Ilić Đurđić, Karla

Link to this page

Authority KeyName Variants
9fe5ef95-3ff4-4369-8ced-d2ee77dcd1f0
  • Ilić Đurđić, Karla (2)
Projects

Author's Bibliography

Semi‑rational design of cellobiose dehydrogenase for increased stability in the presence of peroxide

Balaž, Ana Marija; Stevanović, Jelena; Ostafe, Raluca; Blažić, Marija; Ilić Đurđić, Karla; Fischer, Rainer; Prodanović, Radivoje

(Springer International Publishing, 2020)

TY  - JOUR
AU  - Balaž, Ana Marija
AU  - Stevanović, Jelena
AU  - Ostafe, Raluca
AU  - Blažić, Marija
AU  - Ilić Đurđić, Karla
AU  - Fischer, Rainer
AU  - Prodanović, Radivoje
PY  - 2020
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3128
AB  - Cellobiose dehydrogenase (CDH, EC 1.1.99.18) from white rot fungi Phanerochaete chrysosporium can be used for constructing biosensors and biofuel cells, for bleaching cotton in textile industry, and recently, the enzyme has found an important application in biomedicine as an antimicrobial and antibiofilm agent. Stability and activity of the wild-type (wt) CDH and mutants at methionine residues in the presence of hydrogen peroxide were investigated. Saturation mutagenesis libraries were made at the only methionine in heme domain M65 and two methionines M685 and M738 in the flavin domain that were closest to the active site. After screening the libraries, three mutants with increased activity and stability in the presence of peroxide were found, M65F with 70% of residual activity after 6 h of incubation in 0.3 M hydrogen peroxide, M738S with 80% of residual activity and M685Y with over 90% of residual activity compared to wild-type CDH that retained 40% of original activity. Combined mutants showed no activity. The most stable mutant M685Y with 5.8 times increased half-life in the presence of peroxide showed also 2.5 times increased kcat for lactose compared to wtCDH and could be good candidate for applications in biofuel cells and biocatalysis for lactobionic acid production.
PB  - Springer International Publishing
T2  - Molecular Diversity
T1  - Semi‑rational design of cellobiose dehydrogenase for increased stability in the presence of peroxide
VL  - 24
SP  - 593
EP  - 601
DO  - 10.1007/s11030-019-09965-0
ER  - 
@article{
author = "Balaž, Ana Marija and Stevanović, Jelena and Ostafe, Raluca and Blažić, Marija and Ilić Đurđić, Karla and Fischer, Rainer and Prodanović, Radivoje",
year = "2020",
abstract = "Cellobiose dehydrogenase (CDH, EC 1.1.99.18) from white rot fungi Phanerochaete chrysosporium can be used for constructing biosensors and biofuel cells, for bleaching cotton in textile industry, and recently, the enzyme has found an important application in biomedicine as an antimicrobial and antibiofilm agent. Stability and activity of the wild-type (wt) CDH and mutants at methionine residues in the presence of hydrogen peroxide were investigated. Saturation mutagenesis libraries were made at the only methionine in heme domain M65 and two methionines M685 and M738 in the flavin domain that were closest to the active site. After screening the libraries, three mutants with increased activity and stability in the presence of peroxide were found, M65F with 70% of residual activity after 6 h of incubation in 0.3 M hydrogen peroxide, M738S with 80% of residual activity and M685Y with over 90% of residual activity compared to wild-type CDH that retained 40% of original activity. Combined mutants showed no activity. The most stable mutant M685Y with 5.8 times increased half-life in the presence of peroxide showed also 2.5 times increased kcat for lactose compared to wtCDH and could be good candidate for applications in biofuel cells and biocatalysis for lactobionic acid production.",
publisher = "Springer International Publishing",
journal = "Molecular Diversity",
title = "Semi‑rational design of cellobiose dehydrogenase for increased stability in the presence of peroxide",
volume = "24",
pages = "593-601",
doi = "10.1007/s11030-019-09965-0"
}
Balaž, A. M., Stevanović, J., Ostafe, R., Blažić, M., Ilić Đurđić, K., Fischer, R.,& Prodanović, R.. (2020). Semi‑rational design of cellobiose dehydrogenase for increased stability in the presence of peroxide. in Molecular Diversity
Springer International Publishing., 24, 593-601.
https://doi.org/10.1007/s11030-019-09965-0
Balaž AM, Stevanović J, Ostafe R, Blažić M, Ilić Đurđić K, Fischer R, Prodanović R. Semi‑rational design of cellobiose dehydrogenase for increased stability in the presence of peroxide. in Molecular Diversity. 2020;24:593-601.
doi:10.1007/s11030-019-09965-0 .
Balaž, Ana Marija, Stevanović, Jelena, Ostafe, Raluca, Blažić, Marija, Ilić Đurđić, Karla, Fischer, Rainer, Prodanović, Radivoje, "Semi‑rational design of cellobiose dehydrogenase for increased stability in the presence of peroxide" in Molecular Diversity, 24 (2020):593-601,
https://doi.org/10.1007/s11030-019-09965-0 . .
8
3
5

Flow cytometry-based system for screening of lignin peroxidase mutants with higher oxidative stability

Ilić Đurđić, Karla; Ece, Selin; Ostafe, Raluca; Vogel, Simon; Balaž, Ana Marija; Schillberg, Stefan; Fischer, Rainer; Prodanović, Radivoje

(Elsevier, 2020)

TY  - JOUR
AU  - Ilić Đurđić, Karla
AU  - Ece, Selin
AU  - Ostafe, Raluca
AU  - Vogel, Simon
AU  - Balaž, Ana Marija
AU  - Schillberg, Stefan
AU  - Fischer, Rainer
AU  - Prodanović, Radivoje
PY  - 2020
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/3974
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3580
AB  - Lignin peroxidase (LiP) is a heme-containing oxidoreductase that oxidizes structurally diverse substrates in an H2O2-dependent manner. Its ability to oxidize many pollutants makes it suitable for bioremediation applications and an ideal candidate for optimization by mutagenesis and selection. In order to increase oxidative stability of LiP we generated a random mutagenesis library comprising 106 mutated LiP genes and screened for expressed enzymes with higher than wild-type activity after incubation in 30 mM H2O2 by flow cytometry with fluorescein-tyramide as a substrate. To preserve the genotype-phenotype connection, the LiP mutants were displayed on the yeast cell surface. Two rounds of sorting were performed, recovered colonies were then screened in microtiter plates, and activity analysis revealed a significant increase in the percentage of cells expressing LiP variants with higher oxidative stability than wtLiP. Two rounds of sorting increased the proportion of more-stable variants from 1.4% in the original library to 52.3%. The most stable variants after two rounds of sorting featured between two and four mutations and retained up to 80% of initial activity after 1 h incubation in 30 mM H2O2. We for the first-time applied flow cytometry for screening of any ligninolytic peroxidase library. Obtained results suggest that developed system may be applied for improvement of industrially important characteristics of lignin peroxidase.
PB  - Elsevier
T2  - Journal of Bioscience and Bioengineering
T1  - Flow cytometry-based system for screening of lignin peroxidase mutants with higher oxidative stability
VL  - 129
IS  - 6
SP  - 664
EP  - 671
DO  - 10.1016/j.jbiosc.2019.12.009
ER  - 
@article{
author = "Ilić Đurđić, Karla and Ece, Selin and Ostafe, Raluca and Vogel, Simon and Balaž, Ana Marija and Schillberg, Stefan and Fischer, Rainer and Prodanović, Radivoje",
year = "2020",
abstract = "Lignin peroxidase (LiP) is a heme-containing oxidoreductase that oxidizes structurally diverse substrates in an H2O2-dependent manner. Its ability to oxidize many pollutants makes it suitable for bioremediation applications and an ideal candidate for optimization by mutagenesis and selection. In order to increase oxidative stability of LiP we generated a random mutagenesis library comprising 106 mutated LiP genes and screened for expressed enzymes with higher than wild-type activity after incubation in 30 mM H2O2 by flow cytometry with fluorescein-tyramide as a substrate. To preserve the genotype-phenotype connection, the LiP mutants were displayed on the yeast cell surface. Two rounds of sorting were performed, recovered colonies were then screened in microtiter plates, and activity analysis revealed a significant increase in the percentage of cells expressing LiP variants with higher oxidative stability than wtLiP. Two rounds of sorting increased the proportion of more-stable variants from 1.4% in the original library to 52.3%. The most stable variants after two rounds of sorting featured between two and four mutations and retained up to 80% of initial activity after 1 h incubation in 30 mM H2O2. We for the first-time applied flow cytometry for screening of any ligninolytic peroxidase library. Obtained results suggest that developed system may be applied for improvement of industrially important characteristics of lignin peroxidase.",
publisher = "Elsevier",
journal = "Journal of Bioscience and Bioengineering",
title = "Flow cytometry-based system for screening of lignin peroxidase mutants with higher oxidative stability",
volume = "129",
number = "6",
pages = "664-671",
doi = "10.1016/j.jbiosc.2019.12.009"
}
Ilić Đurđić, K., Ece, S., Ostafe, R., Vogel, S., Balaž, A. M., Schillberg, S., Fischer, R.,& Prodanović, R.. (2020). Flow cytometry-based system for screening of lignin peroxidase mutants with higher oxidative stability. in Journal of Bioscience and Bioengineering
Elsevier., 129(6), 664-671.
https://doi.org/10.1016/j.jbiosc.2019.12.009
Ilić Đurđić K, Ece S, Ostafe R, Vogel S, Balaž AM, Schillberg S, Fischer R, Prodanović R. Flow cytometry-based system for screening of lignin peroxidase mutants with higher oxidative stability. in Journal of Bioscience and Bioengineering. 2020;129(6):664-671.
doi:10.1016/j.jbiosc.2019.12.009 .
Ilić Đurđić, Karla, Ece, Selin, Ostafe, Raluca, Vogel, Simon, Balaž, Ana Marija, Schillberg, Stefan, Fischer, Rainer, Prodanović, Radivoje, "Flow cytometry-based system for screening of lignin peroxidase mutants with higher oxidative stability" in Journal of Bioscience and Bioengineering, 129, no. 6 (2020):664-671,
https://doi.org/10.1016/j.jbiosc.2019.12.009 . .
10
1
11