Papadimitriou, Vassiliki

Link to this page

Authority KeyName Variants
orcid::0000-0002-6632-3115
  • Papadimitriou, Vassiliki (6)
Projects

Author's Bibliography

The Impact of the Oil Phase Selection on Physicochemical Properties, Long-Term Stability, In Vitro Performance and Injectability of Curcumin-Loaded PEGylated Nanoemulsions

Đoković, Jelena B.; Demisli, Sotiria; Savić, Sanela M.; Marković, Bojan D.; Cekić, Nebojša D.; Randjelović, Danijela; Mitrović, Jelena R.; Lunter, Dominique Jasmin; Papadimitriou, Vassiliki; Xenakis, Aristotelis; Savić, Snežana D.

(Switzerland : Multidisciplinary Digital Publishing Institute (MDPI), 2022)

TY  - JOUR
AU  - Đoković, Jelena B.
AU  - Demisli, Sotiria
AU  - Savić, Sanela M.
AU  - Marković, Bojan D.
AU  - Cekić, Nebojša D.
AU  - Randjelović, Danijela
AU  - Mitrović, Jelena R.
AU  - Lunter, Dominique Jasmin
AU  - Papadimitriou, Vassiliki
AU  - Xenakis, Aristotelis
AU  - Savić, Snežana D.
PY  - 2022
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/5375
AB  - A nanotechnology-based approach to drug delivery presents one of the biggest trends in biomedical science that can provide increased active concentration, bioavailability, and safety compared to conventional drug-delivery systems. Nanoemulsions stand out amongst other nanocarriers for being biodegradable, biocompatible, and relatively easy to manufacture. For improved drug-delivery properties, longer circulation for the nanoemulsion droplets should be provided, to allow the active to reach the target site. One of the strategies used for this purpose is PEGylation. The aim of this research was assessing the impact of the oil phase selection, soybean or fish oil mixtures with medium chain triglycerides, on the physicochemical characteristics and injectability of curcumin-loaded PEGylated nanoemulsions. Electron paramagnetic resonance spectroscopy demonstrated the structural impact of the oil phase on the stabilizing layer of nanoemulsions, with a more pronounced stabilizing effect of curcumin observed in the fish oil nanoemulsion compared to the soybean oil one. The design of the experiment study, employed to simultaneously assess the impact of the oil phase, different PEGylated phospholipids and their concentrations, as well as the presence of curcumin, showed that not only the investigated factors alone, but also their interactions, had a significant influence on the critical quality attributes of the PEGylated nanoemulsions. Detailed physicochemical characterization of the NEs found all formulations were appropriate for parenteral administration and remained stable during two years of storage, with the preserved antioxidant activity demonstrated by DPPH and FRAP assays. In vitro release studies showed a more pronounced release of curcumin from the fish oil NEs compared to that from the soybean oil ones. The innovative in vitro injectability assessment, designed to mimic intravenous application, proved that all formulations tested in selected experimental setting could be employed in prospective in vivo studies. Overall, the current study shows the importance of oil phase selection when formulating PEGylated nanoemulsions.
PB  - Switzerland : Multidisciplinary Digital Publishing Institute (MDPI)
T2  - Pharmaceutics
T1  - The Impact of the Oil Phase Selection on Physicochemical Properties, Long-Term Stability, In Vitro Performance and Injectability of Curcumin-Loaded PEGylated Nanoemulsions
VL  - 14
IS  - 8
SP  - 1666
DO  - 10.3390/pharmaceutics14081666
ER  - 
@article{
author = "Đoković, Jelena B. and Demisli, Sotiria and Savić, Sanela M. and Marković, Bojan D. and Cekić, Nebojša D. and Randjelović, Danijela and Mitrović, Jelena R. and Lunter, Dominique Jasmin and Papadimitriou, Vassiliki and Xenakis, Aristotelis and Savić, Snežana D.",
year = "2022",
abstract = "A nanotechnology-based approach to drug delivery presents one of the biggest trends in biomedical science that can provide increased active concentration, bioavailability, and safety compared to conventional drug-delivery systems. Nanoemulsions stand out amongst other nanocarriers for being biodegradable, biocompatible, and relatively easy to manufacture. For improved drug-delivery properties, longer circulation for the nanoemulsion droplets should be provided, to allow the active to reach the target site. One of the strategies used for this purpose is PEGylation. The aim of this research was assessing the impact of the oil phase selection, soybean or fish oil mixtures with medium chain triglycerides, on the physicochemical characteristics and injectability of curcumin-loaded PEGylated nanoemulsions. Electron paramagnetic resonance spectroscopy demonstrated the structural impact of the oil phase on the stabilizing layer of nanoemulsions, with a more pronounced stabilizing effect of curcumin observed in the fish oil nanoemulsion compared to the soybean oil one. The design of the experiment study, employed to simultaneously assess the impact of the oil phase, different PEGylated phospholipids and their concentrations, as well as the presence of curcumin, showed that not only the investigated factors alone, but also their interactions, had a significant influence on the critical quality attributes of the PEGylated nanoemulsions. Detailed physicochemical characterization of the NEs found all formulations were appropriate for parenteral administration and remained stable during two years of storage, with the preserved antioxidant activity demonstrated by DPPH and FRAP assays. In vitro release studies showed a more pronounced release of curcumin from the fish oil NEs compared to that from the soybean oil ones. The innovative in vitro injectability assessment, designed to mimic intravenous application, proved that all formulations tested in selected experimental setting could be employed in prospective in vivo studies. Overall, the current study shows the importance of oil phase selection when formulating PEGylated nanoemulsions.",
publisher = "Switzerland : Multidisciplinary Digital Publishing Institute (MDPI)",
journal = "Pharmaceutics",
title = "The Impact of the Oil Phase Selection on Physicochemical Properties, Long-Term Stability, In Vitro Performance and Injectability of Curcumin-Loaded PEGylated Nanoemulsions",
volume = "14",
number = "8",
pages = "1666",
doi = "10.3390/pharmaceutics14081666"
}
Đoković, J. B., Demisli, S., Savić, S. M., Marković, B. D., Cekić, N. D., Randjelović, D., Mitrović, J. R., Lunter, D. J., Papadimitriou, V., Xenakis, A.,& Savić, S. D.. (2022). The Impact of the Oil Phase Selection on Physicochemical Properties, Long-Term Stability, In Vitro Performance and Injectability of Curcumin-Loaded PEGylated Nanoemulsions. in Pharmaceutics
Switzerland : Multidisciplinary Digital Publishing Institute (MDPI)., 14(8), 1666.
https://doi.org/10.3390/pharmaceutics14081666
Đoković JB, Demisli S, Savić SM, Marković BD, Cekić ND, Randjelović D, Mitrović JR, Lunter DJ, Papadimitriou V, Xenakis A, Savić SD. The Impact of the Oil Phase Selection on Physicochemical Properties, Long-Term Stability, In Vitro Performance and Injectability of Curcumin-Loaded PEGylated Nanoemulsions. in Pharmaceutics. 2022;14(8):1666.
doi:10.3390/pharmaceutics14081666 .
Đoković, Jelena B., Demisli, Sotiria, Savić, Sanela M., Marković, Bojan D., Cekić, Nebojša D., Randjelović, Danijela, Mitrović, Jelena R., Lunter, Dominique Jasmin, Papadimitriou, Vassiliki, Xenakis, Aristotelis, Savić, Snežana D., "The Impact of the Oil Phase Selection on Physicochemical Properties, Long-Term Stability, In Vitro Performance and Injectability of Curcumin-Loaded PEGylated Nanoemulsions" in Pharmaceutics, 14, no. 8 (2022):1666,
https://doi.org/10.3390/pharmaceutics14081666 . .
4
2

Nutraceutical phycocyanobilin binding to catalase protects the pigment from oxidation without affecting catalytic activity

Gligorijević, Nikola; Minić, Simeon; Radibratović, Milica; Papadimitriou, Vassiliki; Nedić, Olgica; Sotiroudis, Theodore G.; Nikolić, Milan

(Elsevier, 2021)

TY  - JOUR
AU  - Gligorijević, Nikola
AU  - Minić, Simeon
AU  - Radibratović, Milica
AU  - Papadimitriou, Vassiliki
AU  - Nedić, Olgica
AU  - Sotiroudis, Theodore G.
AU  - Nikolić, Milan
PY  - 2021
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/4226
AB  - Phycocyanobilin is a dark blue linear tetrapyrrole chromophore covalently attached to protein subunits of phycobiliproteins present in the light-harvesting complexes of the cyanobacteria Arthrospira platensis (Spirulina “superfood”). It shows exceptional health-promoting properties and emerging use in various fields of bioscience and industry. This study aims to examine the mutual impact of phycocyanobilin interactions with catalase, a life-essential antioxidant enzyme. Fluorescence quenching experiments demonstrated moderate binding (Ka of 3.9 × 104 M−1 at 25 °C; n = 0.89) (static type), while van't Hoff plot points to an enthalpically driven ligand binding (ΔG = −28.2 kJ mol−1; ΔH = −41.9 kJ mol−1). No significant changes in protein secondary structures (α-helix content ~22%) and thermal protein stability in terms of enzyme tetramer subunits (Tm ~ 64 °C) were detected upon ligand binding. Alterations in the tertiary catalase structure were found without adverse effects on enzyme activity (~2 × 106 IU/mL). The docking study results indicated that the ligand most likely binds to amino acid residues (Asn141, Arg 362, Tyr369 and Asn384) near the cavity between the enzyme homotetramer subunits not related to the active site. Finally, complex formation protects the pigment from free-radical induced oxidation (bleaching), suggesting possible prolongation of its half-life and bioactivity in vivo if bound to catalase.
PB  - Elsevier
T2  - Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy
T1  - Nutraceutical phycocyanobilin binding to catalase protects the pigment from oxidation without affecting catalytic activity
VL  - 251
SP  - 119483
DO  - 10.1016/j.saa.2021.119483
ER  - 
@article{
author = "Gligorijević, Nikola and Minić, Simeon and Radibratović, Milica and Papadimitriou, Vassiliki and Nedić, Olgica and Sotiroudis, Theodore G. and Nikolić, Milan",
year = "2021",
abstract = "Phycocyanobilin is a dark blue linear tetrapyrrole chromophore covalently attached to protein subunits of phycobiliproteins present in the light-harvesting complexes of the cyanobacteria Arthrospira platensis (Spirulina “superfood”). It shows exceptional health-promoting properties and emerging use in various fields of bioscience and industry. This study aims to examine the mutual impact of phycocyanobilin interactions with catalase, a life-essential antioxidant enzyme. Fluorescence quenching experiments demonstrated moderate binding (Ka of 3.9 × 104 M−1 at 25 °C; n = 0.89) (static type), while van't Hoff plot points to an enthalpically driven ligand binding (ΔG = −28.2 kJ mol−1; ΔH = −41.9 kJ mol−1). No significant changes in protein secondary structures (α-helix content ~22%) and thermal protein stability in terms of enzyme tetramer subunits (Tm ~ 64 °C) were detected upon ligand binding. Alterations in the tertiary catalase structure were found without adverse effects on enzyme activity (~2 × 106 IU/mL). The docking study results indicated that the ligand most likely binds to amino acid residues (Asn141, Arg 362, Tyr369 and Asn384) near the cavity between the enzyme homotetramer subunits not related to the active site. Finally, complex formation protects the pigment from free-radical induced oxidation (bleaching), suggesting possible prolongation of its half-life and bioactivity in vivo if bound to catalase.",
publisher = "Elsevier",
journal = "Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy",
title = "Nutraceutical phycocyanobilin binding to catalase protects the pigment from oxidation without affecting catalytic activity",
volume = "251",
pages = "119483",
doi = "10.1016/j.saa.2021.119483"
}
Gligorijević, N., Minić, S., Radibratović, M., Papadimitriou, V., Nedić, O., Sotiroudis, T. G.,& Nikolić, M.. (2021). Nutraceutical phycocyanobilin binding to catalase protects the pigment from oxidation without affecting catalytic activity. in Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy
Elsevier., 251, 119483.
https://doi.org/10.1016/j.saa.2021.119483
Gligorijević N, Minić S, Radibratović M, Papadimitriou V, Nedić O, Sotiroudis TG, Nikolić M. Nutraceutical phycocyanobilin binding to catalase protects the pigment from oxidation without affecting catalytic activity. in Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy. 2021;251:119483.
doi:10.1016/j.saa.2021.119483 .
Gligorijević, Nikola, Minić, Simeon, Radibratović, Milica, Papadimitriou, Vassiliki, Nedić, Olgica, Sotiroudis, Theodore G., Nikolić, Milan, "Nutraceutical phycocyanobilin binding to catalase protects the pigment from oxidation without affecting catalytic activity" in Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 251 (2021):119483,
https://doi.org/10.1016/j.saa.2021.119483 . .
1
5
5

Microstructure and biopharmaceutical performances of curcumin-loaded low-energy nanoemulsions containing eucalyptol and pinene: Terpenes’ role overcome penetration enhancement effect?

Nikolić, Ines; Mitsou, Evgenia; Pantelić, Ivana; Randjelović, Danijela; Marković, Bojan D.; Papadimitriou, Vassiliki; Xenakis, Aristotelis; Lunter, Dominique Jasmin; Žugić, Ana; Savić, Snežana D.

(Elsevier, 2020)

TY  - JOUR
AU  - Nikolić, Ines
AU  - Mitsou, Evgenia
AU  - Pantelić, Ivana
AU  - Randjelović, Danijela
AU  - Marković, Bojan D.
AU  - Papadimitriou, Vassiliki
AU  - Xenakis, Aristotelis
AU  - Lunter, Dominique Jasmin
AU  - Žugić, Ana
AU  - Savić, Snežana D.
PY  - 2020
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3386
AB  - The objective of this work was to develop low-energy nanoemulsions for enhanced dermal delivery of curcumin, using monoterpene compounds eucalyptol (EUC) and pinene (PIN) as chemical penetration enhancers.  Spontaneous emulsification was the preparation method. All formulations contained 10% of the oil phase (medium-chain triglycerides (MCT), or their mixture with EUC or PIN). Formulations were stabilized by the combination of polysorbate 80 and soybean lecithin (surfactant-to-oil-ratio=1). Concentration of curcumin was set to 3 mg/ml.  Average droplet diameter of all tested formulations ranged from 102 nm to 132 nm, but the ones containing monoterpenes had significantly smaller size compared to the MCT formulation. Such finding was profoundly studied through electron paramagnetic resonance spectroscopy, which proved that the presence of monoterpenes modified the nanoemulsions’ interfacial environment, resulting in droplet size reduction. The release study of curcumin (using Franz cells) demonstrated that the cumulative amount released after 6 h of the experiment was 10.1 ± 0.2% for the MCT nanoemulsions, 13.9 ± 0.1% and 14.0 ± 0.2% for PIN and EUC formulations, respectively. In vivo tape stripping revealed their performances in delivering curcumin into the skin, indicating the following order: EUC>MCT>PIN. The formulation with EUC was clearly the most successful, giving the highest cumulative amount of curcumin that penetrated per surface unit: 34.24±5.68 µg/cm2. The MCT formulation followed (30.62±2.61 µg/cm2) and, finally, the one with PIN (21.61±0.11 µg/cm2). These results corelated with curcumin's solubility in the chosen oils: 4.18±0.02 mg/ml for EUC, 1.67±0.04 mg/ml for MCT and 0.21±0.01 mg/ml for PIN. Probably, higher solubility in the oil phase of the nanoemulsion promoted curcumin's solubility in the superficial skin layers, providing enhanced penetration.
PB  - Elsevier
T2  - European Journal of Pharmaceutical Sciences
T1  - Microstructure and biopharmaceutical performances of curcumin-loaded low-energy nanoemulsions containing eucalyptol and pinene: Terpenes’ role overcome penetration enhancement effect?
VL  - 142
SP  - 105135
DO  - 10.1016/j.ejps.2019.105135
ER  - 
@article{
author = "Nikolić, Ines and Mitsou, Evgenia and Pantelić, Ivana and Randjelović, Danijela and Marković, Bojan D. and Papadimitriou, Vassiliki and Xenakis, Aristotelis and Lunter, Dominique Jasmin and Žugić, Ana and Savić, Snežana D.",
year = "2020",
abstract = "The objective of this work was to develop low-energy nanoemulsions for enhanced dermal delivery of curcumin, using monoterpene compounds eucalyptol (EUC) and pinene (PIN) as chemical penetration enhancers.  Spontaneous emulsification was the preparation method. All formulations contained 10% of the oil phase (medium-chain triglycerides (MCT), or their mixture with EUC or PIN). Formulations were stabilized by the combination of polysorbate 80 and soybean lecithin (surfactant-to-oil-ratio=1). Concentration of curcumin was set to 3 mg/ml.  Average droplet diameter of all tested formulations ranged from 102 nm to 132 nm, but the ones containing monoterpenes had significantly smaller size compared to the MCT formulation. Such finding was profoundly studied through electron paramagnetic resonance spectroscopy, which proved that the presence of monoterpenes modified the nanoemulsions’ interfacial environment, resulting in droplet size reduction. The release study of curcumin (using Franz cells) demonstrated that the cumulative amount released after 6 h of the experiment was 10.1 ± 0.2% for the MCT nanoemulsions, 13.9 ± 0.1% and 14.0 ± 0.2% for PIN and EUC formulations, respectively. In vivo tape stripping revealed their performances in delivering curcumin into the skin, indicating the following order: EUC>MCT>PIN. The formulation with EUC was clearly the most successful, giving the highest cumulative amount of curcumin that penetrated per surface unit: 34.24±5.68 µg/cm2. The MCT formulation followed (30.62±2.61 µg/cm2) and, finally, the one with PIN (21.61±0.11 µg/cm2). These results corelated with curcumin's solubility in the chosen oils: 4.18±0.02 mg/ml for EUC, 1.67±0.04 mg/ml for MCT and 0.21±0.01 mg/ml for PIN. Probably, higher solubility in the oil phase of the nanoemulsion promoted curcumin's solubility in the superficial skin layers, providing enhanced penetration.",
publisher = "Elsevier",
journal = "European Journal of Pharmaceutical Sciences",
title = "Microstructure and biopharmaceutical performances of curcumin-loaded low-energy nanoemulsions containing eucalyptol and pinene: Terpenes’ role overcome penetration enhancement effect?",
volume = "142",
pages = "105135",
doi = "10.1016/j.ejps.2019.105135"
}
Nikolić, I., Mitsou, E., Pantelić, I., Randjelović, D., Marković, B. D., Papadimitriou, V., Xenakis, A., Lunter, D. J., Žugić, A.,& Savić, S. D.. (2020). Microstructure and biopharmaceutical performances of curcumin-loaded low-energy nanoemulsions containing eucalyptol and pinene: Terpenes’ role overcome penetration enhancement effect?. in European Journal of Pharmaceutical Sciences
Elsevier., 142, 105135.
https://doi.org/10.1016/j.ejps.2019.105135
Nikolić I, Mitsou E, Pantelić I, Randjelović D, Marković BD, Papadimitriou V, Xenakis A, Lunter DJ, Žugić A, Savić SD. Microstructure and biopharmaceutical performances of curcumin-loaded low-energy nanoemulsions containing eucalyptol and pinene: Terpenes’ role overcome penetration enhancement effect?. in European Journal of Pharmaceutical Sciences. 2020;142:105135.
doi:10.1016/j.ejps.2019.105135 .
Nikolić, Ines, Mitsou, Evgenia, Pantelić, Ivana, Randjelović, Danijela, Marković, Bojan D., Papadimitriou, Vassiliki, Xenakis, Aristotelis, Lunter, Dominique Jasmin, Žugić, Ana, Savić, Snežana D., "Microstructure and biopharmaceutical performances of curcumin-loaded low-energy nanoemulsions containing eucalyptol and pinene: Terpenes’ role overcome penetration enhancement effect?" in European Journal of Pharmaceutical Sciences, 142 (2020):105135,
https://doi.org/10.1016/j.ejps.2019.105135 . .
1
31
18
28

Microstructure and biopharmaceutical performances of curcumin-loaded low-energy nanoemulsions containing eucalyptol and pinene: Terpenes’ role overcome penetration enhancement effect?

Nikolić, Ines; Mitsou, Evgenia; Pantelić, Ivana; Randjelović, Danijela; Marković, Bojan D.; Papadimitriou, Vassiliki; Xenakis, Aristotelis; Lunter, Dominique Jasmin; Žugić, Ana; Savić, Snežana D.

(Elsevier, 2020)

TY  - JOUR
AU  - Nikolić, Ines
AU  - Mitsou, Evgenia
AU  - Pantelić, Ivana
AU  - Randjelović, Danijela
AU  - Marković, Bojan D.
AU  - Papadimitriou, Vassiliki
AU  - Xenakis, Aristotelis
AU  - Lunter, Dominique Jasmin
AU  - Žugić, Ana
AU  - Savić, Snežana D.
PY  - 2020
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3309
AB  - he objective of this work was to develop low-energy nanoemulsions for enhanced dermal delivery of curcumin, using monoterpene compounds eucalyptol (EUC) and pinene (PIN) as chemical penetration enhancers.  Spontaneous emulsification was the preparation method. All formulations contained 10% of the oil phase (medium-chain triglycerides (MCT), or their mixture with EUC or PIN). Formulations were stabilized by the combination of polysorbate 80 and soybean lecithin (surfactant-to-oil-ratio=1). Concentration of curcumin was set to 3 mg/ml.  Average droplet diameter of all tested formulations ranged from 102 nm to 132 nm, but the ones containing monoterpenes had significantly smaller size compared to the MCT formulation. Such finding was profoundly studied through electron paramagnetic resonance spectroscopy, which proved that the presence of monoterpenes modified the nanoemulsions’ interfacial environment, resulting in droplet size reduction. The release study of curcumin (using Franz cells) demonstrated that the cumulative amount released after 6 h of the experiment was 10.1 ± 0.2% for the MCT nanoemulsions, 13.9 ± 0.1% and 14.0 ± 0.2% for PIN and EUC formulations, respectively. In vivo tape stripping revealed their performances in delivering curcumin into the skin, indicating the following order: EUC>MCT>PIN. The formulation with EUC was clearly the most successful, giving the highest cumulative amount of curcumin that penetrated per surface unit: 34.24±5.68 µg/cm2. The MCT formulation followed (30.62±2.61 µg/cm2) and, finally, the one with PIN (21.61±0.11 µg/cm2). These results corelated with curcumin's solubility in the chosen oils: 4.18±0.02 mg/ml for EUC, 1.67±0.04 mg/ml for MCT and 0.21±0.01 mg/ml for PIN. Probably, higher solubility in the oil phase of the nanoemulsion promoted curcumin's solubility in the superficial skin layers, providing enhanced penetration.
PB  - Elsevier
T2  - European Journal of Pharmaceutical Sciences
T1  - Microstructure and biopharmaceutical performances of curcumin-loaded low-energy nanoemulsions containing eucalyptol and pinene: Terpenes’ role overcome penetration enhancement effect?
VL  - 142
SP  - 105135
DO  - 10.1016/j.ejps.2019.105135
ER  - 
@article{
author = "Nikolić, Ines and Mitsou, Evgenia and Pantelić, Ivana and Randjelović, Danijela and Marković, Bojan D. and Papadimitriou, Vassiliki and Xenakis, Aristotelis and Lunter, Dominique Jasmin and Žugić, Ana and Savić, Snežana D.",
year = "2020",
abstract = "he objective of this work was to develop low-energy nanoemulsions for enhanced dermal delivery of curcumin, using monoterpene compounds eucalyptol (EUC) and pinene (PIN) as chemical penetration enhancers.  Spontaneous emulsification was the preparation method. All formulations contained 10% of the oil phase (medium-chain triglycerides (MCT), or their mixture with EUC or PIN). Formulations were stabilized by the combination of polysorbate 80 and soybean lecithin (surfactant-to-oil-ratio=1). Concentration of curcumin was set to 3 mg/ml.  Average droplet diameter of all tested formulations ranged from 102 nm to 132 nm, but the ones containing monoterpenes had significantly smaller size compared to the MCT formulation. Such finding was profoundly studied through electron paramagnetic resonance spectroscopy, which proved that the presence of monoterpenes modified the nanoemulsions’ interfacial environment, resulting in droplet size reduction. The release study of curcumin (using Franz cells) demonstrated that the cumulative amount released after 6 h of the experiment was 10.1 ± 0.2% for the MCT nanoemulsions, 13.9 ± 0.1% and 14.0 ± 0.2% for PIN and EUC formulations, respectively. In vivo tape stripping revealed their performances in delivering curcumin into the skin, indicating the following order: EUC>MCT>PIN. The formulation with EUC was clearly the most successful, giving the highest cumulative amount of curcumin that penetrated per surface unit: 34.24±5.68 µg/cm2. The MCT formulation followed (30.62±2.61 µg/cm2) and, finally, the one with PIN (21.61±0.11 µg/cm2). These results corelated with curcumin's solubility in the chosen oils: 4.18±0.02 mg/ml for EUC, 1.67±0.04 mg/ml for MCT and 0.21±0.01 mg/ml for PIN. Probably, higher solubility in the oil phase of the nanoemulsion promoted curcumin's solubility in the superficial skin layers, providing enhanced penetration.",
publisher = "Elsevier",
journal = "European Journal of Pharmaceutical Sciences",
title = "Microstructure and biopharmaceutical performances of curcumin-loaded low-energy nanoemulsions containing eucalyptol and pinene: Terpenes’ role overcome penetration enhancement effect?",
volume = "142",
pages = "105135",
doi = "10.1016/j.ejps.2019.105135"
}
Nikolić, I., Mitsou, E., Pantelić, I., Randjelović, D., Marković, B. D., Papadimitriou, V., Xenakis, A., Lunter, D. J., Žugić, A.,& Savić, S. D.. (2020). Microstructure and biopharmaceutical performances of curcumin-loaded low-energy nanoemulsions containing eucalyptol and pinene: Terpenes’ role overcome penetration enhancement effect?. in European Journal of Pharmaceutical Sciences
Elsevier., 142, 105135.
https://doi.org/10.1016/j.ejps.2019.105135
Nikolić I, Mitsou E, Pantelić I, Randjelović D, Marković BD, Papadimitriou V, Xenakis A, Lunter DJ, Žugić A, Savić SD. Microstructure and biopharmaceutical performances of curcumin-loaded low-energy nanoemulsions containing eucalyptol and pinene: Terpenes’ role overcome penetration enhancement effect?. in European Journal of Pharmaceutical Sciences. 2020;142:105135.
doi:10.1016/j.ejps.2019.105135 .
Nikolić, Ines, Mitsou, Evgenia, Pantelić, Ivana, Randjelović, Danijela, Marković, Bojan D., Papadimitriou, Vassiliki, Xenakis, Aristotelis, Lunter, Dominique Jasmin, Žugić, Ana, Savić, Snežana D., "Microstructure and biopharmaceutical performances of curcumin-loaded low-energy nanoemulsions containing eucalyptol and pinene: Terpenes’ role overcome penetration enhancement effect?" in European Journal of Pharmaceutical Sciences, 142 (2020):105135,
https://doi.org/10.1016/j.ejps.2019.105135 . .
1
31
18
28

Biocompatible microemulsions for improved dermal delivery of sertaconazole nitrate: Phase behavior study and microstructure influence on drug biopharamaceutical properties

Pajic, Natasa Bubic; Nikolić, Ines; Mitsou, Evgenia; Papadimitriou, Vassiliki; Xenakis, Aristotelis; Randjelović, Danijela; Dobricic, Vladimir; Smitran, Aleksandra; Cekic, Nebojsa; Calija, Bojan; Savić, Snežana D.

(Elsevier, 2018)

TY  - JOUR
AU  - Pajic, Natasa Bubic
AU  - Nikolić, Ines
AU  - Mitsou, Evgenia
AU  - Papadimitriou, Vassiliki
AU  - Xenakis, Aristotelis
AU  - Randjelović, Danijela
AU  - Dobricic, Vladimir
AU  - Smitran, Aleksandra
AU  - Cekic, Nebojsa
AU  - Calija, Bojan
AU  - Savić, Snežana D.
PY  - 2018
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/4291
AB  - The aim of this study was development of biocompatible topical microemulsions (MEs) for incorporation and improved dermal delivery of sertaconazole nitrate (SN). For this purpose, phase behavior and microstructure of pseudo-ternary glycereth-7-caprylate/caprate (Emanon EV-E, EV)/cosurfactant/Capryol (TM) 90/water systems were investigated. Furhermore, the influence of these properties on the drug skin delivery was also assessed. Expansion of ME single-phase regions with the use of short chain alcohols was a consequence of the more fluid interface when compared to other investigated systems, which was confirmed by electron paramagnetic resonance spectroscopy-EPR. The chosen bicontinuous to inverted bicontinuous formulations were assessed against the ME based on polysorbate 80 as referent sample. Despite incorporation of SN within the selected formulations induced similar alternations in electrical conductivity, viscosity and pH values, obtained EPR spectra suggested different SN localization: within the oil phase (for most of the EV based formulations), or interacting with the interface (polysorbate 80 based formulation). Due to higher in vitro drug release (12.24%-18.53%), ex vivo SN penetration into porcine ear skin (dermal retention Enhancement Ratio (ERO) ranged from 2.66 to 4.25) and pronounced antifungal activity, the chosen MEs represent promising vehicles for dermal delivery of SN in treatment of cutaneous fungal infections. The biopharmaceutical and skin performance differences obtained with different formulations were possible to be explained on the basis of their physicochemical characteristics.
PB  - Elsevier
T2  - Journal of Molecular Liquids
T1  - Biocompatible microemulsions for improved dermal delivery of sertaconazole nitrate: Phase behavior study and microstructure influence on drug biopharamaceutical properties
VL  - 272
SP  - 746
EP  - 758
DO  - 10.1016/j.molliq.2018.10.002
ER  - 
@article{
author = "Pajic, Natasa Bubic and Nikolić, Ines and Mitsou, Evgenia and Papadimitriou, Vassiliki and Xenakis, Aristotelis and Randjelović, Danijela and Dobricic, Vladimir and Smitran, Aleksandra and Cekic, Nebojsa and Calija, Bojan and Savić, Snežana D.",
year = "2018",
abstract = "The aim of this study was development of biocompatible topical microemulsions (MEs) for incorporation and improved dermal delivery of sertaconazole nitrate (SN). For this purpose, phase behavior and microstructure of pseudo-ternary glycereth-7-caprylate/caprate (Emanon EV-E, EV)/cosurfactant/Capryol (TM) 90/water systems were investigated. Furhermore, the influence of these properties on the drug skin delivery was also assessed. Expansion of ME single-phase regions with the use of short chain alcohols was a consequence of the more fluid interface when compared to other investigated systems, which was confirmed by electron paramagnetic resonance spectroscopy-EPR. The chosen bicontinuous to inverted bicontinuous formulations were assessed against the ME based on polysorbate 80 as referent sample. Despite incorporation of SN within the selected formulations induced similar alternations in electrical conductivity, viscosity and pH values, obtained EPR spectra suggested different SN localization: within the oil phase (for most of the EV based formulations), or interacting with the interface (polysorbate 80 based formulation). Due to higher in vitro drug release (12.24%-18.53%), ex vivo SN penetration into porcine ear skin (dermal retention Enhancement Ratio (ERO) ranged from 2.66 to 4.25) and pronounced antifungal activity, the chosen MEs represent promising vehicles for dermal delivery of SN in treatment of cutaneous fungal infections. The biopharmaceutical and skin performance differences obtained with different formulations were possible to be explained on the basis of their physicochemical characteristics.",
publisher = "Elsevier",
journal = "Journal of Molecular Liquids",
title = "Biocompatible microemulsions for improved dermal delivery of sertaconazole nitrate: Phase behavior study and microstructure influence on drug biopharamaceutical properties",
volume = "272",
pages = "746-758",
doi = "10.1016/j.molliq.2018.10.002"
}
Pajic, N. B., Nikolić, I., Mitsou, E., Papadimitriou, V., Xenakis, A., Randjelović, D., Dobricic, V., Smitran, A., Cekic, N., Calija, B.,& Savić, S. D.. (2018). Biocompatible microemulsions for improved dermal delivery of sertaconazole nitrate: Phase behavior study and microstructure influence on drug biopharamaceutical properties. in Journal of Molecular Liquids
Elsevier., 272, 746-758.
https://doi.org/10.1016/j.molliq.2018.10.002
Pajic NB, Nikolić I, Mitsou E, Papadimitriou V, Xenakis A, Randjelović D, Dobricic V, Smitran A, Cekic N, Calija B, Savić SD. Biocompatible microemulsions for improved dermal delivery of sertaconazole nitrate: Phase behavior study and microstructure influence on drug biopharamaceutical properties. in Journal of Molecular Liquids. 2018;272:746-758.
doi:10.1016/j.molliq.2018.10.002 .
Pajic, Natasa Bubic, Nikolić, Ines, Mitsou, Evgenia, Papadimitriou, Vassiliki, Xenakis, Aristotelis, Randjelović, Danijela, Dobricic, Vladimir, Smitran, Aleksandra, Cekic, Nebojsa, Calija, Bojan, Savić, Snežana D., "Biocompatible microemulsions for improved dermal delivery of sertaconazole nitrate: Phase behavior study and microstructure influence on drug biopharamaceutical properties" in Journal of Molecular Liquids, 272 (2018):746-758,
https://doi.org/10.1016/j.molliq.2018.10.002 . .
21
16
20

Biocompatible microemulsions for improved dermal delivery of sertaconazole nitrate: Phase behavior study and microstructure influence on drug biopharamaceutical properties

Pajic, Natasa Bubic; Nikolić, Ines; Mitsou, Evgenia; Papadimitriou, Vassiliki; Xenakis, Aristotelis; Randjelović, Danijela; Dobricic, Vladimir; Smitran, Aleksandra; Cekic, Nebojsa; Calija, Bojan; Savić, Snežana D.

(Elsevier, 2018)

TY  - JOUR
AU  - Pajic, Natasa Bubic
AU  - Nikolić, Ines
AU  - Mitsou, Evgenia
AU  - Papadimitriou, Vassiliki
AU  - Xenakis, Aristotelis
AU  - Randjelović, Danijela
AU  - Dobricic, Vladimir
AU  - Smitran, Aleksandra
AU  - Cekic, Nebojsa
AU  - Calija, Bojan
AU  - Savić, Snežana D.
PY  - 2018
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/2360
AB  - The aim of this study was development of biocompatible topical microemulsions (MEs) for incorporation and improved dermal delivery of sertaconazole nitrate (SN). For this purpose, phase behavior and microstructure of pseudo-ternary glycereth-7-caprylate/caprate (Emanon EV-E, EV)/cosurfactant/Capryol (TM) 90/water systems were investigated. Furhermore, the influence of these properties on the drug skin delivery was also assessed. Expansion of ME single-phase regions with the use of short chain alcohols was a consequence of the more fluid interface when compared to other investigated systems, which was confirmed by electron paramagnetic resonance spectroscopy-EPR. The chosen bicontinuous to inverted bicontinuous formulations were assessed against the ME based on polysorbate 80 as referent sample. Despite incorporation of SN within the selected formulations induced similar alternations in electrical conductivity, viscosity and pH values, obtained EPR spectra suggested different SN localization: within the oil phase (for most of the EV based formulations), or interacting with the interface (polysorbate 80 based formulation). Due to higher in vitro drug release (12.24%-18.53%), ex vivo SN penetration into porcine ear skin (dermal retention Enhancement Ratio (ERO) ranged from 2.66 to 4.25) and pronounced antifungal activity, the chosen MEs represent promising vehicles for dermal delivery of SN in treatment of cutaneous fungal infections. The biopharmaceutical and skin performance differences obtained with different formulations were possible to be explained on the basis of their physicochemical characteristics.
PB  - Elsevier
T2  - Journal of Molecular Liquids
T1  - Biocompatible microemulsions for improved dermal delivery of sertaconazole nitrate: Phase behavior study and microstructure influence on drug biopharamaceutical properties
VL  - 272
SP  - 746
EP  - 758
DO  - 10.1016/j.molliq.2018.10.002
ER  - 
@article{
author = "Pajic, Natasa Bubic and Nikolić, Ines and Mitsou, Evgenia and Papadimitriou, Vassiliki and Xenakis, Aristotelis and Randjelović, Danijela and Dobricic, Vladimir and Smitran, Aleksandra and Cekic, Nebojsa and Calija, Bojan and Savić, Snežana D.",
year = "2018",
abstract = "The aim of this study was development of biocompatible topical microemulsions (MEs) for incorporation and improved dermal delivery of sertaconazole nitrate (SN). For this purpose, phase behavior and microstructure of pseudo-ternary glycereth-7-caprylate/caprate (Emanon EV-E, EV)/cosurfactant/Capryol (TM) 90/water systems were investigated. Furhermore, the influence of these properties on the drug skin delivery was also assessed. Expansion of ME single-phase regions with the use of short chain alcohols was a consequence of the more fluid interface when compared to other investigated systems, which was confirmed by electron paramagnetic resonance spectroscopy-EPR. The chosen bicontinuous to inverted bicontinuous formulations were assessed against the ME based on polysorbate 80 as referent sample. Despite incorporation of SN within the selected formulations induced similar alternations in electrical conductivity, viscosity and pH values, obtained EPR spectra suggested different SN localization: within the oil phase (for most of the EV based formulations), or interacting with the interface (polysorbate 80 based formulation). Due to higher in vitro drug release (12.24%-18.53%), ex vivo SN penetration into porcine ear skin (dermal retention Enhancement Ratio (ERO) ranged from 2.66 to 4.25) and pronounced antifungal activity, the chosen MEs represent promising vehicles for dermal delivery of SN in treatment of cutaneous fungal infections. The biopharmaceutical and skin performance differences obtained with different formulations were possible to be explained on the basis of their physicochemical characteristics.",
publisher = "Elsevier",
journal = "Journal of Molecular Liquids",
title = "Biocompatible microemulsions for improved dermal delivery of sertaconazole nitrate: Phase behavior study and microstructure influence on drug biopharamaceutical properties",
volume = "272",
pages = "746-758",
doi = "10.1016/j.molliq.2018.10.002"
}
Pajic, N. B., Nikolić, I., Mitsou, E., Papadimitriou, V., Xenakis, A., Randjelović, D., Dobricic, V., Smitran, A., Cekic, N., Calija, B.,& Savić, S. D.. (2018). Biocompatible microemulsions for improved dermal delivery of sertaconazole nitrate: Phase behavior study and microstructure influence on drug biopharamaceutical properties. in Journal of Molecular Liquids
Elsevier., 272, 746-758.
https://doi.org/10.1016/j.molliq.2018.10.002
Pajic NB, Nikolić I, Mitsou E, Papadimitriou V, Xenakis A, Randjelović D, Dobricic V, Smitran A, Cekic N, Calija B, Savić SD. Biocompatible microemulsions for improved dermal delivery of sertaconazole nitrate: Phase behavior study and microstructure influence on drug biopharamaceutical properties. in Journal of Molecular Liquids. 2018;272:746-758.
doi:10.1016/j.molliq.2018.10.002 .
Pajic, Natasa Bubic, Nikolić, Ines, Mitsou, Evgenia, Papadimitriou, Vassiliki, Xenakis, Aristotelis, Randjelović, Danijela, Dobricic, Vladimir, Smitran, Aleksandra, Cekic, Nebojsa, Calija, Bojan, Savić, Snežana D., "Biocompatible microemulsions for improved dermal delivery of sertaconazole nitrate: Phase behavior study and microstructure influence on drug biopharamaceutical properties" in Journal of Molecular Liquids, 272 (2018):746-758,
https://doi.org/10.1016/j.molliq.2018.10.002 . .
21
16
20