Živojinović, Dragana

Link to this page

Authority KeyName Variants
orcid::0000-0002-7862-3246
  • Živojinović, Dragana (2)

Author's Bibliography

Morphological assessment of cavitation caused damage of cordierite and zircon based materials using principal component analysis

Martinović, Sanja; Alil, Ana; Milićević, Sonja; Živojinović, Dragana; Volkov Husović, Tatjana

(Elsevier, 2023)

TY  - JOUR
AU  - Martinović, Sanja
AU  - Alil, Ana
AU  - Milićević, Sonja
AU  - Živojinović, Dragana
AU  - Volkov Husović, Tatjana
PY  - 2023
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/6031
AB  - The pattern recognition approach, explored by this study, applies the principal component
analysis (PCA) as the most widely used statistical method with the aim of assessing the initiation
and propagation of the cracks and defects that appear on the surface of material exposed to the
cavitation. The experiment was performed in four stages: (a) synthesis of two ceramic materials
(cordierite and zircon); (b) subjecting the samples to the cavitation; (c) using image analysis
software for collecting the data about morphological characteristics that describe defects; (d)
principal component analysis as a pattern recognition tool in order to characterize the defects at
the material surface. Besides that, according to standard, cavitation erosion was monitored by
determining material mass loss during the cavitation. Large experimental datasets collected from
morphological descriptors by image analysis are multivariate and difficult to interpret, thus are
processed by principal component analysis as the most informative technique for extracting
possible differences. The performed approach proved that this method has a great potential for
better assessment of induced defects by proper distinguishing among them at different levels and
that can be considered a very efficient and cost-effective one.
PB  - Elsevier
T2  - Engineering Failure Analysis
T1  - Morphological assessment of cavitation caused damage of cordierite and zircon based materials using principal component analysis
VL  - 148
IS  - June 2023
SP  - 107224
DO  - 10.1016/j.engfailanal.2023.107224
ER  - 
@article{
author = "Martinović, Sanja and Alil, Ana and Milićević, Sonja and Živojinović, Dragana and Volkov Husović, Tatjana",
year = "2023",
abstract = "The pattern recognition approach, explored by this study, applies the principal component
analysis (PCA) as the most widely used statistical method with the aim of assessing the initiation
and propagation of the cracks and defects that appear on the surface of material exposed to the
cavitation. The experiment was performed in four stages: (a) synthesis of two ceramic materials
(cordierite and zircon); (b) subjecting the samples to the cavitation; (c) using image analysis
software for collecting the data about morphological characteristics that describe defects; (d)
principal component analysis as a pattern recognition tool in order to characterize the defects at
the material surface. Besides that, according to standard, cavitation erosion was monitored by
determining material mass loss during the cavitation. Large experimental datasets collected from
morphological descriptors by image analysis are multivariate and difficult to interpret, thus are
processed by principal component analysis as the most informative technique for extracting
possible differences. The performed approach proved that this method has a great potential for
better assessment of induced defects by proper distinguishing among them at different levels and
that can be considered a very efficient and cost-effective one.",
publisher = "Elsevier",
journal = "Engineering Failure Analysis",
title = "Morphological assessment of cavitation caused damage of cordierite and zircon based materials using principal component analysis",
volume = "148",
number = "June 2023",
pages = "107224",
doi = "10.1016/j.engfailanal.2023.107224"
}
Martinović, S., Alil, A., Milićević, S., Živojinović, D.,& Volkov Husović, T.. (2023). Morphological assessment of cavitation caused damage of cordierite and zircon based materials using principal component analysis. in Engineering Failure Analysis
Elsevier., 148(June 2023), 107224.
https://doi.org/10.1016/j.engfailanal.2023.107224
Martinović S, Alil A, Milićević S, Živojinović D, Volkov Husović T. Morphological assessment of cavitation caused damage of cordierite and zircon based materials using principal component analysis. in Engineering Failure Analysis. 2023;148(June 2023):107224.
doi:10.1016/j.engfailanal.2023.107224 .
Martinović, Sanja, Alil, Ana, Milićević, Sonja, Živojinović, Dragana, Volkov Husović, Tatjana, "Morphological assessment of cavitation caused damage of cordierite and zircon based materials using principal component analysis" in Engineering Failure Analysis, 148, no. June 2023 (2023):107224,
https://doi.org/10.1016/j.engfailanal.2023.107224 . .
4
4

Non-Destructive Examination for Cavitation Resistance of Talc-Based Refractories with Different Zeolite Types Intended for Protective Coatings

Vlahović, Milica; Alil, Ana; Devečerski, Aleksandar B.; Živojinović, Dragana; Volkov Husović, Tatjana

(MDPI, 2023)

TY  - JOUR
AU  - Vlahović, Milica
AU  - Alil, Ana
AU  - Devečerski, Aleksandar B.
AU  - Živojinović, Dragana
AU  - Volkov Husović, Tatjana
PY  - 2023
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/6463
AB  - In many industrial processes that include fluid flow, cavitation erosion of different engineering
structures (pumps, turbines, water levels, valves, etc.) during their operation is expected. Metallic,
ceramic, and composite materials are usual candidates considered for application in such extreme
conditions. In this study, the idea is to synthesize refractory ceramic material based on talc with
the addition of zeolite for utilization as protective coatings in cavitating conditions. Two talc-based
refractories with zeolites from two Serbian deposits were produced. The behaviors of the samples
in simulated cavitation conditions were examined by an advanced non-destructive methodology
consisting of monitoring mass loss and surface degradation using image analysis compiled with
principal component analysis (PCA), interior degradation by ultrasonic measurements, and the
microstructure by a scanning electron microscope (SEM). Lower mass loss, surface degradation level,
and modeled strength decrease indicated better cavitation resistance of the sample with Igros zeolite,
whereby measured strength values validated the model. For the chosen critical strength, the critical
cavitation period as well as critical morphological descriptors, Area and Diameter (max and min),
were determined. A Young’s elasticity modulus decrease indicated that surface damage influence
progressed towards interior of the material. It can be concluded that the proposed methodology
approach is efficient and reliable in predicting the materials’ service life in extreme conditions.
PB  - MDPI
T2  - Materials
T1  - Non-Destructive Examination for Cavitation Resistance of Talc-Based Refractories with Different Zeolite Types Intended for Protective Coatings
VL  - 16
IS  - 16
SP  - 5577
DO  - 10.3390/ma16165577
ER  - 
@article{
author = "Vlahović, Milica and Alil, Ana and Devečerski, Aleksandar B. and Živojinović, Dragana and Volkov Husović, Tatjana",
year = "2023",
abstract = "In many industrial processes that include fluid flow, cavitation erosion of different engineering
structures (pumps, turbines, water levels, valves, etc.) during their operation is expected. Metallic,
ceramic, and composite materials are usual candidates considered for application in such extreme
conditions. In this study, the idea is to synthesize refractory ceramic material based on talc with
the addition of zeolite for utilization as protective coatings in cavitating conditions. Two talc-based
refractories with zeolites from two Serbian deposits were produced. The behaviors of the samples
in simulated cavitation conditions were examined by an advanced non-destructive methodology
consisting of monitoring mass loss and surface degradation using image analysis compiled with
principal component analysis (PCA), interior degradation by ultrasonic measurements, and the
microstructure by a scanning electron microscope (SEM). Lower mass loss, surface degradation level,
and modeled strength decrease indicated better cavitation resistance of the sample with Igros zeolite,
whereby measured strength values validated the model. For the chosen critical strength, the critical
cavitation period as well as critical morphological descriptors, Area and Diameter (max and min),
were determined. A Young’s elasticity modulus decrease indicated that surface damage influence
progressed towards interior of the material. It can be concluded that the proposed methodology
approach is efficient and reliable in predicting the materials’ service life in extreme conditions.",
publisher = "MDPI",
journal = "Materials",
title = "Non-Destructive Examination for Cavitation Resistance of Talc-Based Refractories with Different Zeolite Types Intended for Protective Coatings",
volume = "16",
number = "16",
pages = "5577",
doi = "10.3390/ma16165577"
}
Vlahović, M., Alil, A., Devečerski, A. B., Živojinović, D.,& Volkov Husović, T.. (2023). Non-Destructive Examination for Cavitation Resistance of Talc-Based Refractories with Different Zeolite Types Intended for Protective Coatings. in Materials
MDPI., 16(16), 5577.
https://doi.org/10.3390/ma16165577
Vlahović M, Alil A, Devečerski AB, Živojinović D, Volkov Husović T. Non-Destructive Examination for Cavitation Resistance of Talc-Based Refractories with Different Zeolite Types Intended for Protective Coatings. in Materials. 2023;16(16):5577.
doi:10.3390/ma16165577 .
Vlahović, Milica, Alil, Ana, Devečerski, Aleksandar B., Živojinović, Dragana, Volkov Husović, Tatjana, "Non-Destructive Examination for Cavitation Resistance of Talc-Based Refractories with Different Zeolite Types Intended for Protective Coatings" in Materials, 16, no. 16 (2023):5577,
https://doi.org/10.3390/ma16165577 . .