Skaro Bogojević, Sanja

Link to this page

Authority KeyName Variants
23a684d1-e288-4785-bf38-9dbb2fce1db1
  • Skaro Bogojević, Sanja (1)
  • Skaro-Bogojević, Sanja (1)
Projects

Author's Bibliography

Set of Small Molecule Polyurethane (PU) Model Substrates: Ecotoxicity Evaluation and Identification of PU Degrading Biocatalysts

Pantelić, Brana; Skaro Bogojević, Sanja; Milivojević, Dušan; Ilić-Tomić, Tatjana; Lončarević, Branka; Beškoski, Vladimir; Maslak, Veselin; Guzik, Maciej; Makryniotis, Konstantinos; Taxeidis, George; Siaperas, Romanos; Topakas, Evangelos; Nikodinović-Runić, Jasmina

(Switzerland : Multidisciplinary Digital Publishing Institute (MDPI), 2023)

TY  - JOUR
AU  - Pantelić, Brana
AU  - Skaro Bogojević, Sanja
AU  - Milivojević, Dušan
AU  - Ilić-Tomić, Tatjana
AU  - Lončarević, Branka
AU  - Beškoski, Vladimir
AU  - Maslak, Veselin
AU  - Guzik, Maciej
AU  - Makryniotis, Konstantinos
AU  - Taxeidis, George
AU  - Siaperas, Romanos
AU  - Topakas, Evangelos
AU  - Nikodinović-Runić, Jasmina
PY  - 2023
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/5789
AB  - Polyurethanes (PUs) are an exceedingly heterogeneous group of plastic polymers, widely used in a variety of industries from construction to medical implants. In the past decades, we have witnessed the accumulation of PU waste and its detrimental environmental impacts. PUs have been identified as one of the most toxic polymers leaching hazardous compounds derived both from the polymer itself and the additives used in production. Further environmental impact assessment, identification and characterization of substances derived from PU materials and establishing efficient degradation strategies are crucial. Thus, a selection of eight synthetic model compounds which represent partial PU hydrolysis products were synthesized and characterized both in terms of toxicity and suitability to be used as substrates for the identification of novel biocatalysts for PU biodegradation. Overall, the compounds exhibited low in vitro cytotoxicity against a healthy human fibroblast cell line and virtually no toxic effect on the nematode Caenorhabditis elegans up to 500 µg mL−1, and two of the substrates showed moderate aquatic ecotoxicity with EC50 values 53 µg mL−1 and 45 µg mL−1, respectively, on Aliivibrio fischeri. The compounds were successfully applied to study the mechanism of ester and urethane bond cleaving preference of known plastic-degrading enzymes and were used to single out a novel PU-degrading biocatalyst, Amycolatopsis mediterranei ISP5501, among 220 microbial strains. A. mediterranei ISP5501 can also degrade commercially available polyether and polyester PU materials, reducing the average molecular number of the polymer up to 13.5%. This study uncovered a biocatalyst capable of degrading different types of PUs and identified potential enzymes responsible as a key step in developing biotechnological process for PU waste treatment options.
PB  - Switzerland : Multidisciplinary Digital Publishing Institute (MDPI)
T2  - Catalysts
T1  - Set of Small Molecule Polyurethane (PU) Model Substrates: Ecotoxicity Evaluation and Identification of PU Degrading Biocatalysts
VL  - 13
IS  - 2
SP  - 278
DO  - 10.3390/catal13020278
ER  - 
@article{
author = "Pantelić, Brana and Skaro Bogojević, Sanja and Milivojević, Dušan and Ilić-Tomić, Tatjana and Lončarević, Branka and Beškoski, Vladimir and Maslak, Veselin and Guzik, Maciej and Makryniotis, Konstantinos and Taxeidis, George and Siaperas, Romanos and Topakas, Evangelos and Nikodinović-Runić, Jasmina",
year = "2023",
abstract = "Polyurethanes (PUs) are an exceedingly heterogeneous group of plastic polymers, widely used in a variety of industries from construction to medical implants. In the past decades, we have witnessed the accumulation of PU waste and its detrimental environmental impacts. PUs have been identified as one of the most toxic polymers leaching hazardous compounds derived both from the polymer itself and the additives used in production. Further environmental impact assessment, identification and characterization of substances derived from PU materials and establishing efficient degradation strategies are crucial. Thus, a selection of eight synthetic model compounds which represent partial PU hydrolysis products were synthesized and characterized both in terms of toxicity and suitability to be used as substrates for the identification of novel biocatalysts for PU biodegradation. Overall, the compounds exhibited low in vitro cytotoxicity against a healthy human fibroblast cell line and virtually no toxic effect on the nematode Caenorhabditis elegans up to 500 µg mL−1, and two of the substrates showed moderate aquatic ecotoxicity with EC50 values 53 µg mL−1 and 45 µg mL−1, respectively, on Aliivibrio fischeri. The compounds were successfully applied to study the mechanism of ester and urethane bond cleaving preference of known plastic-degrading enzymes and were used to single out a novel PU-degrading biocatalyst, Amycolatopsis mediterranei ISP5501, among 220 microbial strains. A. mediterranei ISP5501 can also degrade commercially available polyether and polyester PU materials, reducing the average molecular number of the polymer up to 13.5%. This study uncovered a biocatalyst capable of degrading different types of PUs and identified potential enzymes responsible as a key step in developing biotechnological process for PU waste treatment options.",
publisher = "Switzerland : Multidisciplinary Digital Publishing Institute (MDPI)",
journal = "Catalysts",
title = "Set of Small Molecule Polyurethane (PU) Model Substrates: Ecotoxicity Evaluation and Identification of PU Degrading Biocatalysts",
volume = "13",
number = "2",
pages = "278",
doi = "10.3390/catal13020278"
}
Pantelić, B., Skaro Bogojević, S., Milivojević, D., Ilić-Tomić, T., Lončarević, B., Beškoski, V., Maslak, V., Guzik, M., Makryniotis, K., Taxeidis, G., Siaperas, R., Topakas, E.,& Nikodinović-Runić, J.. (2023). Set of Small Molecule Polyurethane (PU) Model Substrates: Ecotoxicity Evaluation and Identification of PU Degrading Biocatalysts. in Catalysts
Switzerland : Multidisciplinary Digital Publishing Institute (MDPI)., 13(2), 278.
https://doi.org/10.3390/catal13020278
Pantelić B, Skaro Bogojević S, Milivojević D, Ilić-Tomić T, Lončarević B, Beškoski V, Maslak V, Guzik M, Makryniotis K, Taxeidis G, Siaperas R, Topakas E, Nikodinović-Runić J. Set of Small Molecule Polyurethane (PU) Model Substrates: Ecotoxicity Evaluation and Identification of PU Degrading Biocatalysts. in Catalysts. 2023;13(2):278.
doi:10.3390/catal13020278 .
Pantelić, Brana, Skaro Bogojević, Sanja, Milivojević, Dušan, Ilić-Tomić, Tatjana, Lončarević, Branka, Beškoski, Vladimir, Maslak, Veselin, Guzik, Maciej, Makryniotis, Konstantinos, Taxeidis, George, Siaperas, Romanos, Topakas, Evangelos, Nikodinović-Runić, Jasmina, "Set of Small Molecule Polyurethane (PU) Model Substrates: Ecotoxicity Evaluation and Identification of PU Degrading Biocatalysts" in Catalysts, 13, no. 2 (2023):278,
https://doi.org/10.3390/catal13020278 . .
2
5
2

Cobalt(II) and magnesium(II) complexes with 1,3-pdta-type of ligands: influence of an alkyl substituent at 1,3-propanediamine chain on the structural and antimicrobial properties of the complex

Gitarić, Jelena; Stanojević, Ivana; Radanović, Dušanka; Crochet, Aurélien; Ašanin, Darko; Janković, Vukašin; Skaro-Bogojević, Sanja; Đuran, Miloš; Glišić, Biljana

(Taylor &Francis, 2022)

TY  - JOUR
AU  - Gitarić, Jelena
AU  - Stanojević, Ivana
AU  - Radanović, Dušanka
AU  - Crochet, Aurélien
AU  - Ašanin, Darko
AU  - Janković, Vukašin
AU  - Skaro-Bogojević, Sanja
AU  - Đuran, Miloš
AU  - Glišić, Biljana
PY  - 2022
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/5322
AB  - To investigate how modification in the structure of 1,3-propanediamine chain of 1,3-pdta (1,3-propanediamine-N,N,N′,N′-tetraacetate) ligand affects the structural and biological properties of the corresponding metal complexes, two new octahedral complexes, [Co(H2O)5Co(2,2-diMe-1,3-pdta)]·H2O (1) and [Mg(H2O)5Mg(2,2-diMe-1,3-pdta)]·1.5H2O (2) (2,2-diMe-1,3-pdta = 2,2-dimethyl-1,3-propanediamine-N,N,N′,N′-tetraacetate), were synthesized and characterized by IR spectroscopy and single-crystal X-ray diffraction analysis. Additionally, UV-Vis and NMR spectroscopic methods were applied for the characterization of 1 and 2, respectively. Crystallographic data indicate that these complexes contain 2,2-diMe-1,3-pdta coordinated to the metal ion through 2 N and 4 O atoms forming [M(H2O)5M′(2,2-diMe-1,3-pdta)] complex unit (M, M′ = Co(II), Co(II) (1) and M, M′ = Mg(II), Mg(II) (2)), which is composed of [M′(2,2-diMe-1,3-pdta)]2− and [M(H2O)5O]2+ octahedra bridged by one of the axial carboxylate groups. The antimicrobial activities of 1 and 2 were evaluated against different bacteria and Candida spp., while their cytotoxic effect was tested on the normal human lung fibroblasts (MRC-5). The ability of 1 and 2 to inhibit formation of C. glabrata biofilms was also assessed. The obtained structural parameters and biological properties of the two complexes were compared to Co(II) and Mg(II) complexes with 1,3-pdta ligand.
PB  - Taylor &Francis
T2  - Journal of Coordination Chemistry
T1  - Cobalt(II) and magnesium(II) complexes with 1,3-pdta-type of ligands: influence of an alkyl substituent at 1,3-propanediamine chain on the structural and antimicrobial properties of the complex
VL  - 75
IS  - 11-14
SP  - 1899
EP  - 1914
DO  - 10.1080/00958972.2022.2101365
ER  - 
@article{
author = "Gitarić, Jelena and Stanojević, Ivana and Radanović, Dušanka and Crochet, Aurélien and Ašanin, Darko and Janković, Vukašin and Skaro-Bogojević, Sanja and Đuran, Miloš and Glišić, Biljana",
year = "2022",
abstract = "To investigate how modification in the structure of 1,3-propanediamine chain of 1,3-pdta (1,3-propanediamine-N,N,N′,N′-tetraacetate) ligand affects the structural and biological properties of the corresponding metal complexes, two new octahedral complexes, [Co(H2O)5Co(2,2-diMe-1,3-pdta)]·H2O (1) and [Mg(H2O)5Mg(2,2-diMe-1,3-pdta)]·1.5H2O (2) (2,2-diMe-1,3-pdta = 2,2-dimethyl-1,3-propanediamine-N,N,N′,N′-tetraacetate), were synthesized and characterized by IR spectroscopy and single-crystal X-ray diffraction analysis. Additionally, UV-Vis and NMR spectroscopic methods were applied for the characterization of 1 and 2, respectively. Crystallographic data indicate that these complexes contain 2,2-diMe-1,3-pdta coordinated to the metal ion through 2 N and 4 O atoms forming [M(H2O)5M′(2,2-diMe-1,3-pdta)] complex unit (M, M′ = Co(II), Co(II) (1) and M, M′ = Mg(II), Mg(II) (2)), which is composed of [M′(2,2-diMe-1,3-pdta)]2− and [M(H2O)5O]2+ octahedra bridged by one of the axial carboxylate groups. The antimicrobial activities of 1 and 2 were evaluated against different bacteria and Candida spp., while their cytotoxic effect was tested on the normal human lung fibroblasts (MRC-5). The ability of 1 and 2 to inhibit formation of C. glabrata biofilms was also assessed. The obtained structural parameters and biological properties of the two complexes were compared to Co(II) and Mg(II) complexes with 1,3-pdta ligand.",
publisher = "Taylor &Francis",
journal = "Journal of Coordination Chemistry",
title = "Cobalt(II) and magnesium(II) complexes with 1,3-pdta-type of ligands: influence of an alkyl substituent at 1,3-propanediamine chain on the structural and antimicrobial properties of the complex",
volume = "75",
number = "11-14",
pages = "1899-1914",
doi = "10.1080/00958972.2022.2101365"
}
Gitarić, J., Stanojević, I., Radanović, D., Crochet, A., Ašanin, D., Janković, V., Skaro-Bogojević, S., Đuran, M.,& Glišić, B.. (2022). Cobalt(II) and magnesium(II) complexes with 1,3-pdta-type of ligands: influence of an alkyl substituent at 1,3-propanediamine chain on the structural and antimicrobial properties of the complex. in Journal of Coordination Chemistry
Taylor &Francis., 75(11-14), 1899-1914.
https://doi.org/10.1080/00958972.2022.2101365
Gitarić J, Stanojević I, Radanović D, Crochet A, Ašanin D, Janković V, Skaro-Bogojević S, Đuran M, Glišić B. Cobalt(II) and magnesium(II) complexes with 1,3-pdta-type of ligands: influence of an alkyl substituent at 1,3-propanediamine chain on the structural and antimicrobial properties of the complex. in Journal of Coordination Chemistry. 2022;75(11-14):1899-1914.
doi:10.1080/00958972.2022.2101365 .
Gitarić, Jelena, Stanojević, Ivana, Radanović, Dušanka, Crochet, Aurélien, Ašanin, Darko, Janković, Vukašin, Skaro-Bogojević, Sanja, Đuran, Miloš, Glišić, Biljana, "Cobalt(II) and magnesium(II) complexes with 1,3-pdta-type of ligands: influence of an alkyl substituent at 1,3-propanediamine chain on the structural and antimicrobial properties of the complex" in Journal of Coordination Chemistry, 75, no. 11-14 (2022):1899-1914,
https://doi.org/10.1080/00958972.2022.2101365 . .
1