Fabian, Martin

Link to this page

Authority KeyName Variants
orcid::0000-0002-8893-4195
  • Fabian, Martin (3)
Projects

Author's Bibliography

Microwave assisted hydrothermal synthesis of (Fe,Co)(3)O-4 nanoparticles in the presence of surfactants and effects of Co/Fe ratio on microstructure and magnetism

Ognjanović, Miloš; Dojčinović, Biljana; Fabian, Martin; Stanković, Dalibor; Mariano, Jose F. M. L.; Antić, Bratislav

(Elsevier Sci Ltd, Oxford, 2018)

TY  - JOUR
AU  - Ognjanović, Miloš
AU  - Dojčinović, Biljana
AU  - Fabian, Martin
AU  - Stanković, Dalibor
AU  - Mariano, Jose F. M. L.
AU  - Antić, Bratislav
PY  - 2018
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/2441
AB  - Microstructure and magnetic properties of nanoparticles can be tailored by optimising the synthesis procedure and changing chemical composition. In this study, a two-step procedure, i.e., coprecipitation in the presence of PEG 300 followed by microwave assisted (MW) hydrothermal synthesis, was introduced to obtain Co(x)Pe(3-x)O(4) (x = 0, 0.1 and 0.2) nanoparticles. It was found that with the increase of Co content, particle/crystallite size increased, with significant change of coercivity (H-c). The mixed samples of CoxFe3O4 (x = 0.1 and 0.2) were magnetically harder in comparison with Fe3O4. The H-c of Fe3O4 was 91 Oe, while for Co0.10Fe2.90O4 and Co(0.20)Ee(2.80) O-4, H, was 256 Oe and 1070 Oe, respectively. Saturation magnetisation (M s ) of mixed samples also increased up to 6% compared to Fe3O4. A special effort was devoted to study the effects of introducing different surfactants (PEG 300, PEG 4000 or SDS) during the synthesis procedure in order to improve morphological and microstructural properties of CoFe3O4 nanoparticles. The influence of surfactants on physical/chemical properties of nanoparticles is discussed.
PB  - Elsevier Sci Ltd, Oxford
T2  - Ceramics International
T1  - Microwave assisted hydrothermal synthesis of (Fe,Co)(3)O-4 nanoparticles in the presence of surfactants and effects of Co/Fe ratio on microstructure and magnetism
VL  - 44
IS  - 12
SP  - 13967
EP  - 13972
DO  - 10.1016/j.ceramint.2018.04.246
ER  - 
@article{
author = "Ognjanović, Miloš and Dojčinović, Biljana and Fabian, Martin and Stanković, Dalibor and Mariano, Jose F. M. L. and Antić, Bratislav",
year = "2018",
abstract = "Microstructure and magnetic properties of nanoparticles can be tailored by optimising the synthesis procedure and changing chemical composition. In this study, a two-step procedure, i.e., coprecipitation in the presence of PEG 300 followed by microwave assisted (MW) hydrothermal synthesis, was introduced to obtain Co(x)Pe(3-x)O(4) (x = 0, 0.1 and 0.2) nanoparticles. It was found that with the increase of Co content, particle/crystallite size increased, with significant change of coercivity (H-c). The mixed samples of CoxFe3O4 (x = 0.1 and 0.2) were magnetically harder in comparison with Fe3O4. The H-c of Fe3O4 was 91 Oe, while for Co0.10Fe2.90O4 and Co(0.20)Ee(2.80) O-4, H, was 256 Oe and 1070 Oe, respectively. Saturation magnetisation (M s ) of mixed samples also increased up to 6% compared to Fe3O4. A special effort was devoted to study the effects of introducing different surfactants (PEG 300, PEG 4000 or SDS) during the synthesis procedure in order to improve morphological and microstructural properties of CoFe3O4 nanoparticles. The influence of surfactants on physical/chemical properties of nanoparticles is discussed.",
publisher = "Elsevier Sci Ltd, Oxford",
journal = "Ceramics International",
title = "Microwave assisted hydrothermal synthesis of (Fe,Co)(3)O-4 nanoparticles in the presence of surfactants and effects of Co/Fe ratio on microstructure and magnetism",
volume = "44",
number = "12",
pages = "13967-13972",
doi = "10.1016/j.ceramint.2018.04.246"
}
Ognjanović, M., Dojčinović, B., Fabian, M., Stanković, D., Mariano, J. F. M. L.,& Antić, B.. (2018). Microwave assisted hydrothermal synthesis of (Fe,Co)(3)O-4 nanoparticles in the presence of surfactants and effects of Co/Fe ratio on microstructure and magnetism. in Ceramics International
Elsevier Sci Ltd, Oxford., 44(12), 13967-13972.
https://doi.org/10.1016/j.ceramint.2018.04.246
Ognjanović M, Dojčinović B, Fabian M, Stanković D, Mariano JFML, Antić B. Microwave assisted hydrothermal synthesis of (Fe,Co)(3)O-4 nanoparticles in the presence of surfactants and effects of Co/Fe ratio on microstructure and magnetism. in Ceramics International. 2018;44(12):13967-13972.
doi:10.1016/j.ceramint.2018.04.246 .
Ognjanović, Miloš, Dojčinović, Biljana, Fabian, Martin, Stanković, Dalibor, Mariano, Jose F. M. L., Antić, Bratislav, "Microwave assisted hydrothermal synthesis of (Fe,Co)(3)O-4 nanoparticles in the presence of surfactants and effects of Co/Fe ratio on microstructure and magnetism" in Ceramics International, 44, no. 12 (2018):13967-13972,
https://doi.org/10.1016/j.ceramint.2018.04.246 . .
11
8
11

Microwave assisted hydrothermal synthesis of (Fe,Co)(3)O-4 nanoparticles in the presence of surfactants and effects of Co/Fe ratio on microstructure and magnetism

Ognjanović, Miloš; Dojčinović, Biljana; Fabian, Martin; Stanković, Dalibor; Mariano, Jose F. M. L.; Antić, Bratislav

(Elsevier Sci Ltd, Oxford, 2018)

TY  - JOUR
AU  - Ognjanović, Miloš
AU  - Dojčinović, Biljana
AU  - Fabian, Martin
AU  - Stanković, Dalibor
AU  - Mariano, Jose F. M. L.
AU  - Antić, Bratislav
PY  - 2018
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3337
AB  - Microstructure and magnetic properties of nanoparticles can be tailored by optimising the synthesis procedure and changing chemical composition. In this study, a two-step procedure, i.e., coprecipitation in the presence of PEG 300 followed by microwave assisted (MW) hydrothermal synthesis, was introduced to obtain Co(x)Pe(3-x)O(4) (x = 0, 0.1 and 0.2) nanoparticles. It was found that with the increase of Co content, particle/crystallite size increased, with significant change of coercivity (H-c). The mixed samples of CoxFe3O4 (x = 0.1 and 0.2) were magnetically harder in comparison with Fe3O4. The H-c of Fe3O4 was 91 Oe, while for Co0.10Fe2.90O4 and Co(0.20)Ee(2.80) O-4, H, was 256 Oe and 1070 Oe, respectively. Saturation magnetisation (M s ) of mixed samples also increased up to 6% compared to Fe3O4. A special effort was devoted to study the effects of introducing different surfactants (PEG 300, PEG 4000 or SDS) during the synthesis procedure in order to improve morphological and microstructural properties of CoFe3O4 nanoparticles. The influence of surfactants on physical/chemical properties of nanoparticles is discussed.
PB  - Elsevier Sci Ltd, Oxford
T2  - Ceramics International
T1  - Microwave assisted hydrothermal synthesis of (Fe,Co)(3)O-4 nanoparticles in the presence of surfactants and effects of Co/Fe ratio on microstructure and magnetism
VL  - 44
IS  - 12
SP  - 13967
EP  - 13972
DO  - 10.1016/j.ceramint.2018.04.246
ER  - 
@article{
author = "Ognjanović, Miloš and Dojčinović, Biljana and Fabian, Martin and Stanković, Dalibor and Mariano, Jose F. M. L. and Antić, Bratislav",
year = "2018",
abstract = "Microstructure and magnetic properties of nanoparticles can be tailored by optimising the synthesis procedure and changing chemical composition. In this study, a two-step procedure, i.e., coprecipitation in the presence of PEG 300 followed by microwave assisted (MW) hydrothermal synthesis, was introduced to obtain Co(x)Pe(3-x)O(4) (x = 0, 0.1 and 0.2) nanoparticles. It was found that with the increase of Co content, particle/crystallite size increased, with significant change of coercivity (H-c). The mixed samples of CoxFe3O4 (x = 0.1 and 0.2) were magnetically harder in comparison with Fe3O4. The H-c of Fe3O4 was 91 Oe, while for Co0.10Fe2.90O4 and Co(0.20)Ee(2.80) O-4, H, was 256 Oe and 1070 Oe, respectively. Saturation magnetisation (M s ) of mixed samples also increased up to 6% compared to Fe3O4. A special effort was devoted to study the effects of introducing different surfactants (PEG 300, PEG 4000 or SDS) during the synthesis procedure in order to improve morphological and microstructural properties of CoFe3O4 nanoparticles. The influence of surfactants on physical/chemical properties of nanoparticles is discussed.",
publisher = "Elsevier Sci Ltd, Oxford",
journal = "Ceramics International",
title = "Microwave assisted hydrothermal synthesis of (Fe,Co)(3)O-4 nanoparticles in the presence of surfactants and effects of Co/Fe ratio on microstructure and magnetism",
volume = "44",
number = "12",
pages = "13967-13972",
doi = "10.1016/j.ceramint.2018.04.246"
}
Ognjanović, M., Dojčinović, B., Fabian, M., Stanković, D., Mariano, J. F. M. L.,& Antić, B.. (2018). Microwave assisted hydrothermal synthesis of (Fe,Co)(3)O-4 nanoparticles in the presence of surfactants and effects of Co/Fe ratio on microstructure and magnetism. in Ceramics International
Elsevier Sci Ltd, Oxford., 44(12), 13967-13972.
https://doi.org/10.1016/j.ceramint.2018.04.246
Ognjanović M, Dojčinović B, Fabian M, Stanković D, Mariano JFML, Antić B. Microwave assisted hydrothermal synthesis of (Fe,Co)(3)O-4 nanoparticles in the presence of surfactants and effects of Co/Fe ratio on microstructure and magnetism. in Ceramics International. 2018;44(12):13967-13972.
doi:10.1016/j.ceramint.2018.04.246 .
Ognjanović, Miloš, Dojčinović, Biljana, Fabian, Martin, Stanković, Dalibor, Mariano, Jose F. M. L., Antić, Bratislav, "Microwave assisted hydrothermal synthesis of (Fe,Co)(3)O-4 nanoparticles in the presence of surfactants and effects of Co/Fe ratio on microstructure and magnetism" in Ceramics International, 44, no. 12 (2018):13967-13972,
https://doi.org/10.1016/j.ceramint.2018.04.246 . .
11
8
11

Supplementary material for: "A Voltammetric Sensor Based on MgFe2O4 Decorated on Reduced Graphene Oxide-modified Electrode for Sensitive and Simultaneous Determination of Catechol and Hydroquinone"

Ognjanović, Miloš; Stanković, Dalibor; Fabian, Martin; Vukadinovic, Aleksandar; Prijovic, Zeljko; Dojčinović, Biljana; Antić, Bratislav

(Wiley-Blackwell, 2018)

TY  - DATA
AU  - Ognjanović, Miloš
AU  - Stanković, Dalibor
AU  - Fabian, Martin
AU  - Vukadinovic, Aleksandar
AU  - Prijovic, Zeljko
AU  - Dojčinović, Biljana
AU  - Antić, Bratislav
PY  - 2018
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/4533
AB  - Fig. S1 Log-normal distribution function from fitting the TEM particle size data. Fig. S2 EDS mapping for MgFe@RGO composite. Fig. S3 CV voltammograms of: (A) different CC concentration in presence of constant HQ concentration in solution; (B) different HQ concentration in presence of constant CC concentration in solution; (C) different CC and HQ concentrations. Supporting electrolyte Ac-buffer, scan rate 100 mV/s. working electrode MgFe@RGO composite modified electrode. Fig. S4 CV voltammograms of CC and HQ at various scan rates in the range from 10 to 200 mV/s. Supporting electrolyte Ac-buffer, working electrode MgFe@RGO composite modified electrode. Dependence of peak currents and square root of the scan rate (inset). Fig. S5 DPV voltammogram in the presence of 0.1 mM of both analytes.
PB  - Wiley-Blackwell
T2  - Electroanalysis
T1  - Supplementary material for: "A Voltammetric Sensor Based on MgFe2O4 Decorated on Reduced Graphene Oxide-modified Electrode for Sensitive and Simultaneous Determination of Catechol and Hydroquinone"
UR  - https://hdl.handle.net/21.15107/rcub_cer_4533
ER  - 
@misc{
author = "Ognjanović, Miloš and Stanković, Dalibor and Fabian, Martin and Vukadinovic, Aleksandar and Prijovic, Zeljko and Dojčinović, Biljana and Antić, Bratislav",
year = "2018",
abstract = "Fig. S1 Log-normal distribution function from fitting the TEM particle size data. Fig. S2 EDS mapping for MgFe@RGO composite. Fig. S3 CV voltammograms of: (A) different CC concentration in presence of constant HQ concentration in solution; (B) different HQ concentration in presence of constant CC concentration in solution; (C) different CC and HQ concentrations. Supporting electrolyte Ac-buffer, scan rate 100 mV/s. working electrode MgFe@RGO composite modified electrode. Fig. S4 CV voltammograms of CC and HQ at various scan rates in the range from 10 to 200 mV/s. Supporting electrolyte Ac-buffer, working electrode MgFe@RGO composite modified electrode. Dependence of peak currents and square root of the scan rate (inset). Fig. S5 DPV voltammogram in the presence of 0.1 mM of both analytes.",
publisher = "Wiley-Blackwell",
journal = "Electroanalysis",
title = "Supplementary material for: "A Voltammetric Sensor Based on MgFe2O4 Decorated on Reduced Graphene Oxide-modified Electrode for Sensitive and Simultaneous Determination of Catechol and Hydroquinone"",
url = "https://hdl.handle.net/21.15107/rcub_cer_4533"
}
Ognjanović, M., Stanković, D., Fabian, M., Vukadinovic, A., Prijovic, Z., Dojčinović, B.,& Antić, B.. (2018). Supplementary material for: "A Voltammetric Sensor Based on MgFe2O4 Decorated on Reduced Graphene Oxide-modified Electrode for Sensitive and Simultaneous Determination of Catechol and Hydroquinone". in Electroanalysis
Wiley-Blackwell..
https://hdl.handle.net/21.15107/rcub_cer_4533
Ognjanović M, Stanković D, Fabian M, Vukadinovic A, Prijovic Z, Dojčinović B, Antić B. Supplementary material for: "A Voltammetric Sensor Based on MgFe2O4 Decorated on Reduced Graphene Oxide-modified Electrode for Sensitive and Simultaneous Determination of Catechol and Hydroquinone". in Electroanalysis. 2018;.
https://hdl.handle.net/21.15107/rcub_cer_4533 .
Ognjanović, Miloš, Stanković, Dalibor, Fabian, Martin, Vukadinovic, Aleksandar, Prijovic, Zeljko, Dojčinović, Biljana, Antić, Bratislav, "Supplementary material for: "A Voltammetric Sensor Based on MgFe2O4 Decorated on Reduced Graphene Oxide-modified Electrode for Sensitive and Simultaneous Determination of Catechol and Hydroquinone"" in Electroanalysis (2018),
https://hdl.handle.net/21.15107/rcub_cer_4533 .