Sofrenić, Ivana V.

Link to this page

Authority KeyName Variants
fc6b3e98-69fc-40d8-a6a6-71ef4cdc7d39
  • Sofrenić, Ivana V. (1)

Author's Bibliography

Lignin based microspheres for effective dyes removal: Design, synthesis and adsorption mechanism supported with theoretical study

Salih, Rabab; Veličković, Zlate; Milošević, Milena; Pavlović, Vera P.; Cvijetić, Ilija; Sofrenić, Ivana V.; Gržetić, Jelena; Marinković, Aleksandar

(Elsevier, 2023)

TY  - JOUR
AU  - Salih, Rabab
AU  - Veličković, Zlate
AU  - Milošević, Milena
AU  - Pavlović, Vera P.
AU  - Cvijetić, Ilija
AU  - Sofrenić, Ivana V.
AU  - Gržetić, Jelena
AU  - Marinković, Aleksandar
PY  - 2023
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/5777
AB  - Multifunctional lignin bio-based adsorbent, b-LMS, was obtained via inverse copolymerization in the suspension of acryloyl modified kraft lignin (KfL-AA) and bio-based trimethylolpropane triacrylate (bio-TMPTA). Morphological and structural characterization of KfL-AA and b-LMS was performed using BET, FTIR, Raman, NMR, TGA, SEM, and XPS techniques. The b-LMS microspheres with 253 ± 42 μm diameters, 69.4 m2 g−1 surface area, and 59% porosity efficiently adsorb Malachite Green (MG), Tartrazine (T), and Methyl Red (MR) dye. The influence of pH, pollutant concentration, temperature, and time on the removal efficiency was studied in a batch mode. Favorable and spontaneous processes with high adsorption capacities e.g. 116.8 mg g−1 for MG, 86.8 mg g−1 for T, and 68.6 mg g−1 for MR indicate the significant adsorptive potential of b-LMS. Results from diffusional and single mass transfer resistance studies indicate that pore diffusion is a rate-limiting step. Theoretical calculations confirmed a higher affinity of b-LMS to cationic dye MG compared with an anionic and neutral one, i.e. T and MR, respectively. The data fitting from a flow system, using semi-empirical equations and Pore Surface Diffusion Modelling (PSDM) provided breakthrough point determination. The results from the desorption and competitive adsorption study proved the exceptional performance of b-LMS. Moreover, sulfation of b-LMS, i.e.production of b-LMS-OSO3H, introduced high-affinity sulfate groups with respect to cationic dye and cations. Developed methodology implements the principle of sustainable development and offers concept whose results contribute to the minimization of environmental pollution.
PB  - Elsevier
T2  - Journal of Environmental Management
T1  - Lignin based microspheres for effective dyes removal: Design, synthesis and adsorption mechanism supported with theoretical study
VL  - 326
SP  - 116838
DO  - 10.1016/j.jenvman.2022.116838
ER  - 
@article{
author = "Salih, Rabab and Veličković, Zlate and Milošević, Milena and Pavlović, Vera P. and Cvijetić, Ilija and Sofrenić, Ivana V. and Gržetić, Jelena and Marinković, Aleksandar",
year = "2023",
abstract = "Multifunctional lignin bio-based adsorbent, b-LMS, was obtained via inverse copolymerization in the suspension of acryloyl modified kraft lignin (KfL-AA) and bio-based trimethylolpropane triacrylate (bio-TMPTA). Morphological and structural characterization of KfL-AA and b-LMS was performed using BET, FTIR, Raman, NMR, TGA, SEM, and XPS techniques. The b-LMS microspheres with 253 ± 42 μm diameters, 69.4 m2 g−1 surface area, and 59% porosity efficiently adsorb Malachite Green (MG), Tartrazine (T), and Methyl Red (MR) dye. The influence of pH, pollutant concentration, temperature, and time on the removal efficiency was studied in a batch mode. Favorable and spontaneous processes with high adsorption capacities e.g. 116.8 mg g−1 for MG, 86.8 mg g−1 for T, and 68.6 mg g−1 for MR indicate the significant adsorptive potential of b-LMS. Results from diffusional and single mass transfer resistance studies indicate that pore diffusion is a rate-limiting step. Theoretical calculations confirmed a higher affinity of b-LMS to cationic dye MG compared with an anionic and neutral one, i.e. T and MR, respectively. The data fitting from a flow system, using semi-empirical equations and Pore Surface Diffusion Modelling (PSDM) provided breakthrough point determination. The results from the desorption and competitive adsorption study proved the exceptional performance of b-LMS. Moreover, sulfation of b-LMS, i.e.production of b-LMS-OSO3H, introduced high-affinity sulfate groups with respect to cationic dye and cations. Developed methodology implements the principle of sustainable development and offers concept whose results contribute to the minimization of environmental pollution.",
publisher = "Elsevier",
journal = "Journal of Environmental Management",
title = "Lignin based microspheres for effective dyes removal: Design, synthesis and adsorption mechanism supported with theoretical study",
volume = "326",
pages = "116838",
doi = "10.1016/j.jenvman.2022.116838"
}
Salih, R., Veličković, Z., Milošević, M., Pavlović, V. P., Cvijetić, I., Sofrenić, I. V., Gržetić, J.,& Marinković, A.. (2023). Lignin based microspheres for effective dyes removal: Design, synthesis and adsorption mechanism supported with theoretical study. in Journal of Environmental Management
Elsevier., 326, 116838.
https://doi.org/10.1016/j.jenvman.2022.116838
Salih R, Veličković Z, Milošević M, Pavlović VP, Cvijetić I, Sofrenić IV, Gržetić J, Marinković A. Lignin based microspheres for effective dyes removal: Design, synthesis and adsorption mechanism supported with theoretical study. in Journal of Environmental Management. 2023;326:116838.
doi:10.1016/j.jenvman.2022.116838 .
Salih, Rabab, Veličković, Zlate, Milošević, Milena, Pavlović, Vera P., Cvijetić, Ilija, Sofrenić, Ivana V., Gržetić, Jelena, Marinković, Aleksandar, "Lignin based microspheres for effective dyes removal: Design, synthesis and adsorption mechanism supported with theoretical study" in Journal of Environmental Management, 326 (2023):116838,
https://doi.org/10.1016/j.jenvman.2022.116838 . .
18
14