in skin penetration/irritation profiles and pharmacokinetic performance
VL  - 496
IS  - 2
SP  - 931
EP  - 941
DO  - 10.1016/j.ijpharm.2015.10.048
ER  - 
@article{
author = "Todosijević, Marija and Savić, Miroslav M. and Batinić, Bojan B. and Marković, Bojan D. and Gasperlin, Mirjana and Randjelović, Danijela and Lukić, Milica and Savić, Snežana D.",
year = "2015",
abstract = "To elaborate the decisive role of surfactants in promotion of aceclofenac' skin absorption, potentially avoiding irritation, we developed non-ionic microemulsions varying natural or synthetic surfactants: sucrose esters (laurate or myristate) vs. polysorbate 80. A comprehensive physicochemical characterization indicated no significant influence of the solubilized nonsteroidal anti-inflammatory drug on the bicontinuous structure of blank formulations. To evaluate skin tolerability of isopropyl alcohol, a sucrose ester-based microemulsion containing transcutol P as a cosurfactant was also developed. The measured skin parameters strongly depended on the (co)surfactant type, showing higher compatibility of the microemulsions containing sucrose ester and isopropyl alcohol. In vitro release results, in vivo tape stripping and pharmacokinetics in rats confirmed superiority of the sucrose ester-over polysorbate-based microemulsions (total amounts of aceclofenac penetrated 60.81 +/- 5.97 and 60.86 +/- 3.67 vs. 27.00 +/- 5.09 mu g/cm(2), and its maximum plasma concentrations 275.57 +/- 109.49 and 281.31 +/- 76.76 vs. 150.23 +/- 69.74 ng/ml for sucrose laurate- and myristate- vs. polysorbate 80-based microemulsions, respectively). Hence, sugar-based excipients increased delivery of aceclofenac through stratum corneum by increasing its fluidity, showing overall more satisfying safety profiles. In conclusion, sucrose ester-based microemulsions proved to be promising carriers for dermal/transdermal aceclofenac delivery.",
publisher = "Elsevier",
journal = "International Journal of Pharmaceutics",
title = "Biocompatible microemulsions of a model NSAID for skin delivery: A decisive role of surfactants in skin penetration/irritation profiles and pharmacokinetic performance",
volume = "496",
number = "2",
pages = "931-941",
doi = "10.1016/j.ijpharm.2015.10.048"
}
Todosijević, M., Savić, M. M., Batinić, B. B., Marković, B. D., Gasperlin, M., Randjelović, D., Lukić, M.,& Savić, S. D.. (2015). Biocompatible microemulsions of a model NSAID for skin delivery: A decisive role of surfactants in skin penetration/irritation profiles and pharmacokinetic performance. in International Journal of Pharmaceutics
Elsevier., 496(2), 931-941.
https://doi.org/10.1016/j.ijpharm.2015.10.048
Todosijević M, Savić MM, Batinić BB, Marković BD, Gasperlin M, Randjelović D, Lukić M, Savić SD. Biocompatible microemulsions of a model NSAID for skin delivery: A decisive role of surfactants in skin penetration/irritation profiles and pharmacokinetic performance. in International Journal of Pharmaceutics. 2015;496(2):931-941.
doi:10.1016/j.ijpharm.2015.10.048 .
Todosijević, Marija, Savić, Miroslav M., Batinić, Bojan B., Marković, Bojan D., Gasperlin, Mirjana, Randjelović, Danijela, Lukić, Milica, Savić, Snežana D., "Biocompatible microemulsions of a model NSAID for skin delivery: A decisive role of surfactants in skin penetration/irritation profiles and pharmacokinetic performance" in International Journal of Pharmaceutics, 496, no. 2 (2015):931-941,
https://doi.org/10.1016/j.ijpharm.2015.10.048 . .
43
33
42

Sucrose ester-based biocompatible microemulsions as vehicles for aceclofenac as a model drug: formulation approach using D-optimal mixture design

Todosijević, Marija; Cekic, Nebojsa; Savić, Miroslav M.; Gasperlin, Mirjana; Randjelović, Danijela; Savić, Snežana D.

(Springer, New York, 2014)

TY  - JOUR
AU  - Todosijević, Marija
AU  - Cekic, Nebojsa
AU  - Savić, Miroslav M.
AU  - Gasperlin, Mirjana
AU  - Randjelović, Danijela
AU  - Savić, Snežana D.
PY  - 2014
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/1411
AB  - We assessed the functionality of sucrose esters (sucrose laurate, myristate, palmitate, and stearate), relatively innocuous nonionic surfactants, in formulation of biocompatible microemulsions. The putative influence of surfactant structure on the extension of microemulsion region was explored through the construction of the pseudo-ternary phase diagrams for the isopropyl myristate/sucrose ester-isopropyl alcohol/water system, using the titration method and mixture experimental approach. Minor changes in surfactant tail length strongly affected the microemulsion area boundaries. D-optimal mixture design proved to be highly applicable in detecting the microemulsion regions. Examination of conductivity, rheology, and thermal behavior of the selected sucrose laurate and sucrose myristate-based microemulsions, upon dilution with water, indicated existence of percolation threshold and suggested the phase inversion from water-in-oil to oil-in-water via a bicontinuous structure. Atomic force micrographs confirmed the suggested type of microemulsions and were valuable in further exploring their inner structure. The solubilization capacity of aceclofenac as a model drug has decreased as the water volume fraction in microemulsion increased. High surfactant concentration and the measured solubility of aceclofenac in microemulsion components suggested that the interfacial film may mostly contribute to aceclofenac solubilization.
PB  - Springer, New York
T2  - Colloid and Polymer Science
T1  - Sucrose ester-based biocompatible microemulsions as vehicles for aceclofenac as a model drug: formulation approach using D-optimal mixture design
VL  - 292
IS  - 12
SP  - 3061
EP  - 3076
DO  - 10.1007/s00396-014-3351-4
ER  - 
@article{
author = "Todosijević, Marija and Cekic, Nebojsa and Savić, Miroslav M. and Gasperlin, Mirjana and Randjelović, Danijela and Savić, Snežana D.",
year = "2014",
abstract = "We assessed the functionality of sucrose esters (sucrose laurate, myristate, palmitate, and stearate), relatively innocuous nonionic surfactants, in formulation of biocompatible microemulsions. The putative influence of surfactant structure on the extension of microemulsion region was explored through the construction of the pseudo-ternary phase diagrams for the isopropyl myristate/sucrose ester-isopropyl alcohol/water system, using the titration method and mixture experimental approach. Minor changes in surfactant tail length strongly affected the microemulsion area boundaries. D-optimal mixture design proved to be highly applicable in detecting the microemulsion regions. Examination of conductivity, rheology, and thermal behavior of the selected sucrose laurate and sucrose myristate-based microemulsions, upon dilution with water, indicated existence of percolation threshold and suggested the phase inversion from water-in-oil to oil-in-water via a bicontinuous structure. Atomic force micrographs confirmed the suggested type of microemulsions and were valuable in further exploring their inner structure. The solubilization capacity of aceclofenac as a model drug has decreased as the water volume fraction in microemulsion increased. High surfactant concentration and the measured solubility of aceclofenac in microemulsion components suggested that the interfacial film may mostly contribute to aceclofenac solubilization.",
publisher = "Springer, New York",
journal = "Colloid and Polymer Science",
title = "Sucrose ester-based biocompatible microemulsions as vehicles for aceclofenac as a model drug: formulation approach using D-optimal mixture design",
volume = "292",
number = "12",
pages = "3061-3076",
doi = "10.1007/s00396-014-3351-4"
}
Todosijević, M., Cekic, N., Savić, M. M., Gasperlin, M., Randjelović, D.,& Savić, S. D.. (2014). Sucrose ester-based biocompatible microemulsions as vehicles for aceclofenac as a model drug: formulation approach using D-optimal mixture design. in Colloid and Polymer Science
Springer, New York., 292(12), 3061-3076.
https://doi.org/10.1007/s00396-014-3351-4
Todosijević M, Cekic N, Savić MM, Gasperlin M, Randjelović D, Savić SD. Sucrose ester-based biocompatible microemulsions as vehicles for aceclofenac as a model drug: formulation approach using D-optimal mixture design. in Colloid and Polymer Science. 2014;292(12):3061-3076.
doi:10.1007/s00396-014-3351-4 .
Todosijević, Marija, Cekic, Nebojsa, Savić, Miroslav M., Gasperlin, Mirjana, Randjelović, Danijela, Savić, Snežana D., "Sucrose ester-based biocompatible microemulsions as vehicles for aceclofenac as a model drug: formulation approach using D-optimal mixture design" in Colloid and Polymer Science, 292, no. 12 (2014):3061-3076,
https://doi.org/10.1007/s00396-014-3351-4 . .
23
17
19

Inorganically modified diatomite as a potential prolonged-release drug carrier

Janicijevic, Jelena; Krajisnik, Danina; Calija, Bojan; Dobricic, Vladimir; Dakovic, Aleksandra; Krstić, Jugoslav; Marković, Marija; Milic, Jela

(Elsevier, 2014)

TY  - JOUR
AU  - Janicijevic, Jelena
AU  - Krajisnik, Danina
AU  - Calija, Bojan
AU  - Dobricic, Vladimir
AU  - Dakovic, Aleksandra
AU  - Krstić, Jugoslav
AU  - Marković, Marija
AU  - Milic, Jela
PY  - 2014
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/1589
AB  - Inorganic modification of diatomite was performed with the precipitation product of partially neutralized aluminum sulfate solution at three different mass ratios. The starting and the modified diatomites were characterized by SEM-EDS, FTIR, thermal analysis and zeta potential measurements and evaluated for drug loading capacity in adsorption batch experiments using diclofenac sodium (DS) as a model drug. In vitro drug release studies were performed in phosphate buffer pH 6.8 from comprimates containing: the drug adsorbed onto the selected modified diatomite sample (DAMD), physical mixture of the drug with the selected modified diatomite sample (PMDMD) and physical mixture of the drug with the starting diatomite (PMDD). In vivo acute toxicity testing of the modified diatomite samples was performed on mice. High adsorbent loading of the selected modified diatomite sample (similar to 250 mg/g in 2 h) enabled the preparation of comprimates containing adsorbed DS in the amount near to its therapeutic dose. Drug release studies demonstrated prolonged release of DS over a period of 8 h from both DAMD comprimates (18% after 8 h) and PMDMD comprimates (45% after 8 h). The release kinetics for DAMD and PMDMD comprimates fitted well with Korsmeyer-Peppas and Bhaskar models, indicating that the release mechanism was a combination of non-Fickian diffusion and ion exchange process.
PB  - Elsevier
T2  - Materials Science & Engineering C-Materials For Biological Applications
T1  - Inorganically modified diatomite as a potential prolonged-release drug carrier
VL  - 42
SP  - 412
EP  - 420
DO  - 10.1016/j.msec.2014.05.052
ER  - 
@article{
author = "Janicijevic, Jelena and Krajisnik, Danina and Calija, Bojan and Dobricic, Vladimir and Dakovic, Aleksandra and Krstić, Jugoslav and Marković, Marija and Milic, Jela",
year = "2014",
abstract = "Inorganic modification of diatomite was performed with the precipitation product of partially neutralized aluminum sulfate solution at three different mass ratios. The starting and the modified diatomites were characterized by SEM-EDS, FTIR, thermal analysis and zeta potential measurements and evaluated for drug loading capacity in adsorption batch experiments using diclofenac sodium (DS) as a model drug. In vitro drug release studies were performed in phosphate buffer pH 6.8 from comprimates containing: the drug adsorbed onto the selected modified diatomite sample (DAMD), physical mixture of the drug with the selected modified diatomite sample (PMDMD) and physical mixture of the drug with the starting diatomite (PMDD). In vivo acute toxicity testing of the modified diatomite samples was performed on mice. High adsorbent loading of the selected modified diatomite sample (similar to 250 mg/g in 2 h) enabled the preparation of comprimates containing adsorbed DS in the amount near to its therapeutic dose. Drug release studies demonstrated prolonged release of DS over a period of 8 h from both DAMD comprimates (18% after 8 h) and PMDMD comprimates (45% after 8 h). The release kinetics for DAMD and PMDMD comprimates fitted well with Korsmeyer-Peppas and Bhaskar models, indicating that the release mechanism was a combination of non-Fickian diffusion and ion exchange process.",
publisher = "Elsevier",
journal = "Materials Science & Engineering C-Materials For Biological Applications",
title = "Inorganically modified diatomite as a potential prolonged-release drug carrier",
volume = "42",
pages = "412-420",
doi = "10.1016/j.msec.2014.05.052"
}
Janicijevic, J., Krajisnik, D., Calija, B., Dobricic, V., Dakovic, A., Krstić, J., Marković, M.,& Milic, J.. (2014). Inorganically modified diatomite as a potential prolonged-release drug carrier. in Materials Science & Engineering C-Materials For Biological Applications
Elsevier., 42, 412-420.
https://doi.org/10.1016/j.msec.2014.05.052
Janicijevic J, Krajisnik D, Calija B, Dobricic V, Dakovic A, Krstić J, Marković M, Milic J. Inorganically modified diatomite as a potential prolonged-release drug carrier. in Materials Science & Engineering C-Materials For Biological Applications. 2014;42:412-420.
doi:10.1016/j.msec.2014.05.052 .
Janicijevic, Jelena, Krajisnik, Danina, Calija, Bojan, Dobricic, Vladimir, Dakovic, Aleksandra, Krstić, Jugoslav, Marković, Marija, Milic, Jela, "Inorganically modified diatomite as a potential prolonged-release drug carrier" in Materials Science & Engineering C-Materials For Biological Applications, 42 (2014):412-420,
https://doi.org/10.1016/j.msec.2014.05.052 . .
25
16
29

Experimental Design in Formulation of Diazepam Nanoemulsions: Physicochemical and Pharmacokinetic Performances

Dordevic, Sanela M.; Radulovic, Tamara S.; Cekic, Nebojsa; Randjelović, Danijela; Savić, Miroslav M.; Krajisnik, Danina R.; Milic, Jela R.; Savić, Snežana D.

(Wiley-Blackwell, Hoboken, 2013)

TY  - JOUR
AU  - Dordevic, Sanela M.
AU  - Radulovic, Tamara S.
AU  - Cekic, Nebojsa
AU  - Randjelović, Danijela
AU  - Savić, Miroslav M.
AU  - Krajisnik, Danina R.
AU  - Milic, Jela R.
AU  - Savić, Snežana D.
PY  - 2013
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/1194
AB  - With the aid of experimental design, we developed and characterized nanoemulsions for parenteral drug delivery. Formulations containing a mixture of medium-chain triglycerides and soybean oil as oil phase, lecithin (soybean/egg) and polysorbate 80 as emulsifiers, and 0.1M phosphate buffer solution (pH 8) as aqueous phase were prepared by cold high-pressure homogenization. To study the effects of the oil content, lecithin type, and the presence of diazepam as a model drug and their interactions on physicochemical characteristics of nanoemulsions, a three factor two-level full factorial design was applied. The nanoemulsions were evaluated concerning droplet size and size distribution, surface charge, viscosity, morphology, drug-excipient interactions, and physical stability. The characterization revealed the small spherical droplets in the range 195-220nm with polydispersity index below 0.15 and zeta potential between -30 and -60mV. Interactions among the investigated factors, rather than factors alone, were shown to more profoundly affect nanoemulsion characteristics. In vivo pharmacokinetic study of selected diazepam nanoemulsions with different oil content (20%, 30%, and 40%, w/w) demonstrated fast and intense initial distribution into rat brain of diazepam from nanoemulsions with 20% and 30% (w/w) oil content, suggesting their applicability in urgent situations.
PB  - Wiley-Blackwell, Hoboken
T2  - Journal of Pharmaceutical Sciences
T1  - Experimental Design in Formulation of Diazepam Nanoemulsions: Physicochemical and Pharmacokinetic Performances
VL  - 102
IS  - 11
SP  - 4159
EP  - 4172
DO  - 10.1002/jps.23734
ER  - 
@article{
author = "Dordevic, Sanela M. and Radulovic, Tamara S. and Cekic, Nebojsa and Randjelović, Danijela and Savić, Miroslav M. and Krajisnik, Danina R. and Milic, Jela R. and Savić, Snežana D.",
year = "2013",
abstract = "With the aid of experimental design, we developed and characterized nanoemulsions for parenteral drug delivery. Formulations containing a mixture of medium-chain triglycerides and soybean oil as oil phase, lecithin (soybean/egg) and polysorbate 80 as emulsifiers, and 0.1M phosphate buffer solution (pH 8) as aqueous phase were prepared by cold high-pressure homogenization. To study the effects of the oil content, lecithin type, and the presence of diazepam as a model drug and their interactions on physicochemical characteristics of nanoemulsions, a three factor two-level full factorial design was applied. The nanoemulsions were evaluated concerning droplet size and size distribution, surface charge, viscosity, morphology, drug-excipient interactions, and physical stability. The characterization revealed the small spherical droplets in the range 195-220nm with polydispersity index below 0.15 and zeta potential between -30 and -60mV. Interactions among the investigated factors, rather than factors alone, were shown to more profoundly affect nanoemulsion characteristics. In vivo pharmacokinetic study of selected diazepam nanoemulsions with different oil content (20%, 30%, and 40%, w/w) demonstrated fast and intense initial distribution into rat brain of diazepam from nanoemulsions with 20% and 30% (w/w) oil content, suggesting their applicability in urgent situations.",
publisher = "Wiley-Blackwell, Hoboken",
journal = "Journal of Pharmaceutical Sciences",
title = "Experimental Design in Formulation of Diazepam Nanoemulsions: Physicochemical and Pharmacokinetic Performances",
volume = "102",
number = "11",
pages = "4159-4172",
doi = "10.1002/jps.23734"
}
Dordevic, S. M., Radulovic, T. S., Cekic, N., Randjelović, D., Savić, M. M., Krajisnik, D. R., Milic, J. R.,& Savić, S. D.. (2013). Experimental Design in Formulation of Diazepam Nanoemulsions: Physicochemical and Pharmacokinetic Performances. in Journal of Pharmaceutical Sciences
Wiley-Blackwell, Hoboken., 102(11), 4159-4172.
https://doi.org/10.1002/jps.23734
Dordevic SM, Radulovic TS, Cekic N, Randjelović D, Savić MM, Krajisnik DR, Milic JR, Savić SD. Experimental Design in Formulation of Diazepam Nanoemulsions: Physicochemical and Pharmacokinetic Performances. in Journal of Pharmaceutical Sciences. 2013;102(11):4159-4172.
doi:10.1002/jps.23734 .
Dordevic, Sanela M., Radulovic, Tamara S., Cekic, Nebojsa, Randjelović, Danijela, Savić, Miroslav M., Krajisnik, Danina R., Milic, Jela R., Savić, Snežana D., "Experimental Design in Formulation of Diazepam Nanoemulsions: Physicochemical and Pharmacokinetic Performances" in Journal of Pharmaceutical Sciences, 102, no. 11 (2013):4159-4172,
https://doi.org/10.1002/jps.23734 . .
44
31
41