Pavlović, Vera P.

Link to this page

Authority KeyName Variants
orcid::0000-0002-1802-1796
  • Pavlović, Vera P. (13)
  • Pavlović, Vera (3)
Projects
Directed synthesis, structure and properties of multifunctional materials Zero- to Three-Dimensional Nanostructures for Application in Electronics and Renewable Energy Sources: Synthesis, Characterization and Processing
Lithium-ion batteries and fuel cells - research and development Bilateral cooperation between Serbia and France, No. 4510339/2016/09/03 “Inteligent econanomaterials and nanocomposites”
Investigation of intermetallics and semiconductors and possible application in renewable energy sources Geologic and ecotoxicologic research in identification of geopathogen zones of toxic elements in drinking water reservoirs- research into methods and procedures for reduction of biochemical anomalies
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200017 (University of Belgrade, Institute of Nuclear Sciences 'Vinča', Belgrade-Vinča) Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200026 (University of Belgrade, Institute of Chemistry, Technology and Metallurgy - IChTM)
NASA - NNX09AV07A National Science Foundation, North Carolina State University, Project No. HRD-1345219
NSF CREST - HRD-0833184 Serbian Academy of Science and Arts - F/198
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200105 (University of Belgrade, Faculty of Mechanical Engineering) Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200116 (University of Belgrade, Faculty of Agriculture)
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200162 (University of Belgrade, Faculty of Physics) Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200168 (University of Belgrade, Faculty of Chemistry)
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200288 (Innovation Center of the Faculty of Chemistry) Synthesis, processing and applications of nanostructured multifunctional materials with defined properties
NASA: NNX09AV07A NASA - NNX09AVO7A
National Science Foundation, North Carolina State University, Proj. No. DMR-1523617 NSF - HRD0833184
United States National Aeronautics and Space Administration (NASA), Grant NNX09AV07A United States National Science Foundation (NSF) / Partnerships for Research and Education in Materials (PREM), Grant 1523617

Author's Bibliography

Semiconducting cobalt oxide nanocatalyst obtained through an eco-friendly thermal decomposition

Anđelković, Ljubica; Šuljagić, Marija; Mirković, Miljana; Pavlović, Vera; Petronijević, Ivan; Stanković, Dalibor; Jeremić, Dejan; Uskoković, Vuk

(Elsevier, 2023)

TY  - JOUR
AU  - Anđelković, Ljubica
AU  - Šuljagić, Marija
AU  - Mirković, Miljana
AU  - Pavlović, Vera
AU  - Petronijević, Ivan
AU  - Stanković, Dalibor
AU  - Jeremić, Dejan
AU  - Uskoković, Vuk
PY  - 2023
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/6199
AB  - The combination of an intense absorption of visible light and p-type semiconducting nature makes spinel cobalt oxide (Co3O4) a very attractive material for various optoelectronic applications. However, the traditional methods for its synthesis have been either time- and energy-consuming or relying on toxic chemicals. To solve this issue, a simple, facile, and eco-friendly method of synthesis was successfully developed to obtain spinel Co3O4 nanoparticles. The novel method for obtaining pure and monophasic Co3O4 reported here is based on the thermal decomposition of hexaaquacobalt(II) D-camphor10-sulfonate at 900 °C. This fast solid-state synthesis route overcomes the disadvantages of many combustion methods, most critically by avoiding the use of toxic organic solvents. The synthesized material was subjected to a detailed characterization to assess its potential for use as a nanocatalyst. The band gap measurements indicated the presence of two band gaps, one at 2.10 eV and another at 1.22 eV, confirming the purity and semiconducting properties of the sample. The electrochemical studies demonstrated a significant enhancement in the electron transfer kinetics with the addition of the synthesized Co3O4 to the carbon-paste electrode, leading to an enhanced electrocatalytic performance. These prominent functional properties, suitable for a wide range of technological applications, pave way for the implementation of the reported method for the synthesis of Co3O4 on a larger industrial scale.
PB  - Elsevier
T2  - Ceramics International
T1  - Semiconducting cobalt oxide nanocatalyst obtained through an eco-friendly thermal decomposition
DO  - 10.1016/j.ceramint.2023.04.182
ER  - 
@article{
author = "Anđelković, Ljubica and Šuljagić, Marija and Mirković, Miljana and Pavlović, Vera and Petronijević, Ivan and Stanković, Dalibor and Jeremić, Dejan and Uskoković, Vuk",
year = "2023",
abstract = "The combination of an intense absorption of visible light and p-type semiconducting nature makes spinel cobalt oxide (Co3O4) a very attractive material for various optoelectronic applications. However, the traditional methods for its synthesis have been either time- and energy-consuming or relying on toxic chemicals. To solve this issue, a simple, facile, and eco-friendly method of synthesis was successfully developed to obtain spinel Co3O4 nanoparticles. The novel method for obtaining pure and monophasic Co3O4 reported here is based on the thermal decomposition of hexaaquacobalt(II) D-camphor10-sulfonate at 900 °C. This fast solid-state synthesis route overcomes the disadvantages of many combustion methods, most critically by avoiding the use of toxic organic solvents. The synthesized material was subjected to a detailed characterization to assess its potential for use as a nanocatalyst. The band gap measurements indicated the presence of two band gaps, one at 2.10 eV and another at 1.22 eV, confirming the purity and semiconducting properties of the sample. The electrochemical studies demonstrated a significant enhancement in the electron transfer kinetics with the addition of the synthesized Co3O4 to the carbon-paste electrode, leading to an enhanced electrocatalytic performance. These prominent functional properties, suitable for a wide range of technological applications, pave way for the implementation of the reported method for the synthesis of Co3O4 on a larger industrial scale.",
publisher = "Elsevier",
journal = "Ceramics International",
title = "Semiconducting cobalt oxide nanocatalyst obtained through an eco-friendly thermal decomposition",
doi = "10.1016/j.ceramint.2023.04.182"
}
Anđelković, L., Šuljagić, M., Mirković, M., Pavlović, V., Petronijević, I., Stanković, D., Jeremić, D.,& Uskoković, V.. (2023). Semiconducting cobalt oxide nanocatalyst obtained through an eco-friendly thermal decomposition. in Ceramics International
Elsevier..
https://doi.org/10.1016/j.ceramint.2023.04.182
Anđelković L, Šuljagić M, Mirković M, Pavlović V, Petronijević I, Stanković D, Jeremić D, Uskoković V. Semiconducting cobalt oxide nanocatalyst obtained through an eco-friendly thermal decomposition. in Ceramics International. 2023;.
doi:10.1016/j.ceramint.2023.04.182 .
Anđelković, Ljubica, Šuljagić, Marija, Mirković, Miljana, Pavlović, Vera, Petronijević, Ivan, Stanković, Dalibor, Jeremić, Dejan, Uskoković, Vuk, "Semiconducting cobalt oxide nanocatalyst obtained through an eco-friendly thermal decomposition" in Ceramics International (2023),
https://doi.org/10.1016/j.ceramint.2023.04.182 . .

Effect of Sintering Temperature and Calcium amount on Compressive Strength of Brushite-Metakaolin Polymer Materials

Đukić, Dunja; Šuljagić, Marija; Anđelković, Ljubica; Pavlović, Vera; Bučevac, Dušan; Vrbica, Boško; Mirković, Miljana

(Association for ETRAN Society, 2022)

TY  - JOUR
AU  - Đukić, Dunja
AU  - Šuljagić, Marija
AU  - Anđelković, Ljubica
AU  - Pavlović, Vera
AU  - Bučevac, Dušan
AU  - Vrbica, Boško
AU  - Mirković, Miljana
PY  - 2022
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/5332
AB  - The effect of Ca2+ amount and sintering temperature on mechanical properties of geopolymer-brushite (GPB) binders was investigated. Brushite and raw abandoned kaolinite clay thermally transformed into metakaolin were used for GPB synthesis. The complete phase and structural analyses were performed by X-ray powder diffraction, and Fourier transforms infrared spectroscopy (FT-IR). The pore-filling effect as a consequence of Ca2+ ions incorporation into the hybrid geopolymer networks improved the compressive strength. On the other hand, the chosen biscuit sintering at 800 and 900oC caused the phase transformation of brushite into calcium pyrophosphate, which negatively affected the compressive strength of such materials. The obtained results indicate that the usage of relatively high sintering temperatures is not always the necessary step for producing geopolymer-based types of cement with prominent mechanical properties.
AB  - U ovom radu ispitivan je uticaj količine dodatog brušita i temperature sinterovanja na mehanička svojstva geopolimer-brušit veziva. Kao
polazni materijali za sintezu korišćeni su kaolinitska glina i sintetisani brušit. Kompletna fazna i strukturna analiza izvršena je difrakcijom
rendgenskih zraka na prahu i infracrvenom spektroskopijom sa Furijeovom transformacijom. Efekat dodatka brušita u geopolimernu matricu poboljšao je pritisnu čvrstoću, dok je biskvitno pečenje izazvalo faznu transformaciju brušita u kalcijum pirofosfat što je negativno uticalo na pritisnu čvrstoću takvih materijala. Dobijeni rezultati ukazuju da korišćenje relativno visokih temperatura sinterovanja nije uvek neophodan korak za proizvodnju cementa na bazi geopolimera sa istaknutim mehaničkim svojstvima.
PB  - Association for ETRAN Society
T2  - Science of Sintering
T1  - Effect of Sintering Temperature and Calcium amount on Compressive Strength of Brushite-Metakaolin Polymer Materials
VL  - 54
IS  - 3
SP  - 287
EP  - 294
DO  - 10.2298/SOS2203287D
ER  - 
@article{
author = "Đukić, Dunja and Šuljagić, Marija and Anđelković, Ljubica and Pavlović, Vera and Bučevac, Dušan and Vrbica, Boško and Mirković, Miljana",
year = "2022",
abstract = "The effect of Ca2+ amount and sintering temperature on mechanical properties of geopolymer-brushite (GPB) binders was investigated. Brushite and raw abandoned kaolinite clay thermally transformed into metakaolin were used for GPB synthesis. The complete phase and structural analyses were performed by X-ray powder diffraction, and Fourier transforms infrared spectroscopy (FT-IR). The pore-filling effect as a consequence of Ca2+ ions incorporation into the hybrid geopolymer networks improved the compressive strength. On the other hand, the chosen biscuit sintering at 800 and 900oC caused the phase transformation of brushite into calcium pyrophosphate, which negatively affected the compressive strength of such materials. The obtained results indicate that the usage of relatively high sintering temperatures is not always the necessary step for producing geopolymer-based types of cement with prominent mechanical properties., U ovom radu ispitivan je uticaj količine dodatog brušita i temperature sinterovanja na mehanička svojstva geopolimer-brušit veziva. Kao
polazni materijali za sintezu korišćeni su kaolinitska glina i sintetisani brušit. Kompletna fazna i strukturna analiza izvršena je difrakcijom
rendgenskih zraka na prahu i infracrvenom spektroskopijom sa Furijeovom transformacijom. Efekat dodatka brušita u geopolimernu matricu poboljšao je pritisnu čvrstoću, dok je biskvitno pečenje izazvalo faznu transformaciju brušita u kalcijum pirofosfat što je negativno uticalo na pritisnu čvrstoću takvih materijala. Dobijeni rezultati ukazuju da korišćenje relativno visokih temperatura sinterovanja nije uvek neophodan korak za proizvodnju cementa na bazi geopolimera sa istaknutim mehaničkim svojstvima.",
publisher = "Association for ETRAN Society",
journal = "Science of Sintering",
title = "Effect of Sintering Temperature and Calcium amount on Compressive Strength of Brushite-Metakaolin Polymer Materials",
volume = "54",
number = "3",
pages = "287-294",
doi = "10.2298/SOS2203287D"
}
Đukić, D., Šuljagić, M., Anđelković, L., Pavlović, V., Bučevac, D., Vrbica, B.,& Mirković, M.. (2022). Effect of Sintering Temperature and Calcium amount on Compressive Strength of Brushite-Metakaolin Polymer Materials. in Science of Sintering
Association for ETRAN Society., 54(3), 287-294.
https://doi.org/10.2298/SOS2203287D
Đukić D, Šuljagić M, Anđelković L, Pavlović V, Bučevac D, Vrbica B, Mirković M. Effect of Sintering Temperature and Calcium amount on Compressive Strength of Brushite-Metakaolin Polymer Materials. in Science of Sintering. 2022;54(3):287-294.
doi:10.2298/SOS2203287D .
Đukić, Dunja, Šuljagić, Marija, Anđelković, Ljubica, Pavlović, Vera, Bučevac, Dušan, Vrbica, Boško, Mirković, Miljana, "Effect of Sintering Temperature and Calcium amount on Compressive Strength of Brushite-Metakaolin Polymer Materials" in Science of Sintering, 54, no. 3 (2022):287-294,
https://doi.org/10.2298/SOS2203287D . .

Controllable synthesis of Fe3O4-wollastonite adsorbents for efficient heavy metal ions/oxyanions removal

Rusmirović, Jelena; Obradović, Nina; Perendija, Jovana; Umićević, Ana; Kapidžić, Ana; Vlahović, Branislav; Pavlović, Vera; Marinković, Aleksandar D.; Pavlović, Vladimir B.

(Springer, 2019)

TY  - JOUR
AU  - Rusmirović, Jelena
AU  - Obradović, Nina
AU  - Perendija, Jovana
AU  - Umićević, Ana
AU  - Kapidžić, Ana
AU  - Vlahović, Branislav
AU  - Pavlović, Vera
AU  - Marinković, Aleksandar D.
AU  - Pavlović, Vladimir B.
PY  - 2019
UR  - https://doi.org/10.1007/s11356-019-04625-0
UR  - http://dais.sanu.ac.rs/123456789/5273
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3334
AB  - Iron oxide, in the form of magnetite (MG)–functionalized porous wollastonite (WL), was used as an adsorbent for heavy metal ions (cadmium and nickel) and oxyanions (chromate and phosphate) removal from water. The porous WL was synthesized from calcium carbonate and siloxane by controlled sintering process using low molecular weight submicrosized poly(methyl methacrylate) as a pore-forming agent. The precipitation of MG nanoparticles was carried out directly by a polyol-medium solvothermal method or via branched amino/carboxylic acid cross-linker by solvent/nonsolvent method producing WL/MG and WL-γ-APS/MG adsorbents, respectively. The structure/properties of MG functionalized WL was confirmed by applying FTIR, Raman, XRD, Mössbauer, and SEM analysis. Higher adsorption capacities of 73.126, 66.144, 64.168, and 63.456 mg g−1 for WL-γ-APS/MG in relation to WL/MG of 55.450, 52.019, 48.132, and 47.382 mg g−1 for Cd2+, Ni2+, phosphate, and chromate, respectively, were obtained using nonlinear Langmuir model fitting. Adsorption phenomena were analyzed using monolayer statistical physics model for single adsorption with one energy. Kinetic study showed exceptionally higher pseudo-second-order rate constants for WL-γ-APS/MG, e.g., 1.17–13.4 times, with respect to WL/MG indicating importance of both WL surface modification and controllable precipitation of MG on WL-γ-APS.
PB  - Springer
T2  - Environmental Science and Pollution Research
T1  - Controllable synthesis of Fe3O4-wollastonite adsorbents for efficient heavy metal ions/oxyanions removal
VL  - 26
IS  - 12
SP  - 12379
EP  - 12398
DO  - 10.1007/s11356-019-04625-0
ER  - 
@article{
author = "Rusmirović, Jelena and Obradović, Nina and Perendija, Jovana and Umićević, Ana and Kapidžić, Ana and Vlahović, Branislav and Pavlović, Vera and Marinković, Aleksandar D. and Pavlović, Vladimir B.",
year = "2019",
abstract = "Iron oxide, in the form of magnetite (MG)–functionalized porous wollastonite (WL), was used as an adsorbent for heavy metal ions (cadmium and nickel) and oxyanions (chromate and phosphate) removal from water. The porous WL was synthesized from calcium carbonate and siloxane by controlled sintering process using low molecular weight submicrosized poly(methyl methacrylate) as a pore-forming agent. The precipitation of MG nanoparticles was carried out directly by a polyol-medium solvothermal method or via branched amino/carboxylic acid cross-linker by solvent/nonsolvent method producing WL/MG and WL-γ-APS/MG adsorbents, respectively. The structure/properties of MG functionalized WL was confirmed by applying FTIR, Raman, XRD, Mössbauer, and SEM analysis. Higher adsorption capacities of 73.126, 66.144, 64.168, and 63.456 mg g−1 for WL-γ-APS/MG in relation to WL/MG of 55.450, 52.019, 48.132, and 47.382 mg g−1 for Cd2+, Ni2+, phosphate, and chromate, respectively, were obtained using nonlinear Langmuir model fitting. Adsorption phenomena were analyzed using monolayer statistical physics model for single adsorption with one energy. Kinetic study showed exceptionally higher pseudo-second-order rate constants for WL-γ-APS/MG, e.g., 1.17–13.4 times, with respect to WL/MG indicating importance of both WL surface modification and controllable precipitation of MG on WL-γ-APS.",
publisher = "Springer",
journal = "Environmental Science and Pollution Research",
title = "Controllable synthesis of Fe3O4-wollastonite adsorbents for efficient heavy metal ions/oxyanions removal",
volume = "26",
number = "12",
pages = "12379-12398",
doi = "10.1007/s11356-019-04625-0"
}
Rusmirović, J., Obradović, N., Perendija, J., Umićević, A., Kapidžić, A., Vlahović, B., Pavlović, V., Marinković, A. D.,& Pavlović, V. B.. (2019). Controllable synthesis of Fe3O4-wollastonite adsorbents for efficient heavy metal ions/oxyanions removal. in Environmental Science and Pollution Research
Springer., 26(12), 12379-12398.
https://doi.org/10.1007/s11356-019-04625-0
Rusmirović J, Obradović N, Perendija J, Umićević A, Kapidžić A, Vlahović B, Pavlović V, Marinković AD, Pavlović VB. Controllable synthesis of Fe3O4-wollastonite adsorbents for efficient heavy metal ions/oxyanions removal. in Environmental Science and Pollution Research. 2019;26(12):12379-12398.
doi:10.1007/s11356-019-04625-0 .
Rusmirović, Jelena, Obradović, Nina, Perendija, Jovana, Umićević, Ana, Kapidžić, Ana, Vlahović, Branislav, Pavlović, Vera, Marinković, Aleksandar D., Pavlović, Vladimir B., "Controllable synthesis of Fe3O4-wollastonite adsorbents for efficient heavy metal ions/oxyanions removal" in Environmental Science and Pollution Research, 26, no. 12 (2019):12379-12398,
https://doi.org/10.1007/s11356-019-04625-0 . .
1
11
6
13

Investigation of ZnFe2O4 spinel ferrite nanocrystalline screen‐printed thick films for application in humidity sensing

Nikolić, Maria Vesna; Vasiljević, Zorka; Luković, Miloljub; Pavlović, Vera P.; Krstić, Jugoslav; Vujančević, Jelena; Tadić, Nenad; Vlahović, Branislav; Pavlović, Vladimir B.

(John Wiley & Sons, Inc., 2019)

TY  - JOUR
AU  - Nikolić, Maria Vesna
AU  - Vasiljević, Zorka
AU  - Luković, Miloljub
AU  - Pavlović, Vera P.
AU  - Krstić, Jugoslav
AU  - Vujančević, Jelena
AU  - Tadić, Nenad
AU  - Vlahović, Branislav
AU  - Pavlović, Vladimir B.
PY  - 2019
UR  - https://ceramics.onlinelibrary.wiley.com/doi/abs/10.1111/ijac.13190
UR  - http://dais.sanu.ac.rs/123456789/4848
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/2603
AB  - Zinc ferrite nanocrystalline powder was obtained by solid state synthesis of starting zinc oxide and hematite nanopowders. Field emission scanning electron microscopy (FESEM and transmission electron microscopy (TEM), X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy (XPS) and Raman spectroscopy confirmed the formation of nanocrystalline zinc‐ferrite powder with a mixed spinel structure with small amounts of remaining zinc oxide and hematite as impurities. Thick film paste was formed and screen printed on test interdigitated PdAg electrodes on alumina substrate. Formation of a porous nanocrystalline structure was confirmed by scanning electron microscopy (SEM) and Hg porosimetry. Humidity sensing properties of zinc ferrite thick films were investigated by monitoring the change in impedance in the relative humidity interval 30‐90% in the frequency range 42 Hz – 1 MHz at room temperature (25 °C) and 50 °C. At 42 Hz at both analyzed temperatures the impedance reduced ~ 46 times in the humidity range 30‐90%. The dominant influence of grain boundaries was confirmed by analysis of complex impedance with an equivalent circuit.
PB  - John Wiley & Sons, Inc.
T2  - International Journal of Applied Ceramic Technology
T1  - Investigation of ZnFe2O4 spinel ferrite nanocrystalline screen‐printed thick films for application in humidity sensing
DO  - 10.1111/ijac.13190
ER  - 
@article{
author = "Nikolić, Maria Vesna and Vasiljević, Zorka and Luković, Miloljub and Pavlović, Vera P. and Krstić, Jugoslav and Vujančević, Jelena and Tadić, Nenad and Vlahović, Branislav and Pavlović, Vladimir B.",
year = "2019",
abstract = "Zinc ferrite nanocrystalline powder was obtained by solid state synthesis of starting zinc oxide and hematite nanopowders. Field emission scanning electron microscopy (FESEM and transmission electron microscopy (TEM), X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy (XPS) and Raman spectroscopy confirmed the formation of nanocrystalline zinc‐ferrite powder with a mixed spinel structure with small amounts of remaining zinc oxide and hematite as impurities. Thick film paste was formed and screen printed on test interdigitated PdAg electrodes on alumina substrate. Formation of a porous nanocrystalline structure was confirmed by scanning electron microscopy (SEM) and Hg porosimetry. Humidity sensing properties of zinc ferrite thick films were investigated by monitoring the change in impedance in the relative humidity interval 30‐90% in the frequency range 42 Hz – 1 MHz at room temperature (25 °C) and 50 °C. At 42 Hz at both analyzed temperatures the impedance reduced ~ 46 times in the humidity range 30‐90%. The dominant influence of grain boundaries was confirmed by analysis of complex impedance with an equivalent circuit.",
publisher = "John Wiley & Sons, Inc.",
journal = "International Journal of Applied Ceramic Technology",
title = "Investigation of ZnFe2O4 spinel ferrite nanocrystalline screen‐printed thick films for application in humidity sensing",
doi = "10.1111/ijac.13190"
}
Nikolić, M. V., Vasiljević, Z., Luković, M., Pavlović, V. P., Krstić, J., Vujančević, J., Tadić, N., Vlahović, B.,& Pavlović, V. B.. (2019). Investigation of ZnFe2O4 spinel ferrite nanocrystalline screen‐printed thick films for application in humidity sensing. in International Journal of Applied Ceramic Technology
John Wiley & Sons, Inc...
https://doi.org/10.1111/ijac.13190
Nikolić MV, Vasiljević Z, Luković M, Pavlović VP, Krstić J, Vujančević J, Tadić N, Vlahović B, Pavlović VB. Investigation of ZnFe2O4 spinel ferrite nanocrystalline screen‐printed thick films for application in humidity sensing. in International Journal of Applied Ceramic Technology. 2019;.
doi:10.1111/ijac.13190 .
Nikolić, Maria Vesna, Vasiljević, Zorka, Luković, Miloljub, Pavlović, Vera P., Krstić, Jugoslav, Vujančević, Jelena, Tadić, Nenad, Vlahović, Branislav, Pavlović, Vladimir B., "Investigation of ZnFe2O4 spinel ferrite nanocrystalline screen‐printed thick films for application in humidity sensing" in International Journal of Applied Ceramic Technology (2019),
https://doi.org/10.1111/ijac.13190 . .
36
15
37

Controllable synthesis of Fe3O4-wollastonite adsorbents for efficient heavy metal ions/oxyanions removal

Rusmirović, Jelena; Obradović, Nina; Perendija, Jovana; Umićević, Ana; Kapidžić, Ana; Vlahović, Branislav; Pavlović, Vera P.; Marinković, Aleksandar D.; Pavlović, Vladimir B.

(Springer, 2019)

TY  - JOUR
AU  - Rusmirović, Jelena
AU  - Obradović, Nina
AU  - Perendija, Jovana
AU  - Umićević, Ana
AU  - Kapidžić, Ana
AU  - Vlahović, Branislav
AU  - Pavlović, Vera P.
AU  - Marinković, Aleksandar D.
AU  - Pavlović, Vladimir B.
PY  - 2019
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/2845
AB  - Iron oxide, in the form of magnetite (MG)–functionalized porous wollastonite (WL), was used as an adsorbent for heavy metal ions (cadmium and nickel) and oxyanions (chromate and phosphate) removal from water. The porous WL was synthesized from calcium carbonate and siloxane by controlled sintering process using low molecular weight submicrosized poly(methyl methacrylate) as a pore-forming agent. The precipitation of MG nanoparticles was carried out directly by a polyol-medium solvothermal method or via branched amino/carboxylic acid cross-linker by solvent/nonsolvent method producing WL/MG and WL-γ-APS/MG adsorbents, respectively. The structure/properties of MG functionalized WL was confirmed by applying FTIR, Raman, XRD, Mössbauer, and SEM analysis. Higher adsorption capacities of 73.126, 66.144, 64.168, and 63.456 mg g−1 for WL-γ-APS/MG in relation to WL/MG of 55.450, 52.019, 48.132, and 47.382 mg g−1 for Cd2+, Ni2+, phosphate, and chromate, respectively, were obtained using nonlinear Langmuir model fitting. Adsorption phenomena were analyzed using monolayer statistical physics model for single adsorption with one energy. Kinetic study showed exceptionally higher pseudo-second-order rate constants for WL-γ-APS/MG, e.g., 1.17–13.4 times, with respect to WL/MG indicating importance of both WL surface modification and controllable precipitation of MG on WL-γ-APS.
PB  - Springer
T2  - Environmental Science and Pollution Research
T1  - Controllable synthesis of Fe3O4-wollastonite adsorbents for efficient heavy metal ions/oxyanions removal
VL  - 26
IS  - 12
SP  - 12379
EP  - 12398
DO  - 10.1007/s11356-019-04625-0
ER  - 
@article{
author = "Rusmirović, Jelena and Obradović, Nina and Perendija, Jovana and Umićević, Ana and Kapidžić, Ana and Vlahović, Branislav and Pavlović, Vera P. and Marinković, Aleksandar D. and Pavlović, Vladimir B.",
year = "2019",
abstract = "Iron oxide, in the form of magnetite (MG)–functionalized porous wollastonite (WL), was used as an adsorbent for heavy metal ions (cadmium and nickel) and oxyanions (chromate and phosphate) removal from water. The porous WL was synthesized from calcium carbonate and siloxane by controlled sintering process using low molecular weight submicrosized poly(methyl methacrylate) as a pore-forming agent. The precipitation of MG nanoparticles was carried out directly by a polyol-medium solvothermal method or via branched amino/carboxylic acid cross-linker by solvent/nonsolvent method producing WL/MG and WL-γ-APS/MG adsorbents, respectively. The structure/properties of MG functionalized WL was confirmed by applying FTIR, Raman, XRD, Mössbauer, and SEM analysis. Higher adsorption capacities of 73.126, 66.144, 64.168, and 63.456 mg g−1 for WL-γ-APS/MG in relation to WL/MG of 55.450, 52.019, 48.132, and 47.382 mg g−1 for Cd2+, Ni2+, phosphate, and chromate, respectively, were obtained using nonlinear Langmuir model fitting. Adsorption phenomena were analyzed using monolayer statistical physics model for single adsorption with one energy. Kinetic study showed exceptionally higher pseudo-second-order rate constants for WL-γ-APS/MG, e.g., 1.17–13.4 times, with respect to WL/MG indicating importance of both WL surface modification and controllable precipitation of MG on WL-γ-APS.",
publisher = "Springer",
journal = "Environmental Science and Pollution Research",
title = "Controllable synthesis of Fe3O4-wollastonite adsorbents for efficient heavy metal ions/oxyanions removal",
volume = "26",
number = "12",
pages = "12379-12398",
doi = "10.1007/s11356-019-04625-0"
}
Rusmirović, J., Obradović, N., Perendija, J., Umićević, A., Kapidžić, A., Vlahović, B., Pavlović, V. P., Marinković, A. D.,& Pavlović, V. B.. (2019). Controllable synthesis of Fe3O4-wollastonite adsorbents for efficient heavy metal ions/oxyanions removal. in Environmental Science and Pollution Research
Springer., 26(12), 12379-12398.
https://doi.org/10.1007/s11356-019-04625-0
Rusmirović J, Obradović N, Perendija J, Umićević A, Kapidžić A, Vlahović B, Pavlović VP, Marinković AD, Pavlović VB. Controllable synthesis of Fe3O4-wollastonite adsorbents for efficient heavy metal ions/oxyanions removal. in Environmental Science and Pollution Research. 2019;26(12):12379-12398.
doi:10.1007/s11356-019-04625-0 .
Rusmirović, Jelena, Obradović, Nina, Perendija, Jovana, Umićević, Ana, Kapidžić, Ana, Vlahović, Branislav, Pavlović, Vera P., Marinković, Aleksandar D., Pavlović, Vladimir B., "Controllable synthesis of Fe3O4-wollastonite adsorbents for efficient heavy metal ions/oxyanions removal" in Environmental Science and Pollution Research, 26, no. 12 (2019):12379-12398,
https://doi.org/10.1007/s11356-019-04625-0 . .
1
11
6
13

Investigation of ZnFe2O4 spinel ferrite nanocrystalline screen‐printed thick films for application in humidity sensing

Nikolić, Maria Vesna; Vasiljević, Zorka; Luković, Miloljub; Pavlović, Vera P.; Krstić, Jugoslav; Vujančević, Jelena; Tadić, Nenad; Vlahović, Branislav; Pavlović, Vladimir B.

(John Wiley & Sons, Inc., 2019)

TY  - JOUR
AU  - Nikolić, Maria Vesna
AU  - Vasiljević, Zorka
AU  - Luković, Miloljub
AU  - Pavlović, Vera P.
AU  - Krstić, Jugoslav
AU  - Vujančević, Jelena
AU  - Tadić, Nenad
AU  - Vlahović, Branislav
AU  - Pavlović, Vladimir B.
PY  - 2019
UR  - https://ceramics.onlinelibrary.wiley.com/doi/abs/10.1111/ijac.13190
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/2851
AB  - Zinc ferrite nanocrystalline powder was obtained by solid state synthesis of starting zinc oxide and hematite nanopowders. Field emission scanning electron microscopy (FESEM and transmission electron microscopy (TEM), X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy (XPS) and Raman spectroscopy confirmed the formation of nanocrystalline zinc‐ferrite powder with a mixed spinel structure with small amounts of remaining zinc oxide and hematite as impurities. Thick film paste was formed and screen printed on test interdigitated PdAg electrodes on alumina substrate. Formation of a porous nanocrystalline structure was confirmed by scanning electron microscopy (SEM) and Hg porosimetry. Humidity sensing properties of zinc ferrite thick films were investigated by monitoring the change in impedance in the relative humidity interval 30‐90% in the frequency range 42 Hz – 1 MHz at room temperature (25 °C) and 50 °C. At 42 Hz at both analyzed temperatures the impedance reduced ~ 46 times in the humidity range 30‐90%. The dominant influence of grain boundaries was confirmed by analysis of complex impedance with an equivalent circuit.
PB  - John Wiley & Sons, Inc.
T2  - International Journal of Applied Ceramic Technology
T1  - Investigation of ZnFe2O4 spinel ferrite nanocrystalline screen‐printed thick films for application in humidity sensing
VL  - 16
IS  - 3
SP  - 981
EP  - 993
DO  - 10.1111/ijac.13190
ER  - 
@article{
author = "Nikolić, Maria Vesna and Vasiljević, Zorka and Luković, Miloljub and Pavlović, Vera P. and Krstić, Jugoslav and Vujančević, Jelena and Tadić, Nenad and Vlahović, Branislav and Pavlović, Vladimir B.",
year = "2019",
abstract = "Zinc ferrite nanocrystalline powder was obtained by solid state synthesis of starting zinc oxide and hematite nanopowders. Field emission scanning electron microscopy (FESEM and transmission electron microscopy (TEM), X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy (XPS) and Raman spectroscopy confirmed the formation of nanocrystalline zinc‐ferrite powder with a mixed spinel structure with small amounts of remaining zinc oxide and hematite as impurities. Thick film paste was formed and screen printed on test interdigitated PdAg electrodes on alumina substrate. Formation of a porous nanocrystalline structure was confirmed by scanning electron microscopy (SEM) and Hg porosimetry. Humidity sensing properties of zinc ferrite thick films were investigated by monitoring the change in impedance in the relative humidity interval 30‐90% in the frequency range 42 Hz – 1 MHz at room temperature (25 °C) and 50 °C. At 42 Hz at both analyzed temperatures the impedance reduced ~ 46 times in the humidity range 30‐90%. The dominant influence of grain boundaries was confirmed by analysis of complex impedance with an equivalent circuit.",
publisher = "John Wiley & Sons, Inc.",
journal = "International Journal of Applied Ceramic Technology",
title = "Investigation of ZnFe2O4 spinel ferrite nanocrystalline screen‐printed thick films for application in humidity sensing",
volume = "16",
number = "3",
pages = "981-993",
doi = "10.1111/ijac.13190"
}
Nikolić, M. V., Vasiljević, Z., Luković, M., Pavlović, V. P., Krstić, J., Vujančević, J., Tadić, N., Vlahović, B.,& Pavlović, V. B.. (2019). Investigation of ZnFe2O4 spinel ferrite nanocrystalline screen‐printed thick films for application in humidity sensing. in International Journal of Applied Ceramic Technology
John Wiley & Sons, Inc.., 16(3), 981-993.
https://doi.org/10.1111/ijac.13190
Nikolić MV, Vasiljević Z, Luković M, Pavlović VP, Krstić J, Vujančević J, Tadić N, Vlahović B, Pavlović VB. Investigation of ZnFe2O4 spinel ferrite nanocrystalline screen‐printed thick films for application in humidity sensing. in International Journal of Applied Ceramic Technology. 2019;16(3):981-993.
doi:10.1111/ijac.13190 .
Nikolić, Maria Vesna, Vasiljević, Zorka, Luković, Miloljub, Pavlović, Vera P., Krstić, Jugoslav, Vujančević, Jelena, Tadić, Nenad, Vlahović, Branislav, Pavlović, Vladimir B., "Investigation of ZnFe2O4 spinel ferrite nanocrystalline screen‐printed thick films for application in humidity sensing" in International Journal of Applied Ceramic Technology, 16, no. 3 (2019):981-993,
https://doi.org/10.1111/ijac.13190 . .
36
15
37

Humidity sensing properties of nanocrystalline pseudobrookite (Fe2TiO5) based thick films

Nikolić, Maria Vesna; Vasiljević, Zorka; Luković, Miloljub; Pavlović, Vera P.; Vujancevic, J.; Radovanović, M.; Krstić, Jugoslav; Vlahovic, B.; Pavlović, Vladimir B.

(Elsevier, 2018)

TY  - JOUR
AU  - Nikolić, Maria Vesna
AU  - Vasiljević, Zorka
AU  - Luković, Miloljub
AU  - Pavlović, Vera P.
AU  - Vujancevic, J.
AU  - Radovanović, M.
AU  - Krstić, Jugoslav
AU  - Vlahovic, B.
AU  - Pavlović, Vladimir B.
PY  - 2018
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/4277
AB  - Pseudobrookite based nanopowder was obtained by solid state synthesis of starting hematite and anatase nanopowders in the weight ratio 55:45. Structural and morphological properties were analyzed using X-ray diffraction (XRD), BET, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, UV/Vis diffuse reflectance spectroscopy, Field emission scanning electron microscopy (FESEM) and Transmission electron microscopy (TEM) confirming the formation of nanocrystalline pseudobrookite. The obtained powder was mixed with a binder (ethyl cellulose), dispersant (α-terpinol) and adhesion agents (acetic acid and distilled water) to obtain a thick film paste. It was screen printed on alumina substrate with interdigitated PdAg electrodes and fired at 600 °C for 30 min. Formation of a porous nanocrystalline thick film structure was shown using Scanning electron microscopy (SEM), while Hall measurements enabled determination of carrier mobility. Change of impedance response in the frequency range 42 Hz–1 MHz with humidity was analyzed at room temperature (25 °C) and 50 °C in the relative humidity range 30–90% and 40–90%, respectively. At 42 Hz, and room temperature the impedance reduced ∼28 times, while at 50 °C it reduced ∼147 times in the relative humidity range 40–90%. The sensor showed rapid response (16 s) and relatively low hysteresis (8.39% at 25 °C and 2.64% at 50 °C) showing that this is a promising material for application in humidity sensing.
PB  - Elsevier
T2  - Sensors and Actuators, B: Chemical
T1  - Humidity sensing properties of nanocrystalline pseudobrookite (Fe2TiO5) based thick films
VL  - 277
SP  - 654
EP  - 664
DO  - 10.1016/j.snb.2018.09.063
ER  - 
@article{
author = "Nikolić, Maria Vesna and Vasiljević, Zorka and Luković, Miloljub and Pavlović, Vera P. and Vujancevic, J. and Radovanović, M. and Krstić, Jugoslav and Vlahovic, B. and Pavlović, Vladimir B.",
year = "2018",
abstract = "Pseudobrookite based nanopowder was obtained by solid state synthesis of starting hematite and anatase nanopowders in the weight ratio 55:45. Structural and morphological properties were analyzed using X-ray diffraction (XRD), BET, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, UV/Vis diffuse reflectance spectroscopy, Field emission scanning electron microscopy (FESEM) and Transmission electron microscopy (TEM) confirming the formation of nanocrystalline pseudobrookite. The obtained powder was mixed with a binder (ethyl cellulose), dispersant (α-terpinol) and adhesion agents (acetic acid and distilled water) to obtain a thick film paste. It was screen printed on alumina substrate with interdigitated PdAg electrodes and fired at 600 °C for 30 min. Formation of a porous nanocrystalline thick film structure was shown using Scanning electron microscopy (SEM), while Hall measurements enabled determination of carrier mobility. Change of impedance response in the frequency range 42 Hz–1 MHz with humidity was analyzed at room temperature (25 °C) and 50 °C in the relative humidity range 30–90% and 40–90%, respectively. At 42 Hz, and room temperature the impedance reduced ∼28 times, while at 50 °C it reduced ∼147 times in the relative humidity range 40–90%. The sensor showed rapid response (16 s) and relatively low hysteresis (8.39% at 25 °C and 2.64% at 50 °C) showing that this is a promising material for application in humidity sensing.",
publisher = "Elsevier",
journal = "Sensors and Actuators, B: Chemical",
title = "Humidity sensing properties of nanocrystalline pseudobrookite (Fe2TiO5) based thick films",
volume = "277",
pages = "654-664",
doi = "10.1016/j.snb.2018.09.063"
}
Nikolić, M. V., Vasiljević, Z., Luković, M., Pavlović, V. P., Vujancevic, J., Radovanović, M., Krstić, J., Vlahovic, B.,& Pavlović, V. B.. (2018). Humidity sensing properties of nanocrystalline pseudobrookite (Fe2TiO5) based thick films. in Sensors and Actuators, B: Chemical
Elsevier., 277, 654-664.
https://doi.org/10.1016/j.snb.2018.09.063
Nikolić MV, Vasiljević Z, Luković M, Pavlović VP, Vujancevic J, Radovanović M, Krstić J, Vlahovic B, Pavlović VB. Humidity sensing properties of nanocrystalline pseudobrookite (Fe2TiO5) based thick films. in Sensors and Actuators, B: Chemical. 2018;277:654-664.
doi:10.1016/j.snb.2018.09.063 .
Nikolić, Maria Vesna, Vasiljević, Zorka, Luković, Miloljub, Pavlović, Vera P., Vujancevic, J., Radovanović, M., Krstić, Jugoslav, Vlahovic, B., Pavlović, Vladimir B., "Humidity sensing properties of nanocrystalline pseudobrookite (Fe2TiO5) based thick films" in Sensors and Actuators, B: Chemical, 277 (2018):654-664,
https://doi.org/10.1016/j.snb.2018.09.063 . .
40
22
37

Humidity sensing properties of nanocrystalline pseudobrookite (Fe2TiO5) based thick films

Nikolić, Maria Vesna; Vasiljević, Zorka; Luković, Miloljub; Pavlović, Vera P.; Vujancevic, J.; Radovanović, M.; Krstić, Jugoslav; Vlahovic, B.; Pavlović, Vladimir B.

(Elsevier, 2018)

TY  - JOUR
AU  - Nikolić, Maria Vesna
AU  - Vasiljević, Zorka
AU  - Luković, Miloljub
AU  - Pavlović, Vera P.
AU  - Vujancevic, J.
AU  - Radovanović, M.
AU  - Krstić, Jugoslav
AU  - Vlahovic, B.
AU  - Pavlović, Vladimir B.
PY  - 2018
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/2414
AB  - Pseudobrookite based nanopowder was obtained by solid state synthesis of starting hematite and anatase nanopowders in the weight ratio 55:45. Structural and morphological properties were analyzed using X-ray diffraction (XRD), BET, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, UV/Vis diffuse reflectance spectroscopy, Field emission scanning electron microscopy (FESEM) and Transmission electron microscopy (TEM) confirming the formation of nanocrystalline pseudobrookite. The obtained powder was mixed with a binder (ethyl cellulose), dispersant (α-terpinol) and adhesion agents (acetic acid and distilled water) to obtain a thick film paste. It was screen printed on alumina substrate with interdigitated PdAg electrodes and fired at 600 °C for 30 min. Formation of a porous nanocrystalline thick film structure was shown using Scanning electron microscopy (SEM), while Hall measurements enabled determination of carrier mobility. Change of impedance response in the frequency range 42 Hz–1 MHz with humidity was analyzed at room temperature (25 °C) and 50 °C in the relative humidity range 30–90% and 40–90%, respectively. At 42 Hz, and room temperature the impedance reduced ∼28 times, while at 50 °C it reduced ∼147 times in the relative humidity range 40–90%. The sensor showed rapid response (16 s) and relatively low hysteresis (8.39% at 25 °C and 2.64% at 50 °C) showing that this is a promising material for application in humidity sensing.
PB  - Elsevier
T2  - Sensors and Actuators, B: Chemical
T1  - Humidity sensing properties of nanocrystalline pseudobrookite (Fe2TiO5) based thick films
VL  - 277
SP  - 654
EP  - 664
DO  - 10.1016/j.snb.2018.09.063
ER  - 
@article{
author = "Nikolić, Maria Vesna and Vasiljević, Zorka and Luković, Miloljub and Pavlović, Vera P. and Vujancevic, J. and Radovanović, M. and Krstić, Jugoslav and Vlahovic, B. and Pavlović, Vladimir B.",
year = "2018",
abstract = "Pseudobrookite based nanopowder was obtained by solid state synthesis of starting hematite and anatase nanopowders in the weight ratio 55:45. Structural and morphological properties were analyzed using X-ray diffraction (XRD), BET, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, UV/Vis diffuse reflectance spectroscopy, Field emission scanning electron microscopy (FESEM) and Transmission electron microscopy (TEM) confirming the formation of nanocrystalline pseudobrookite. The obtained powder was mixed with a binder (ethyl cellulose), dispersant (α-terpinol) and adhesion agents (acetic acid and distilled water) to obtain a thick film paste. It was screen printed on alumina substrate with interdigitated PdAg electrodes and fired at 600 °C for 30 min. Formation of a porous nanocrystalline thick film structure was shown using Scanning electron microscopy (SEM), while Hall measurements enabled determination of carrier mobility. Change of impedance response in the frequency range 42 Hz–1 MHz with humidity was analyzed at room temperature (25 °C) and 50 °C in the relative humidity range 30–90% and 40–90%, respectively. At 42 Hz, and room temperature the impedance reduced ∼28 times, while at 50 °C it reduced ∼147 times in the relative humidity range 40–90%. The sensor showed rapid response (16 s) and relatively low hysteresis (8.39% at 25 °C and 2.64% at 50 °C) showing that this is a promising material for application in humidity sensing.",
publisher = "Elsevier",
journal = "Sensors and Actuators, B: Chemical",
title = "Humidity sensing properties of nanocrystalline pseudobrookite (Fe2TiO5) based thick films",
volume = "277",
pages = "654-664",
doi = "10.1016/j.snb.2018.09.063"
}
Nikolić, M. V., Vasiljević, Z., Luković, M., Pavlović, V. P., Vujancevic, J., Radovanović, M., Krstić, J., Vlahovic, B.,& Pavlović, V. B.. (2018). Humidity sensing properties of nanocrystalline pseudobrookite (Fe2TiO5) based thick films. in Sensors and Actuators, B: Chemical
Elsevier., 277, 654-664.
https://doi.org/10.1016/j.snb.2018.09.063
Nikolić MV, Vasiljević Z, Luković M, Pavlović VP, Vujancevic J, Radovanović M, Krstić J, Vlahovic B, Pavlović VB. Humidity sensing properties of nanocrystalline pseudobrookite (Fe2TiO5) based thick films. in Sensors and Actuators, B: Chemical. 2018;277:654-664.
doi:10.1016/j.snb.2018.09.063 .
Nikolić, Maria Vesna, Vasiljević, Zorka, Luković, Miloljub, Pavlović, Vera P., Vujancevic, J., Radovanović, M., Krstić, Jugoslav, Vlahovic, B., Pavlović, Vladimir B., "Humidity sensing properties of nanocrystalline pseudobrookite (Fe2TiO5) based thick films" in Sensors and Actuators, B: Chemical, 277 (2018):654-664,
https://doi.org/10.1016/j.snb.2018.09.063 . .
40
22
38

The influence of mechanical activation on structural evolution of nanocrystalline SrTiO3 powders

Zivojinovic, Jelena; Pavlović, Vera P.; Kosanovic, Darko; Marković, Smilja B.; Krstić, Jugoslav; Blagojević, Vladimir A.; Pavlović, Vladimir B.

(Elsevier, 2017)

TY  - JOUR
AU  - Zivojinovic, Jelena
AU  - Pavlović, Vera P.
AU  - Kosanovic, Darko
AU  - Marković, Smilja B.
AU  - Krstić, Jugoslav
AU  - Blagojević, Vladimir A.
AU  - Pavlović, Vladimir B.
PY  - 2017
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3016
AB  - Structural changes caused by mechanical activation of SrTiO3 powders were investigated using a variety of methods. Average crystallite size continuously decreased with increased activation time to around 20 nm after 120 min activation, while mesopore volume and specific surface area increased accordingly. Higher activation times lead to increased agglomeration of nanoparticles to form agglomerates of around 2 mu m in size, ultimately producing a relatively stable powder, which exhibits lower microstrain than powders activated for shorter periods of time. Raman spectroscopy shows that the behavior of TO2 and TO4 modes is consistent with a decrease in particle size, while behavior of the nonpolar TO3 mode is markedly different, indicating relaxation of the inversion symmetry in polycrystalline SrTiO3. UV-VIS spectra show that mechanical activation has negligible effect on SrTiO3, with a slight shift caused by TiO2 contamination due to presence of air. Other than this, the mechanical activation process preserves the chemical purity of the initial powder.
PB  - Elsevier
T2  - Journal of Alloys and Compounds
T1  - The influence of mechanical activation on structural evolution of nanocrystalline SrTiO3 powders
VL  - 695
SP  - 863
EP  - 870
DO  - 10.1016/j.jallcom.2016.10.159
ER  - 
@article{
author = "Zivojinovic, Jelena and Pavlović, Vera P. and Kosanovic, Darko and Marković, Smilja B. and Krstić, Jugoslav and Blagojević, Vladimir A. and Pavlović, Vladimir B.",
year = "2017",
abstract = "Structural changes caused by mechanical activation of SrTiO3 powders were investigated using a variety of methods. Average crystallite size continuously decreased with increased activation time to around 20 nm after 120 min activation, while mesopore volume and specific surface area increased accordingly. Higher activation times lead to increased agglomeration of nanoparticles to form agglomerates of around 2 mu m in size, ultimately producing a relatively stable powder, which exhibits lower microstrain than powders activated for shorter periods of time. Raman spectroscopy shows that the behavior of TO2 and TO4 modes is consistent with a decrease in particle size, while behavior of the nonpolar TO3 mode is markedly different, indicating relaxation of the inversion symmetry in polycrystalline SrTiO3. UV-VIS spectra show that mechanical activation has negligible effect on SrTiO3, with a slight shift caused by TiO2 contamination due to presence of air. Other than this, the mechanical activation process preserves the chemical purity of the initial powder.",
publisher = "Elsevier",
journal = "Journal of Alloys and Compounds",
title = "The influence of mechanical activation on structural evolution of nanocrystalline SrTiO3 powders",
volume = "695",
pages = "863-870",
doi = "10.1016/j.jallcom.2016.10.159"
}
Zivojinovic, J., Pavlović, V. P., Kosanovic, D., Marković, S. B., Krstić, J., Blagojević, V. A.,& Pavlović, V. B.. (2017). The influence of mechanical activation on structural evolution of nanocrystalline SrTiO3 powders. in Journal of Alloys and Compounds
Elsevier., 695, 863-870.
https://doi.org/10.1016/j.jallcom.2016.10.159
Zivojinovic J, Pavlović VP, Kosanovic D, Marković SB, Krstić J, Blagojević VA, Pavlović VB. The influence of mechanical activation on structural evolution of nanocrystalline SrTiO3 powders. in Journal of Alloys and Compounds. 2017;695:863-870.
doi:10.1016/j.jallcom.2016.10.159 .
Zivojinovic, Jelena, Pavlović, Vera P., Kosanovic, Darko, Marković, Smilja B., Krstić, Jugoslav, Blagojević, Vladimir A., Pavlović, Vladimir B., "The influence of mechanical activation on structural evolution of nanocrystalline SrTiO3 powders" in Journal of Alloys and Compounds, 695 (2017):863-870,
https://doi.org/10.1016/j.jallcom.2016.10.159 . .
21
13
24

Structural Properties of the Multiwall Carbon Nanotubes/Poly(Methyl Methacrylate) Nanocomposites: Effect of the Multiwall Carbon Nanotubes Covalent Functionalization

Brkovic, Danijela V.; Pavlović, Vladimir B.; Pavlović, Vera P.; Obradovic, Nina; Mitrić, Miodrag; Stevanović, Sanja; Vlahovic, Branislav; Uskoković, Petar S.; Marinković, Aleksandar D.

(Wiley, Hoboken, 2017)

TY  - JOUR
AU  - Brkovic, Danijela V.
AU  - Pavlović, Vladimir B.
AU  - Pavlović, Vera P.
AU  - Obradovic, Nina
AU  - Mitrić, Miodrag
AU  - Stevanović, Sanja
AU  - Vlahovic, Branislav
AU  - Uskoković, Petar S.
AU  - Marinković, Aleksandar D.
PY  - 2017
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/2152
AB  - The structural characteristics of polymer nanocomposites with functionalized multiwall carbon nanotubes (MWCNTs) in poly(methyl methacrylate) matrix have been studied in relation to nanofiller loading and surface functionality. Different functional groups have been covalently attached on the MWCNTs sidewalls in order to induce interfacial interactions at nanofiller/polymer interface, which resulted in an improved nanomechanical features. Structural properties of nanocomposites, studied with XRD and Raman analysis, indicated the most pronounced decrease in a degree of amorphousness for samples containing 0.5 and 1 wt% of MWCNTs functionalized with dapsone (dapson-MWCNT) and diethyl malonate (dem-MWCNT). SEM and TEM micrographs confirmed improved dispersibility of the MWCNTs modified with aromatic structure of dapsone inside PMMA matrix. A significant increase in a glass transition temperature of over 60 degrees C has been found for the 1 wt% dapson-MWCNT nanocomposite. Additional modification of dapson-MWCNT by further increasing aromaticity and voluminosity of attached moiety (fid-MWCNT), showed 30 degrees C increases in a glass transition temperature at 4 wt% of nanofiller loading, which is similar to shift of 37 degrees C with loading of MWCNTs modified with ester terminal group. A maximum increase of 56% of reduced modulus and 86% of hardness was obtained for 1 wt% loading of dapson-MWCNT nanofiller.
PB  - Wiley, Hoboken
T2  - Polymer Composites
T1  - Structural Properties of the Multiwall Carbon Nanotubes/Poly(Methyl Methacrylate) Nanocomposites: Effect of the Multiwall Carbon Nanotubes Covalent Functionalization
VL  - 38
DO  - 10.1002/pc.23996
ER  - 
@article{
author = "Brkovic, Danijela V. and Pavlović, Vladimir B. and Pavlović, Vera P. and Obradovic, Nina and Mitrić, Miodrag and Stevanović, Sanja and Vlahovic, Branislav and Uskoković, Petar S. and Marinković, Aleksandar D.",
year = "2017",
abstract = "The structural characteristics of polymer nanocomposites with functionalized multiwall carbon nanotubes (MWCNTs) in poly(methyl methacrylate) matrix have been studied in relation to nanofiller loading and surface functionality. Different functional groups have been covalently attached on the MWCNTs sidewalls in order to induce interfacial interactions at nanofiller/polymer interface, which resulted in an improved nanomechanical features. Structural properties of nanocomposites, studied with XRD and Raman analysis, indicated the most pronounced decrease in a degree of amorphousness for samples containing 0.5 and 1 wt% of MWCNTs functionalized with dapsone (dapson-MWCNT) and diethyl malonate (dem-MWCNT). SEM and TEM micrographs confirmed improved dispersibility of the MWCNTs modified with aromatic structure of dapsone inside PMMA matrix. A significant increase in a glass transition temperature of over 60 degrees C has been found for the 1 wt% dapson-MWCNT nanocomposite. Additional modification of dapson-MWCNT by further increasing aromaticity and voluminosity of attached moiety (fid-MWCNT), showed 30 degrees C increases in a glass transition temperature at 4 wt% of nanofiller loading, which is similar to shift of 37 degrees C with loading of MWCNTs modified with ester terminal group. A maximum increase of 56% of reduced modulus and 86% of hardness was obtained for 1 wt% loading of dapson-MWCNT nanofiller.",
publisher = "Wiley, Hoboken",
journal = "Polymer Composites",
title = "Structural Properties of the Multiwall Carbon Nanotubes/Poly(Methyl Methacrylate) Nanocomposites: Effect of the Multiwall Carbon Nanotubes Covalent Functionalization",
volume = "38",
doi = "10.1002/pc.23996"
}
Brkovic, D. V., Pavlović, V. B., Pavlović, V. P., Obradovic, N., Mitrić, M., Stevanović, S., Vlahovic, B., Uskoković, P. S.,& Marinković, A. D.. (2017). Structural Properties of the Multiwall Carbon Nanotubes/Poly(Methyl Methacrylate) Nanocomposites: Effect of the Multiwall Carbon Nanotubes Covalent Functionalization. in Polymer Composites
Wiley, Hoboken., 38.
https://doi.org/10.1002/pc.23996
Brkovic DV, Pavlović VB, Pavlović VP, Obradovic N, Mitrić M, Stevanović S, Vlahovic B, Uskoković PS, Marinković AD. Structural Properties of the Multiwall Carbon Nanotubes/Poly(Methyl Methacrylate) Nanocomposites: Effect of the Multiwall Carbon Nanotubes Covalent Functionalization. in Polymer Composites. 2017;38.
doi:10.1002/pc.23996 .
Brkovic, Danijela V., Pavlović, Vladimir B., Pavlović, Vera P., Obradovic, Nina, Mitrić, Miodrag, Stevanović, Sanja, Vlahovic, Branislav, Uskoković, Petar S., Marinković, Aleksandar D., "Structural Properties of the Multiwall Carbon Nanotubes/Poly(Methyl Methacrylate) Nanocomposites: Effect of the Multiwall Carbon Nanotubes Covalent Functionalization" in Polymer Composites, 38 (2017),
https://doi.org/10.1002/pc.23996 . .
11
6
11

The influence of mechanical activation on structural evolution of nanocrystalline SrTiO3 powders

Zivojinovic, Jelena; Pavlović, Vera P.; Kosanovic, Darko; Marković, Smilja B.; Krstić, Jugoslav; Blagojevic, Vladimir A.; Pavlović, Vladimir B.

(Elsevier, 2017)

TY  - JOUR
AU  - Zivojinovic, Jelena
AU  - Pavlović, Vera P.
AU  - Kosanovic, Darko
AU  - Marković, Smilja B.
AU  - Krstić, Jugoslav
AU  - Blagojevic, Vladimir A.
AU  - Pavlović, Vladimir B.
PY  - 2017
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/2067
AB  - Structural changes caused by mechanical activation of SrTiO3 powders were investigated using a variety of methods. Average crystallite size continuously decreased with increased activation time to around 20 nm after 120 min activation, while mesopore volume and specific surface area increased accordingly. Higher activation times lead to increased agglomeration of nanoparticles to form agglomerates of around 2 mu m in size, ultimately producing a relatively stable powder, which exhibits lower microstrain than powders activated for shorter periods of time. Raman spectroscopy shows that the behavior of TO2 and TO4 modes is consistent with a decrease in particle size, while behavior of the nonpolar TO3 mode is markedly different, indicating relaxation of the inversion symmetry in polycrystalline SrTiO3. UV-VIS spectra show that mechanical activation has negligible effect on SrTiO3, with a slight shift caused by TiO2 contamination due to presence of air. Other than this, the mechanical activation process preserves the chemical purity of the initial powder.
PB  - Elsevier
T2  - Journal of Alloys and Compounds
T1  - The influence of mechanical activation on structural evolution of nanocrystalline SrTiO3 powders
VL  - 695
SP  - 863
EP  - 870
DO  - 10.1016/j.jallcom.2016.10.159
ER  - 
@article{
author = "Zivojinovic, Jelena and Pavlović, Vera P. and Kosanovic, Darko and Marković, Smilja B. and Krstić, Jugoslav and Blagojevic, Vladimir A. and Pavlović, Vladimir B.",
year = "2017",
abstract = "Structural changes caused by mechanical activation of SrTiO3 powders were investigated using a variety of methods. Average crystallite size continuously decreased with increased activation time to around 20 nm after 120 min activation, while mesopore volume and specific surface area increased accordingly. Higher activation times lead to increased agglomeration of nanoparticles to form agglomerates of around 2 mu m in size, ultimately producing a relatively stable powder, which exhibits lower microstrain than powders activated for shorter periods of time. Raman spectroscopy shows that the behavior of TO2 and TO4 modes is consistent with a decrease in particle size, while behavior of the nonpolar TO3 mode is markedly different, indicating relaxation of the inversion symmetry in polycrystalline SrTiO3. UV-VIS spectra show that mechanical activation has negligible effect on SrTiO3, with a slight shift caused by TiO2 contamination due to presence of air. Other than this, the mechanical activation process preserves the chemical purity of the initial powder.",
publisher = "Elsevier",
journal = "Journal of Alloys and Compounds",
title = "The influence of mechanical activation on structural evolution of nanocrystalline SrTiO3 powders",
volume = "695",
pages = "863-870",
doi = "10.1016/j.jallcom.2016.10.159"
}
Zivojinovic, J., Pavlović, V. P., Kosanovic, D., Marković, S. B., Krstić, J., Blagojevic, V. A.,& Pavlović, V. B.. (2017). The influence of mechanical activation on structural evolution of nanocrystalline SrTiO3 powders. in Journal of Alloys and Compounds
Elsevier., 695, 863-870.
https://doi.org/10.1016/j.jallcom.2016.10.159
Zivojinovic J, Pavlović VP, Kosanovic D, Marković SB, Krstić J, Blagojevic VA, Pavlović VB. The influence of mechanical activation on structural evolution of nanocrystalline SrTiO3 powders. in Journal of Alloys and Compounds. 2017;695:863-870.
doi:10.1016/j.jallcom.2016.10.159 .
Zivojinovic, Jelena, Pavlović, Vera P., Kosanovic, Darko, Marković, Smilja B., Krstić, Jugoslav, Blagojevic, Vladimir A., Pavlović, Vladimir B., "The influence of mechanical activation on structural evolution of nanocrystalline SrTiO3 powders" in Journal of Alloys and Compounds, 695 (2017):863-870,
https://doi.org/10.1016/j.jallcom.2016.10.159 . .
21
13
23

Structural investigation of mechanically activated ZnO powder

Peleš, Adriana; Pavlović, Vera P.; Filipović, Suzana; Obradovic, Nina; Mančić, Lidija; Krstić, Jugoslav; Mitrić, Miodrag; Vlahović, Branislav; Rašić, Goran; Kosanović, Darko; Pavlović, Vladimir B.

(Elsevier, 2015)

TY  - JOUR
AU  - Peleš, Adriana
AU  - Pavlović, Vera P.
AU  - Filipović, Suzana
AU  - Obradovic, Nina
AU  - Mančić, Lidija
AU  - Krstić, Jugoslav
AU  - Mitrić, Miodrag
AU  - Vlahović, Branislav
AU  - Rašić, Goran
AU  - Kosanović, Darko
AU  - Pavlović, Vladimir B.
PY  - 2015
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3208
AB  - Commercially available ZnO powder was mechanically activated in a planetary ball mill. In order to investigate the specific surface area, pore volume and microstructure of non-activated and mechanically activated ZnO powders the authors performed N-2 physisorption, SEM and TEM. Crystallite size and lattice microstrain were analyzed by X-ray diffraction method. XRD patterns indicate that peak intensities are getting lower and expend with activation time. The reduction in crystallite size and increasing of lattice microstrain with prolonged milling time were determined applying the Rietveld's method. The difference between non-activated and the activated powder has been also observed by X-ray photoelectron spectroscopy (XPS). XPS is used for investigating the chemical bonding of ZnO powder by analyzing the energy of photoelectrons. The lattice vibration spectra were obtained using Raman spectroscopy. In Raman spectra some changes along with atypical resonant scattering were noticed, which were caused by mechanical activation.
PB  - Elsevier
T2  - Journal of Alloys and Compounds
T1  - Structural investigation of mechanically activated ZnO powder
VL  - 648
SP  - 971
EP  - 979
DO  - 10.1016/j.jallcom.2015.06.247
ER  - 
@article{
author = "Peleš, Adriana and Pavlović, Vera P. and Filipović, Suzana and Obradovic, Nina and Mančić, Lidija and Krstić, Jugoslav and Mitrić, Miodrag and Vlahović, Branislav and Rašić, Goran and Kosanović, Darko and Pavlović, Vladimir B.",
year = "2015",
abstract = "Commercially available ZnO powder was mechanically activated in a planetary ball mill. In order to investigate the specific surface area, pore volume and microstructure of non-activated and mechanically activated ZnO powders the authors performed N-2 physisorption, SEM and TEM. Crystallite size and lattice microstrain were analyzed by X-ray diffraction method. XRD patterns indicate that peak intensities are getting lower and expend with activation time. The reduction in crystallite size and increasing of lattice microstrain with prolonged milling time were determined applying the Rietveld's method. The difference between non-activated and the activated powder has been also observed by X-ray photoelectron spectroscopy (XPS). XPS is used for investigating the chemical bonding of ZnO powder by analyzing the energy of photoelectrons. The lattice vibration spectra were obtained using Raman spectroscopy. In Raman spectra some changes along with atypical resonant scattering were noticed, which were caused by mechanical activation.",
publisher = "Elsevier",
journal = "Journal of Alloys and Compounds",
title = "Structural investigation of mechanically activated ZnO powder",
volume = "648",
pages = "971-979",
doi = "10.1016/j.jallcom.2015.06.247"
}
Peleš, A., Pavlović, V. P., Filipović, S., Obradovic, N., Mančić, L., Krstić, J., Mitrić, M., Vlahović, B., Rašić, G., Kosanović, D.,& Pavlović, V. B.. (2015). Structural investigation of mechanically activated ZnO powder. in Journal of Alloys and Compounds
Elsevier., 648, 971-979.
https://doi.org/10.1016/j.jallcom.2015.06.247
Peleš A, Pavlović VP, Filipović S, Obradovic N, Mančić L, Krstić J, Mitrić M, Vlahović B, Rašić G, Kosanović D, Pavlović VB. Structural investigation of mechanically activated ZnO powder. in Journal of Alloys and Compounds. 2015;648:971-979.
doi:10.1016/j.jallcom.2015.06.247 .
Peleš, Adriana, Pavlović, Vera P., Filipović, Suzana, Obradovic, Nina, Mančić, Lidija, Krstić, Jugoslav, Mitrić, Miodrag, Vlahović, Branislav, Rašić, Goran, Kosanović, Darko, Pavlović, Vladimir B., "Structural investigation of mechanically activated ZnO powder" in Journal of Alloys and Compounds, 648 (2015):971-979,
https://doi.org/10.1016/j.jallcom.2015.06.247 . .
13
10
14

Structural investigation of mechanically activated ZnO powder

Peleš, Adriana; Pavlović, Vera P.; Filipović, Suzana; Obradovic, Nina; Mančić, Lidija; Krstić, Jugoslav; Mitrić, Miodrag; Vlahović, Branislav; Rašić, Goran; Kosanović, Darko; Pavlović, Vladimir B.

(Elsevier, 2015)

TY  - JOUR
AU  - Peleš, Adriana
AU  - Pavlović, Vera P.
AU  - Filipović, Suzana
AU  - Obradovic, Nina
AU  - Mančić, Lidija
AU  - Krstić, Jugoslav
AU  - Mitrić, Miodrag
AU  - Vlahović, Branislav
AU  - Rašić, Goran
AU  - Kosanović, Darko
AU  - Pavlović, Vladimir B.
PY  - 2015
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/1715
AB  - Commercially available ZnO powder was mechanically activated in a planetary ball mill. In order to investigate the specific surface area, pore volume and microstructure of non-activated and mechanically activated ZnO powders the authors performed N-2 physisorption, SEM and TEM. Crystallite size and lattice microstrain were analyzed by X-ray diffraction method. XRD patterns indicate that peak intensities are getting lower and expend with activation time. The reduction in crystallite size and increasing of lattice microstrain with prolonged milling time were determined applying the Rietveld's method. The difference between non-activated and the activated powder has been also observed by X-ray photoelectron spectroscopy (XPS). XPS is used for investigating the chemical bonding of ZnO powder by analyzing the energy of photoelectrons. The lattice vibration spectra were obtained using Raman spectroscopy. In Raman spectra some changes along with atypical resonant scattering were noticed, which were caused by mechanical activation.
PB  - Elsevier
T2  - Journal of Alloys and Compounds
T1  - Structural investigation of mechanically activated ZnO powder
VL  - 648
SP  - 971
EP  - 979
DO  - 10.1016/j.jallcom.2015.06.247
ER  - 
@article{
author = "Peleš, Adriana and Pavlović, Vera P. and Filipović, Suzana and Obradovic, Nina and Mančić, Lidija and Krstić, Jugoslav and Mitrić, Miodrag and Vlahović, Branislav and Rašić, Goran and Kosanović, Darko and Pavlović, Vladimir B.",
year = "2015",
abstract = "Commercially available ZnO powder was mechanically activated in a planetary ball mill. In order to investigate the specific surface area, pore volume and microstructure of non-activated and mechanically activated ZnO powders the authors performed N-2 physisorption, SEM and TEM. Crystallite size and lattice microstrain were analyzed by X-ray diffraction method. XRD patterns indicate that peak intensities are getting lower and expend with activation time. The reduction in crystallite size and increasing of lattice microstrain with prolonged milling time were determined applying the Rietveld's method. The difference between non-activated and the activated powder has been also observed by X-ray photoelectron spectroscopy (XPS). XPS is used for investigating the chemical bonding of ZnO powder by analyzing the energy of photoelectrons. The lattice vibration spectra were obtained using Raman spectroscopy. In Raman spectra some changes along with atypical resonant scattering were noticed, which were caused by mechanical activation.",
publisher = "Elsevier",
journal = "Journal of Alloys and Compounds",
title = "Structural investigation of mechanically activated ZnO powder",
volume = "648",
pages = "971-979",
doi = "10.1016/j.jallcom.2015.06.247"
}
Peleš, A., Pavlović, V. P., Filipović, S., Obradovic, N., Mančić, L., Krstić, J., Mitrić, M., Vlahović, B., Rašić, G., Kosanović, D.,& Pavlović, V. B.. (2015). Structural investigation of mechanically activated ZnO powder. in Journal of Alloys and Compounds
Elsevier., 648, 971-979.
https://doi.org/10.1016/j.jallcom.2015.06.247
Peleš A, Pavlović VP, Filipović S, Obradovic N, Mančić L, Krstić J, Mitrić M, Vlahović B, Rašić G, Kosanović D, Pavlović VB. Structural investigation of mechanically activated ZnO powder. in Journal of Alloys and Compounds. 2015;648:971-979.
doi:10.1016/j.jallcom.2015.06.247 .
Peleš, Adriana, Pavlović, Vera P., Filipović, Suzana, Obradovic, Nina, Mančić, Lidija, Krstić, Jugoslav, Mitrić, Miodrag, Vlahović, Branislav, Rašić, Goran, Kosanović, Darko, Pavlović, Vladimir B., "Structural investigation of mechanically activated ZnO powder" in Journal of Alloys and Compounds, 648 (2015):971-979,
https://doi.org/10.1016/j.jallcom.2015.06.247 . .
13
10
14

Structural Changes, Dielectric and Ferroelectric Properties of Tribophysically Activated BaTiO3

Pavlović, Vera P.; Pavlović, Vladimir B.; Blanuša, Jovan; Branković, Goran; Spreitzer, M.; Krstić, Jugoslav

(Belgrade : Serbian Ceramic Society, 2012)

TY  - CONF
AU  - Pavlović, Vera P.
AU  - Pavlović, Vladimir B.
AU  - Blanuša, Jovan
AU  - Branković, Goran
AU  - Spreitzer, M.
AU  - Krstić, Jugoslav
PY  - 2012
UR  - http://dais.sanu.ac.rs/123456789/527
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/2860
AB  - In order to obtain nanocrystalline material which can be used in MLCC production, the investigations of the influence of BaTiO3 powder tribophysical activation (TPA) on its structural changes, dielectric and ferroelectric properties have been performed. Microstructure development and crystal structure have been studied by mercury porosimetry method, SEM, EDS and X-ray powder diffraction analyses. The modifications of dielectric and ferroelectric properties of sintered samples have been examined and correlated with observed structural changes induced by TPA of starting powders. It has been found that dielectric and ferroelectric properties of tribophysically activated BaTiO3 could be tuned by controlling the grain size and lattice strain of activated nanostructured material.
PB  - Belgrade : Serbian Ceramic Society
C3  - The First Serbian Ceramic Society Conference "Advanced Ceramics and Application" May 10-11, 2012: Program and the Book of Abstracts
T1  - Structural Changes, Dielectric and Ferroelectric Properties of Tribophysically Activated BaTiO3
SP  - 25
EP  - 25
UR  - https://hdl.handle.net/21.15107/rcub_dais_527
ER  - 
@conference{
author = "Pavlović, Vera P. and Pavlović, Vladimir B. and Blanuša, Jovan and Branković, Goran and Spreitzer, M. and Krstić, Jugoslav",
year = "2012",
abstract = "In order to obtain nanocrystalline material which can be used in MLCC production, the investigations of the influence of BaTiO3 powder tribophysical activation (TPA) on its structural changes, dielectric and ferroelectric properties have been performed. Microstructure development and crystal structure have been studied by mercury porosimetry method, SEM, EDS and X-ray powder diffraction analyses. The modifications of dielectric and ferroelectric properties of sintered samples have been examined and correlated with observed structural changes induced by TPA of starting powders. It has been found that dielectric and ferroelectric properties of tribophysically activated BaTiO3 could be tuned by controlling the grain size and lattice strain of activated nanostructured material.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "The First Serbian Ceramic Society Conference "Advanced Ceramics and Application" May 10-11, 2012: Program and the Book of Abstracts",
title = "Structural Changes, Dielectric and Ferroelectric Properties of Tribophysically Activated BaTiO3",
pages = "25-25",
url = "https://hdl.handle.net/21.15107/rcub_dais_527"
}
Pavlović, V. P., Pavlović, V. B., Blanuša, J., Branković, G., Spreitzer, M.,& Krstić, J.. (2012). Structural Changes, Dielectric and Ferroelectric Properties of Tribophysically Activated BaTiO3. in The First Serbian Ceramic Society Conference "Advanced Ceramics and Application" May 10-11, 2012: Program and the Book of Abstracts
Belgrade : Serbian Ceramic Society., 25-25.
https://hdl.handle.net/21.15107/rcub_dais_527
Pavlović VP, Pavlović VB, Blanuša J, Branković G, Spreitzer M, Krstić J. Structural Changes, Dielectric and Ferroelectric Properties of Tribophysically Activated BaTiO3. in The First Serbian Ceramic Society Conference "Advanced Ceramics and Application" May 10-11, 2012: Program and the Book of Abstracts. 2012;:25-25.
https://hdl.handle.net/21.15107/rcub_dais_527 .
Pavlović, Vera P., Pavlović, Vladimir B., Blanuša, Jovan, Branković, Goran, Spreitzer, M., Krstić, Jugoslav, "Structural Changes, Dielectric and Ferroelectric Properties of Tribophysically Activated BaTiO3" in The First Serbian Ceramic Society Conference "Advanced Ceramics and Application" May 10-11, 2012: Program and the Book of Abstracts (2012):25-25,
https://hdl.handle.net/21.15107/rcub_dais_527 .

Structural investigation of mechanically activated nanocrystalline BaTiO3 powders

Pavlović, Vera P.; Krstić, Jugoslav; Scepanovic, M. J.; Dojčilović, Jablan R.; Minić, Dragica M.; Blanusa, J.; Stevanović, Suzana; Mitic, V.; Pavlović, Vladimir B.

(Elsevier Sci Ltd, Oxford, 2011)

TY  - JOUR
AU  - Pavlović, Vera P.
AU  - Krstić, Jugoslav
AU  - Scepanovic, M. J.
AU  - Dojčilović, Jablan R.
AU  - Minić, Dragica M.
AU  - Blanusa, J.
AU  - Stevanović, Suzana
AU  - Mitic, V.
AU  - Pavlović, Vladimir B.
PY  - 2011
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/808
AB  - In this article, in order to obtain tetragonal nanocrystalline BaTiO3, structural investigations of mechanically activated BaTiO3 powder have been performed. A mercury porosimetry analysis and scanning electron microscopy method have been applied for determination of the specific pore volume, porosity and microstructure morphology of the samples. The lattice vibration spectra of nonactivated and activated powders, their phase composition, lattice microstrains and the mean size of coherently diffracting domains were examined by Raman spectroscopy and the X-ray powder diffraction method. The average crystal structure of obtained nanocrystalline powders, estimated from X-ray diffraction data, gave evidence of retained, but slightly sustained tetragonality of powders, even for particles as small as similar to 30 nm. Raman spectroscopy also gave clear evidence for local tetragonal symmetries, in particular through the presence of a band at similar to 307 cm(-1).
PB  - Elsevier Sci Ltd, Oxford
T2  - Ceramics International
T1  - Structural investigation of mechanically activated nanocrystalline BaTiO3 powders
VL  - 37
IS  - 7
SP  - 2513
EP  - 2518
DO  - 10.1016/j.ceramint.2011.03.064
ER  - 
@article{
author = "Pavlović, Vera P. and Krstić, Jugoslav and Scepanovic, M. J. and Dojčilović, Jablan R. and Minić, Dragica M. and Blanusa, J. and Stevanović, Suzana and Mitic, V. and Pavlović, Vladimir B.",
year = "2011",
abstract = "In this article, in order to obtain tetragonal nanocrystalline BaTiO3, structural investigations of mechanically activated BaTiO3 powder have been performed. A mercury porosimetry analysis and scanning electron microscopy method have been applied for determination of the specific pore volume, porosity and microstructure morphology of the samples. The lattice vibration spectra of nonactivated and activated powders, their phase composition, lattice microstrains and the mean size of coherently diffracting domains were examined by Raman spectroscopy and the X-ray powder diffraction method. The average crystal structure of obtained nanocrystalline powders, estimated from X-ray diffraction data, gave evidence of retained, but slightly sustained tetragonality of powders, even for particles as small as similar to 30 nm. Raman spectroscopy also gave clear evidence for local tetragonal symmetries, in particular through the presence of a band at similar to 307 cm(-1).",
publisher = "Elsevier Sci Ltd, Oxford",
journal = "Ceramics International",
title = "Structural investigation of mechanically activated nanocrystalline BaTiO3 powders",
volume = "37",
number = "7",
pages = "2513-2518",
doi = "10.1016/j.ceramint.2011.03.064"
}
Pavlović, V. P., Krstić, J., Scepanovic, M. J., Dojčilović, J. R., Minić, D. M., Blanusa, J., Stevanović, S., Mitic, V.,& Pavlović, V. B.. (2011). Structural investigation of mechanically activated nanocrystalline BaTiO3 powders. in Ceramics International
Elsevier Sci Ltd, Oxford., 37(7), 2513-2518.
https://doi.org/10.1016/j.ceramint.2011.03.064
Pavlović VP, Krstić J, Scepanovic MJ, Dojčilović JR, Minić DM, Blanusa J, Stevanović S, Mitic V, Pavlović VB. Structural investigation of mechanically activated nanocrystalline BaTiO3 powders. in Ceramics International. 2011;37(7):2513-2518.
doi:10.1016/j.ceramint.2011.03.064 .
Pavlović, Vera P., Krstić, Jugoslav, Scepanovic, M. J., Dojčilović, Jablan R., Minić, Dragica M., Blanusa, J., Stevanović, Suzana, Mitic, V., Pavlović, Vladimir B., "Structural investigation of mechanically activated nanocrystalline BaTiO3 powders" in Ceramics International, 37, no. 7 (2011):2513-2518,
https://doi.org/10.1016/j.ceramint.2011.03.064 . .
15
16
17

Influence of mechanical activation on the structure of ultrafine BaTiO3 powders

Pavlović, Vera P.; Popović, D.; Krstić, Jugoslav; Dojčilović, Jablan R.; Babić, Biljana M.; Pavlović, Vladimir B.

(Elsevier, 2009)

TY  - JOUR
AU  - Pavlović, Vera P.
AU  - Popović, D.
AU  - Krstić, Jugoslav
AU  - Dojčilović, Jablan R.
AU  - Babić, Biljana M.
AU  - Pavlović, Vladimir B.
PY  - 2009
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/588
AB  - The influence of mechanical activation in a planetary ball mill on the change of the structure of BaTiO3 powders has been investigated. The particle size distribution of the nonactivated and activated samples was measured by a particle dimension laser analyzer. The mercury porosimetry method has been applied for determination of the surface area of the samples, bulk density, specific pore volumes, total porosity and the pore size distributions. Formation of paramagnetic centers and the change of the IR active modes was investigated by EPR and IR measurements. Semi-quantitative comparison of the BaCO3 and OH- group presence in IR spectra was calculated. The investigation showed that mechanical activation of BaTiO3 has a pronounced influence on the change of the powder particles structure and enables establishing the directions of possible BaTiO3 ceramics materials properties prognosis according to the synthesis-structure correlation.
PB  - Elsevier
T2  - Journal of Alloys and Compounds
T1  - Influence of mechanical activation on the structure of ultrafine BaTiO3 powders
VL  - 486
IS  - 1-2
SP  - 633
EP  - 639
DO  - 10.1016/j.jallcom.2009.07.008
ER  - 
@article{
author = "Pavlović, Vera P. and Popović, D. and Krstić, Jugoslav and Dojčilović, Jablan R. and Babić, Biljana M. and Pavlović, Vladimir B.",
year = "2009",
abstract = "The influence of mechanical activation in a planetary ball mill on the change of the structure of BaTiO3 powders has been investigated. The particle size distribution of the nonactivated and activated samples was measured by a particle dimension laser analyzer. The mercury porosimetry method has been applied for determination of the surface area of the samples, bulk density, specific pore volumes, total porosity and the pore size distributions. Formation of paramagnetic centers and the change of the IR active modes was investigated by EPR and IR measurements. Semi-quantitative comparison of the BaCO3 and OH- group presence in IR spectra was calculated. The investigation showed that mechanical activation of BaTiO3 has a pronounced influence on the change of the powder particles structure and enables establishing the directions of possible BaTiO3 ceramics materials properties prognosis according to the synthesis-structure correlation.",
publisher = "Elsevier",
journal = "Journal of Alloys and Compounds",
title = "Influence of mechanical activation on the structure of ultrafine BaTiO3 powders",
volume = "486",
number = "1-2",
pages = "633-639",
doi = "10.1016/j.jallcom.2009.07.008"
}
Pavlović, V. P., Popović, D., Krstić, J., Dojčilović, J. R., Babić, B. M.,& Pavlović, V. B.. (2009). Influence of mechanical activation on the structure of ultrafine BaTiO3 powders. in Journal of Alloys and Compounds
Elsevier., 486(1-2), 633-639.
https://doi.org/10.1016/j.jallcom.2009.07.008
Pavlović VP, Popović D, Krstić J, Dojčilović JR, Babić BM, Pavlović VB. Influence of mechanical activation on the structure of ultrafine BaTiO3 powders. in Journal of Alloys and Compounds. 2009;486(1-2):633-639.
doi:10.1016/j.jallcom.2009.07.008 .
Pavlović, Vera P., Popović, D., Krstić, Jugoslav, Dojčilović, Jablan R., Babić, Biljana M., Pavlović, Vladimir B., "Influence of mechanical activation on the structure of ultrafine BaTiO3 powders" in Journal of Alloys and Compounds, 486, no. 1-2 (2009):633-639,
https://doi.org/10.1016/j.jallcom.2009.07.008 . .
22
18
21