CEEPUS network CIII-BG-0703

Link to this page

CEEPUS network CIII-BG-0703

Authors

Publications

Influence of secondary phases in A356 MMCs on their mechanical properties at macro- and nanoscale

Vencl, Aleksandar; Bobić, Ilija; Stanković, Miloš; Hvizdoš, Pavol; Bobić, Biljana; Stojanović, Blaža; Franek, Friedrich

(Springer, 2020)

TY  - JOUR
AU  - Vencl, Aleksandar
AU  - Bobić, Ilija
AU  - Stanković, Miloš
AU  - Hvizdoš, Pavol
AU  - Bobić, Biljana
AU  - Stojanović, Blaža
AU  - Franek, Friedrich
PY  - 2020
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3437
AB  - Metal matrix composites are very inhomogeneous materials, and their properties depend on various parameters (production process, constituents, their interfaces, etc.). The influence of SiC microparticles (40 mu m) reinforcement and graphite macroparticles (200-800 mu m) addition on the mechanical properties of Al-Si A356 alloy, produced by compocasting, has been assessed using macro- and nanoscale measurements of hardness and modulus of elasticity. The Al makes over 90 wt% of the A356 alloy, so the nanoscale measurements were performed on different alpha phase regions on each material (core of alpha phase, eutectic alpha phase, and alpha phase near the phase boundaries alpha phase/secondary phases). The results showed that there is no direct correlation between mechanical properties on macro- and nanoscale. The nanoscale results also showed that the secondary phases (SiC and graphite particles) can have significant effect on the mechanical properties on the atomic level, i.e. in the alpha phase regions very close to the secondary phases.
PB  - Springer
T2  - Journal of the Brazilian Society of Mechanical Sciences and Engineering
T1  - Influence of secondary phases in A356 MMCs on their mechanical properties at macro- and nanoscale
VL  - 42
IS  - 3
SP  - 115
DO  - 10.1007/s40430-020-2197-6
ER  - 
@article{
author = "Vencl, Aleksandar and Bobić, Ilija and Stanković, Miloš and Hvizdoš, Pavol and Bobić, Biljana and Stojanović, Blaža and Franek, Friedrich",
year = "2020",
abstract = "Metal matrix composites are very inhomogeneous materials, and their properties depend on various parameters (production process, constituents, their interfaces, etc.). The influence of SiC microparticles (40 mu m) reinforcement and graphite macroparticles (200-800 mu m) addition on the mechanical properties of Al-Si A356 alloy, produced by compocasting, has been assessed using macro- and nanoscale measurements of hardness and modulus of elasticity. The Al makes over 90 wt% of the A356 alloy, so the nanoscale measurements were performed on different alpha phase regions on each material (core of alpha phase, eutectic alpha phase, and alpha phase near the phase boundaries alpha phase/secondary phases). The results showed that there is no direct correlation between mechanical properties on macro- and nanoscale. The nanoscale results also showed that the secondary phases (SiC and graphite particles) can have significant effect on the mechanical properties on the atomic level, i.e. in the alpha phase regions very close to the secondary phases.",
publisher = "Springer",
journal = "Journal of the Brazilian Society of Mechanical Sciences and Engineering",
title = "Influence of secondary phases in A356 MMCs on their mechanical properties at macro- and nanoscale",
volume = "42",
number = "3",
pages = "115",
doi = "10.1007/s40430-020-2197-6"
}
Vencl, A., Bobić, I., Stanković, M., Hvizdoš, P., Bobić, B., Stojanović, B.,& Franek, F.. (2020). Influence of secondary phases in A356 MMCs on their mechanical properties at macro- and nanoscale. in Journal of the Brazilian Society of Mechanical Sciences and Engineering
Springer., 42(3), 115.
https://doi.org/10.1007/s40430-020-2197-6
Vencl A, Bobić I, Stanković M, Hvizdoš P, Bobić B, Stojanović B, Franek F. Influence of secondary phases in A356 MMCs on their mechanical properties at macro- and nanoscale. in Journal of the Brazilian Society of Mechanical Sciences and Engineering. 2020;42(3):115.
doi:10.1007/s40430-020-2197-6 .
Vencl, Aleksandar, Bobić, Ilija, Stanković, Miloš, Hvizdoš, Pavol, Bobić, Biljana, Stojanović, Blaža, Franek, Friedrich, "Influence of secondary phases in A356 MMCs on their mechanical properties at macro- and nanoscale" in Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42, no. 3 (2020):115,
https://doi.org/10.1007/s40430-020-2197-6 . .
9
1
8

Erosive wear properties of ZA-27 alloy-based nanocomposites: Influence of type, amount, and size of nanoparticle reinforcements

Vencl, Aleksandar; Bobić, Ilija; Bobić, Biljana; Jakimovska, Kristina; Svoboda, Petr; Kandeva, Mara

(Springer, 2019)

TY  - JOUR
AU  - Vencl, Aleksandar
AU  - Bobić, Ilija
AU  - Bobić, Biljana
AU  - Jakimovska, Kristina
AU  - Svoboda, Petr
AU  - Kandeva, Mara
PY  - 2019
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3040
AB  - Metal matrix nanocomposites (MMnCs) comprise a metal matrix filled with nanosized reinforcements with physical and mechanical properties that are very different from those of the matrix. In ZA-27 alloy-based nanocomposites, the metal matrix provides ductility and toughness, while usually used ceramic reinforcements give high strength and hardness. Tested ZA-27 alloy-based nanocomposites, reinforced with different types (SiC and Al2O3), amounts (0.2 wt.%, 0.3 wt.%, and 0.5 wt.%) and sizes (25 nm, 50 nm, and 100 nm) of nanoparticles were produced through the compocasting process with mechanical alloying pre-processing (ball milling). It was previously shown that the presence of nanoparticles in ZA-27 alloy-based nanocomposites led to the formation of a finer structure in the nanocomposites matrix and an improvement in the basic mechanical properties (hardness and compressive yield strength) through the enhanced dislocation density strengthening mechanism. Solid particle erosive wear testing demonstrated that these improvements were followed with an increase in the erosive wear resistance of tested nanocomposites, as well. Additionally, by analyzing the influences of type, amount, and size of nanoparticles on the erosive wear resistance of nanocomposites, it was demonstrated that there is an optimal amount of nanoparticles, which in our case is 0.3 wt.%, and that the presence of SiC nanoparticles and smaller nanoparticles in nanocomposites had more beneficial influence on erosive wear resistance.
PB  - Springer
T2  - Friction
T1  - Erosive wear properties of ZA-27 alloy-based nanocomposites: Influence of type, amount, and size of nanoparticle reinforcements
VL  - 7
IS  - 4
SP  - 340
EP  - 350
DO  - 10.1007/s40544-018-0222-x
ER  - 
@article{
author = "Vencl, Aleksandar and Bobić, Ilija and Bobić, Biljana and Jakimovska, Kristina and Svoboda, Petr and Kandeva, Mara",
year = "2019",
abstract = "Metal matrix nanocomposites (MMnCs) comprise a metal matrix filled with nanosized reinforcements with physical and mechanical properties that are very different from those of the matrix. In ZA-27 alloy-based nanocomposites, the metal matrix provides ductility and toughness, while usually used ceramic reinforcements give high strength and hardness. Tested ZA-27 alloy-based nanocomposites, reinforced with different types (SiC and Al2O3), amounts (0.2 wt.%, 0.3 wt.%, and 0.5 wt.%) and sizes (25 nm, 50 nm, and 100 nm) of nanoparticles were produced through the compocasting process with mechanical alloying pre-processing (ball milling). It was previously shown that the presence of nanoparticles in ZA-27 alloy-based nanocomposites led to the formation of a finer structure in the nanocomposites matrix and an improvement in the basic mechanical properties (hardness and compressive yield strength) through the enhanced dislocation density strengthening mechanism. Solid particle erosive wear testing demonstrated that these improvements were followed with an increase in the erosive wear resistance of tested nanocomposites, as well. Additionally, by analyzing the influences of type, amount, and size of nanoparticles on the erosive wear resistance of nanocomposites, it was demonstrated that there is an optimal amount of nanoparticles, which in our case is 0.3 wt.%, and that the presence of SiC nanoparticles and smaller nanoparticles in nanocomposites had more beneficial influence on erosive wear resistance.",
publisher = "Springer",
journal = "Friction",
title = "Erosive wear properties of ZA-27 alloy-based nanocomposites: Influence of type, amount, and size of nanoparticle reinforcements",
volume = "7",
number = "4",
pages = "340-350",
doi = "10.1007/s40544-018-0222-x"
}
Vencl, A., Bobić, I., Bobić, B., Jakimovska, K., Svoboda, P.,& Kandeva, M.. (2019). Erosive wear properties of ZA-27 alloy-based nanocomposites: Influence of type, amount, and size of nanoparticle reinforcements. in Friction
Springer., 7(4), 340-350.
https://doi.org/10.1007/s40544-018-0222-x
Vencl A, Bobić I, Bobić B, Jakimovska K, Svoboda P, Kandeva M. Erosive wear properties of ZA-27 alloy-based nanocomposites: Influence of type, amount, and size of nanoparticle reinforcements. in Friction. 2019;7(4):340-350.
doi:10.1007/s40544-018-0222-x .
Vencl, Aleksandar, Bobić, Ilija, Bobić, Biljana, Jakimovska, Kristina, Svoboda, Petr, Kandeva, Mara, "Erosive wear properties of ZA-27 alloy-based nanocomposites: Influence of type, amount, and size of nanoparticle reinforcements" in Friction, 7, no. 4 (2019):340-350,
https://doi.org/10.1007/s40544-018-0222-x . .
1
11
7
15