MultiPromis - Multifunctional leaf protein and assembled nanocarrier structures delivered by enzyme technology

Link to this page

info:eu-repo/grantAgreement/ScienceFundRS/Ideje/7751519/RS//

MultiPromis - Multifunctional leaf protein and assembled nanocarrier structures delivered by enzyme technology (en)
Authors

Publications

Significantly improved stabilization of glycoside hydrolases important in food industry by immobilization onto appropriately modified beidellite

Kosić, Višnja; Božić, Nataša; Dojnov, Biljana; Banković, Predrag; Jović-Jovičić, Nataša; Knežević-Jugović, Zorica; Milutinović Nikolić, Aleksandra

(Elsevier, 2024)

TY  - JOUR
AU  - Kosić, Višnja
AU  - Božić, Nataša
AU  - Dojnov, Biljana
AU  - Banković, Predrag
AU  - Jović-Jovičić, Nataša
AU  - Knežević-Jugović, Zorica
AU  - Milutinović Nikolić, Aleksandra
PY  - 2024
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/7525
AB  - Three glycoside hydrolases (α-amylase, xylanase and pullulanase) were immobilized on low-cost, environmentally friendly, easily modified clay rich in beidellite. Modifications included common procedures: Na-exchange, acid activation, pillaring, pillaring followed by acid activation, and organo-modifications with chitosan. Supports were characterized by chemical analysis, low temperature N2 physisorption, X-ray powder diffraction (XRPD) and Fourier-transform infrared (FT-IR) spectroscopy. The point of zero charge was also determined. Specific activity of different immobilizates of selected glycoside hydrolases was notably influenced by the type of chemical modification of supports. For each enzyme optimal support was chosen and storage stability was tested. α-Amylase immobilized on acid-activated support retained up to 95% of its initial specific activity of 105.6 ± 5.1 U g−1 after a testing period of 120 days. The most suitable support for xylanase was chitosan-modified beidellite with having specific activity of 90.0 ± 1.4 U g−1 which retained >50% its value after 120 days. Specific activity of pullulanase immobilized on pillared sample that was subsequently activated by acid was 44.5 ± 0.7 U g−1. Initial activity was preserved up to 33% for the same testing period. Comparing these results to the storage stability of the free enzymes that completely lost their activity for the longest period of 40 days, it can be concluded that appropriately modified beidellite- based clays could be used as suitable supports for stabilization of glycoside hydrolases. Nevertheless, further characterization of immobilizates (pH, thermal and operational stability) is needed in order to raise the suitability for larger scale processes in food industry.
PB  - Elsevier
T2  - Applied Clay Science
T1  - Significantly improved stabilization of glycoside hydrolases important in food industry by immobilization onto appropriately modified beidellite
VL  - 250
SP  - 107289
DO  - 10.1016/j.clay.2024.107289
ER  - 
@article{
author = "Kosić, Višnja and Božić, Nataša and Dojnov, Biljana and Banković, Predrag and Jović-Jovičić, Nataša and Knežević-Jugović, Zorica and Milutinović Nikolić, Aleksandra",
year = "2024",
abstract = "Three glycoside hydrolases (α-amylase, xylanase and pullulanase) were immobilized on low-cost, environmentally friendly, easily modified clay rich in beidellite. Modifications included common procedures: Na-exchange, acid activation, pillaring, pillaring followed by acid activation, and organo-modifications with chitosan. Supports were characterized by chemical analysis, low temperature N2 physisorption, X-ray powder diffraction (XRPD) and Fourier-transform infrared (FT-IR) spectroscopy. The point of zero charge was also determined. Specific activity of different immobilizates of selected glycoside hydrolases was notably influenced by the type of chemical modification of supports. For each enzyme optimal support was chosen and storage stability was tested. α-Amylase immobilized on acid-activated support retained up to 95% of its initial specific activity of 105.6 ± 5.1 U g−1 after a testing period of 120 days. The most suitable support for xylanase was chitosan-modified beidellite with having specific activity of 90.0 ± 1.4 U g−1 which retained >50% its value after 120 days. Specific activity of pullulanase immobilized on pillared sample that was subsequently activated by acid was 44.5 ± 0.7 U g−1. Initial activity was preserved up to 33% for the same testing period. Comparing these results to the storage stability of the free enzymes that completely lost their activity for the longest period of 40 days, it can be concluded that appropriately modified beidellite- based clays could be used as suitable supports for stabilization of glycoside hydrolases. Nevertheless, further characterization of immobilizates (pH, thermal and operational stability) is needed in order to raise the suitability for larger scale processes in food industry.",
publisher = "Elsevier",
journal = "Applied Clay Science",
title = "Significantly improved stabilization of glycoside hydrolases important in food industry by immobilization onto appropriately modified beidellite",
volume = "250",
pages = "107289",
doi = "10.1016/j.clay.2024.107289"
}
Kosić, V., Božić, N., Dojnov, B., Banković, P., Jović-Jovičić, N., Knežević-Jugović, Z.,& Milutinović Nikolić, A.. (2024). Significantly improved stabilization of glycoside hydrolases important in food industry by immobilization onto appropriately modified beidellite. in Applied Clay Science
Elsevier., 250, 107289.
https://doi.org/10.1016/j.clay.2024.107289
Kosić V, Božić N, Dojnov B, Banković P, Jović-Jovičić N, Knežević-Jugović Z, Milutinović Nikolić A. Significantly improved stabilization of glycoside hydrolases important in food industry by immobilization onto appropriately modified beidellite. in Applied Clay Science. 2024;250:107289.
doi:10.1016/j.clay.2024.107289 .
Kosić, Višnja, Božić, Nataša, Dojnov, Biljana, Banković, Predrag, Jović-Jovičić, Nataša, Knežević-Jugović, Zorica, Milutinović Nikolić, Aleksandra, "Significantly improved stabilization of glycoside hydrolases important in food industry by immobilization onto appropriately modified beidellite" in Applied Clay Science, 250 (2024):107289,
https://doi.org/10.1016/j.clay.2024.107289 . .