Gajić Krstajić, Ljiljana

Link to this page

Authority KeyName Variants
orcid::0000-0001-8996-7477
  • Gajić Krstajić, Ljiljana (2)
Projects

Author's Bibliography

Electrodeposited AgPd alloy coatings as efficient catalysts for the ethanol oxidation reaction

Lović, Jelena; Elezović, Nevenka R.; Jovic, B. M.; Zabinski, Piotr; Gajić Krstajić, Ljiljana; Jović, Vladimir D.

(Oxford : Pergamon-Elsevier Science Ltd, 2018)

TY  - JOUR
AU  - Lović, Jelena
AU  - Elezović, Nevenka R.
AU  - Jovic, B. M.
AU  - Zabinski, Piotr
AU  - Gajić Krstajić, Ljiljana
AU  - Jović, Vladimir D.
PY  - 2018
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/2373
AB  - The Pd and three AgPd alloy layers (AgPd1, AgPd2 and AgPd3) were electrodeposited onto Au disc electrodes from the solution containing high concentration of chloride ions (>12 M). All coatings were investigated by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), anodic linear sweep voltammetry (ALSV), while their surface composition was investigated by X-ray photoelectron spectroscopy (XPS). The AgPd1 and AgPd2 samples were electrodeposited at different constant current densities (-0.178 mA cm(-2) and -0.415 mA cm(-2) respectively) to the charge of -0.2 C cm(-2) (thickness similar to 0.18 mu m) at a stationary disc electrode, while the sample AgPd3 was electrodeposited to the charge of -3.0 C cm(-2) (thickness similar to 2.8 mu m) at a constant current density of -7.0 mA cm(-2) under the conditions of convective diffusion. Samples AgPd1 and AgPd2 had similar morphologies of low roughness, while the morphology of AgPd3 was characterized by large crystals and higher roughness. The most active and the most poisoning tolerant coatings for ethanol oxidation reaction (EOR) are the AgPd3 and AgPd1 alloy samples, containing 72.6 at.% Ag - 27.4 at.% Pd and 84.7 at.% Ag - 15.2 at.% Pd respectively (XPS analysis). In this study, we demonstrated for the first time that the activity for the EOR at AgPd alloys was closely related to the amount of non-reduced Ag2O (most probably as Ag - hydroxide). Accordingly, all AgPd alloy samples had to be cycled in the potential region of Ag2O formation and reduction before the investigation of the EOR, in order to provide their catalytic activity towards the EOR.
PB  - Oxford : Pergamon-Elsevier Science Ltd
T2  - International Journal of Hydrogen Energy
T1  - Electrodeposited AgPd alloy coatings as efficient catalysts for the ethanol oxidation reaction
VL  - 43
IS  - 39
SP  - 18498
EP  - 18508
DO  - 10.1016/j.ijhydene.2018.08.056
ER  - 
@article{
author = "Lović, Jelena and Elezović, Nevenka R. and Jovic, B. M. and Zabinski, Piotr and Gajić Krstajić, Ljiljana and Jović, Vladimir D.",
year = "2018",
abstract = "The Pd and three AgPd alloy layers (AgPd1, AgPd2 and AgPd3) were electrodeposited onto Au disc electrodes from the solution containing high concentration of chloride ions (>12 M). All coatings were investigated by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), anodic linear sweep voltammetry (ALSV), while their surface composition was investigated by X-ray photoelectron spectroscopy (XPS). The AgPd1 and AgPd2 samples were electrodeposited at different constant current densities (-0.178 mA cm(-2) and -0.415 mA cm(-2) respectively) to the charge of -0.2 C cm(-2) (thickness similar to 0.18 mu m) at a stationary disc electrode, while the sample AgPd3 was electrodeposited to the charge of -3.0 C cm(-2) (thickness similar to 2.8 mu m) at a constant current density of -7.0 mA cm(-2) under the conditions of convective diffusion. Samples AgPd1 and AgPd2 had similar morphologies of low roughness, while the morphology of AgPd3 was characterized by large crystals and higher roughness. The most active and the most poisoning tolerant coatings for ethanol oxidation reaction (EOR) are the AgPd3 and AgPd1 alloy samples, containing 72.6 at.% Ag - 27.4 at.% Pd and 84.7 at.% Ag - 15.2 at.% Pd respectively (XPS analysis). In this study, we demonstrated for the first time that the activity for the EOR at AgPd alloys was closely related to the amount of non-reduced Ag2O (most probably as Ag - hydroxide). Accordingly, all AgPd alloy samples had to be cycled in the potential region of Ag2O formation and reduction before the investigation of the EOR, in order to provide their catalytic activity towards the EOR.",
publisher = "Oxford : Pergamon-Elsevier Science Ltd",
journal = "International Journal of Hydrogen Energy",
title = "Electrodeposited AgPd alloy coatings as efficient catalysts for the ethanol oxidation reaction",
volume = "43",
number = "39",
pages = "18498-18508",
doi = "10.1016/j.ijhydene.2018.08.056"
}
Lović, J., Elezović, N. R., Jovic, B. M., Zabinski, P., Gajić Krstajić, L.,& Jović, V. D.. (2018). Electrodeposited AgPd alloy coatings as efficient catalysts for the ethanol oxidation reaction. in International Journal of Hydrogen Energy
Oxford : Pergamon-Elsevier Science Ltd., 43(39), 18498-18508.
https://doi.org/10.1016/j.ijhydene.2018.08.056
Lović J, Elezović NR, Jovic BM, Zabinski P, Gajić Krstajić L, Jović VD. Electrodeposited AgPd alloy coatings as efficient catalysts for the ethanol oxidation reaction. in International Journal of Hydrogen Energy. 2018;43(39):18498-18508.
doi:10.1016/j.ijhydene.2018.08.056 .
Lović, Jelena, Elezović, Nevenka R., Jovic, B. M., Zabinski, Piotr, Gajić Krstajić, Ljiljana, Jović, Vladimir D., "Electrodeposited AgPd alloy coatings as efficient catalysts for the ethanol oxidation reaction" in International Journal of Hydrogen Energy, 43, no. 39 (2018):18498-18508,
https://doi.org/10.1016/j.ijhydene.2018.08.056 . .
12
8
12

Synthesis and characterization of Pd nanocatalyst at tungsten carbide based support for fuel cells application

Gajić Krstajić, Ljiljana; Zabinski, Piotr; Radmilović, Velimir R.; Ercius, Peter; Krstajić Pajić, Mila N.; Lačnjevac, Uroš; Krstajić, Nedeljko; Elezović, Nevenka

(Belgrade : Materials Research Society of Serbia, 2016)

TY  - CONF
AU  - Gajić Krstajić, Ljiljana
AU  - Zabinski, Piotr
AU  - Radmilović, Velimir R.
AU  - Ercius, Peter
AU  - Krstajić Pajić, Mila N.
AU  - Lačnjevac, Uroš
AU  - Krstajić, Nedeljko
AU  - Elezović, Nevenka
PY  - 2016
UR  - http://dais.sanu.ac.rs/123456789/895
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/2862
AB  - Tungsten carbide was prepared by polycondensation of resorcinol and formaldehyde in the presence cetyltrimethylammonium bromide (CTABr) surfactant. Pd nanocatalyst at this support was synthesized by borohydride reduction method. The obtained materials were characterized by XRD, HRTEM, EELS, XPS and electrochemical measurements. TEM analysis revealed Pd nanoparticles size in the range of a few nanometers, even the clusters of Pd atoms. X-Ray Photoelectron Spectroscopy was applied to determine surface composition of the substrates. The presence of palladium based species was revealed. The catalytic activity for the hydrogen oxidation reaction and oxygen reduction were investigated in 0.5 M HClO4 by cyclic voltammetry and linear sweep voltammetry at the rotating disc electrode. The catalysts’ activities were compared to the carbon supported Pd nanoparticles (Vulcan XC 72). WC supported Pd nanoparticles have shown higher CO tolerance, compared even to Pt based catalyst. Acknowledgements: This work was financially supported by Ministry of Education, Science and Technological Development, Republic of Serbia, contract No. 172054.The authors would like to acknowledge networking support by the COST Action MP1407.
PB  - Belgrade : Materials Research Society of Serbia
C3  - Programme and The Book of Abstracts / Eighteenth Annual Conference YUCOMAT 2016, Herceg Novi, September 5-10, 2016
T1  - Synthesis and characterization of Pd nanocatalyst at tungsten carbide based support for fuel cells application
SP  - 71
EP  - 71
UR  - https://hdl.handle.net/21.15107/rcub_dais_895
ER  - 
@conference{
author = "Gajić Krstajić, Ljiljana and Zabinski, Piotr and Radmilović, Velimir R. and Ercius, Peter and Krstajić Pajić, Mila N. and Lačnjevac, Uroš and Krstajić, Nedeljko and Elezović, Nevenka",
year = "2016",
abstract = "Tungsten carbide was prepared by polycondensation of resorcinol and formaldehyde in the presence cetyltrimethylammonium bromide (CTABr) surfactant. Pd nanocatalyst at this support was synthesized by borohydride reduction method. The obtained materials were characterized by XRD, HRTEM, EELS, XPS and electrochemical measurements. TEM analysis revealed Pd nanoparticles size in the range of a few nanometers, even the clusters of Pd atoms. X-Ray Photoelectron Spectroscopy was applied to determine surface composition of the substrates. The presence of palladium based species was revealed. The catalytic activity for the hydrogen oxidation reaction and oxygen reduction were investigated in 0.5 M HClO4 by cyclic voltammetry and linear sweep voltammetry at the rotating disc electrode. The catalysts’ activities were compared to the carbon supported Pd nanoparticles (Vulcan XC 72). WC supported Pd nanoparticles have shown higher CO tolerance, compared even to Pt based catalyst. Acknowledgements: This work was financially supported by Ministry of Education, Science and Technological Development, Republic of Serbia, contract No. 172054.The authors would like to acknowledge networking support by the COST Action MP1407.",
publisher = "Belgrade : Materials Research Society of Serbia",
journal = "Programme and The Book of Abstracts / Eighteenth Annual Conference YUCOMAT 2016, Herceg Novi, September 5-10, 2016",
title = "Synthesis and characterization of Pd nanocatalyst at tungsten carbide based support for fuel cells application",
pages = "71-71",
url = "https://hdl.handle.net/21.15107/rcub_dais_895"
}
Gajić Krstajić, L., Zabinski, P., Radmilović, V. R., Ercius, P., Krstajić Pajić, M. N., Lačnjevac, U., Krstajić, N.,& Elezović, N.. (2016). Synthesis and characterization of Pd nanocatalyst at tungsten carbide based support for fuel cells application. in Programme and The Book of Abstracts / Eighteenth Annual Conference YUCOMAT 2016, Herceg Novi, September 5-10, 2016
Belgrade : Materials Research Society of Serbia., 71-71.
https://hdl.handle.net/21.15107/rcub_dais_895
Gajić Krstajić L, Zabinski P, Radmilović VR, Ercius P, Krstajić Pajić MN, Lačnjevac U, Krstajić N, Elezović N. Synthesis and characterization of Pd nanocatalyst at tungsten carbide based support for fuel cells application. in Programme and The Book of Abstracts / Eighteenth Annual Conference YUCOMAT 2016, Herceg Novi, September 5-10, 2016. 2016;:71-71.
https://hdl.handle.net/21.15107/rcub_dais_895 .
Gajić Krstajić, Ljiljana, Zabinski, Piotr, Radmilović, Velimir R., Ercius, Peter, Krstajić Pajić, Mila N., Lačnjevac, Uroš, Krstajić, Nedeljko, Elezović, Nevenka, "Synthesis and characterization of Pd nanocatalyst at tungsten carbide based support for fuel cells application" in Programme and The Book of Abstracts / Eighteenth Annual Conference YUCOMAT 2016, Herceg Novi, September 5-10, 2016 (2016):71-71,
https://hdl.handle.net/21.15107/rcub_dais_895 .