Hanžel, Darko

Link to this page

Authority KeyName Variants
30bce852-2ea7-4590-b633-eb09c6773efb
  • Hanžel, Darko (3)
Projects

Author's Bibliography

Combined Experimental and Theoretical Investigation of the Origin of Magnetic Anisotropy in Pentagonal Bipyramidal Isothiocyanato Co(II), Ni(II), and Fe(III) Complexes with Quaternary-Ammonium-Functionalized 2,6-Diacetylpyridine Bisacylhydrazone

Darmanović, Darinka; Shcherbakov, Igor N.; Duboc, Carole; Spasojević, Vojislav; Hanžel, Darko; Anđelković, Katarina; Radanović, Dušanka; Turel, Iztok; Milenković, Milica R.; Gruden, Maja; Čobeljić, Božidar; Zlatar, Matija

(American Chemical Society (ACS), 2019)

TY  - JOUR
AU  - Darmanović, Darinka
AU  - Shcherbakov, Igor N.
AU  - Duboc, Carole
AU  - Spasojević, Vojislav
AU  - Hanžel, Darko
AU  - Anđelković, Katarina
AU  - Radanović, Dušanka
AU  - Turel, Iztok
AU  - Milenković, Milica R.
AU  - Gruden, Maja
AU  - Čobeljić, Božidar
AU  - Zlatar, Matija
PY  - 2019
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3269
AB  - Magnetic anisotropy in pentagonal bipyramidal complexes of Co(II) (1 and 2), Fe(III) (3 and 4), and Ni(II) (5) with a 2,2′-[2,6-pyridinediylbis(ethylidyne-1-hydrazinyl-2-ylidene)]bis[N,N,N-trimethyl-2-oxoethanaminium] equatorial ligand and isothiocyanato axial ligands has been investigated by magnetic susceptibility measurements, powder X-band electron paramagnetic resonance (EPR) spectroscopy, Mössbauer spectroscopy, ab initio, and ligand-field density functional theory (LFDFT) calculations. The studied complexes display three distinct types of magnetic anisotropy. Co(II) complexes (1 and 2) show an easy plane anisotropy with large and positive D values and negligible rhombicity. The Ni(II) complex (5) has uniaxial magnetic anisotropy with a negative D value. Fe(III) complexes (3 and 4) have small zero-field splitting (ZFS) parameters. Theoretical modeling is used to rationalize the magnetic anisotropy in these systems and to identify the most important excited states that are responsible for the zero-field splitting. These excitations are a consequence of the electronic structure of the central metal ion in ideal pentagonal bipyramidal coordination.
PB  - American Chemical Society (ACS)
T2  - The Journal of Physical Chemistry C
T1  - Combined Experimental and Theoretical Investigation of the Origin of Magnetic Anisotropy in Pentagonal Bipyramidal Isothiocyanato Co(II), Ni(II), and Fe(III) Complexes with Quaternary-Ammonium-Functionalized 2,6-Diacetylpyridine Bisacylhydrazone
VL  - 123
IS  - 51
SP  - 31142
EP  - 31155
DO  - 10.1021/acs.jpcc.9b08066
ER  - 
@article{
author = "Darmanović, Darinka and Shcherbakov, Igor N. and Duboc, Carole and Spasojević, Vojislav and Hanžel, Darko and Anđelković, Katarina and Radanović, Dušanka and Turel, Iztok and Milenković, Milica R. and Gruden, Maja and Čobeljić, Božidar and Zlatar, Matija",
year = "2019",
abstract = "Magnetic anisotropy in pentagonal bipyramidal complexes of Co(II) (1 and 2), Fe(III) (3 and 4), and Ni(II) (5) with a 2,2′-[2,6-pyridinediylbis(ethylidyne-1-hydrazinyl-2-ylidene)]bis[N,N,N-trimethyl-2-oxoethanaminium] equatorial ligand and isothiocyanato axial ligands has been investigated by magnetic susceptibility measurements, powder X-band electron paramagnetic resonance (EPR) spectroscopy, Mössbauer spectroscopy, ab initio, and ligand-field density functional theory (LFDFT) calculations. The studied complexes display three distinct types of magnetic anisotropy. Co(II) complexes (1 and 2) show an easy plane anisotropy with large and positive D values and negligible rhombicity. The Ni(II) complex (5) has uniaxial magnetic anisotropy with a negative D value. Fe(III) complexes (3 and 4) have small zero-field splitting (ZFS) parameters. Theoretical modeling is used to rationalize the magnetic anisotropy in these systems and to identify the most important excited states that are responsible for the zero-field splitting. These excitations are a consequence of the electronic structure of the central metal ion in ideal pentagonal bipyramidal coordination.",
publisher = "American Chemical Society (ACS)",
journal = "The Journal of Physical Chemistry C",
title = "Combined Experimental and Theoretical Investigation of the Origin of Magnetic Anisotropy in Pentagonal Bipyramidal Isothiocyanato Co(II), Ni(II), and Fe(III) Complexes with Quaternary-Ammonium-Functionalized 2,6-Diacetylpyridine Bisacylhydrazone",
volume = "123",
number = "51",
pages = "31142-31155",
doi = "10.1021/acs.jpcc.9b08066"
}
Darmanović, D., Shcherbakov, I. N., Duboc, C., Spasojević, V., Hanžel, D., Anđelković, K., Radanović, D., Turel, I., Milenković, M. R., Gruden, M., Čobeljić, B.,& Zlatar, M.. (2019). Combined Experimental and Theoretical Investigation of the Origin of Magnetic Anisotropy in Pentagonal Bipyramidal Isothiocyanato Co(II), Ni(II), and Fe(III) Complexes with Quaternary-Ammonium-Functionalized 2,6-Diacetylpyridine Bisacylhydrazone. in The Journal of Physical Chemistry C
American Chemical Society (ACS)., 123(51), 31142-31155.
https://doi.org/10.1021/acs.jpcc.9b08066
Darmanović D, Shcherbakov IN, Duboc C, Spasojević V, Hanžel D, Anđelković K, Radanović D, Turel I, Milenković MR, Gruden M, Čobeljić B, Zlatar M. Combined Experimental and Theoretical Investigation of the Origin of Magnetic Anisotropy in Pentagonal Bipyramidal Isothiocyanato Co(II), Ni(II), and Fe(III) Complexes with Quaternary-Ammonium-Functionalized 2,6-Diacetylpyridine Bisacylhydrazone. in The Journal of Physical Chemistry C. 2019;123(51):31142-31155.
doi:10.1021/acs.jpcc.9b08066 .
Darmanović, Darinka, Shcherbakov, Igor N., Duboc, Carole, Spasojević, Vojislav, Hanžel, Darko, Anđelković, Katarina, Radanović, Dušanka, Turel, Iztok, Milenković, Milica R., Gruden, Maja, Čobeljić, Božidar, Zlatar, Matija, "Combined Experimental and Theoretical Investigation of the Origin of Magnetic Anisotropy in Pentagonal Bipyramidal Isothiocyanato Co(II), Ni(II), and Fe(III) Complexes with Quaternary-Ammonium-Functionalized 2,6-Diacetylpyridine Bisacylhydrazone" in The Journal of Physical Chemistry C, 123, no. 51 (2019):31142-31155,
https://doi.org/10.1021/acs.jpcc.9b08066 . .
1
14
6
14

Combined Experimental and Theoretical Investigation of the Origin of Magnetic Anisotropy in Pentagonal Bipyramidal Isothiocyanato Co(II), Ni(II), and Fe(III) Complexes with Quaternary-Ammonium-Functionalized 2,6-Diacetylpyridine Bisacylhydrazone

Darmanović, Darinka; Shcherbakov, Igor N.; Duboc, Carole; Spasojević, Vojislav; Hanžel, Darko; Anđelković, Katarina; Radanović, Dušanka; Turel, Iztok; Milenković, Milica R.; Gruden, Maja; Čobeljić, Božidar; Zlatar, Matija

(American Chemical Society (ACS), 2019)

TY  - JOUR
AU  - Darmanović, Darinka
AU  - Shcherbakov, Igor N.
AU  - Duboc, Carole
AU  - Spasojević, Vojislav
AU  - Hanžel, Darko
AU  - Anđelković, Katarina
AU  - Radanović, Dušanka
AU  - Turel, Iztok
AU  - Milenković, Milica R.
AU  - Gruden, Maja
AU  - Čobeljić, Božidar
AU  - Zlatar, Matija
PY  - 2019
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3314
AB  - Magnetic anisotropy in pentagonal bipyramidal complexes of Co(II) (1 and 2), Fe(III) (3 and 4), and Ni(II) (5) with a 2,2′-[2,6-pyridinediylbis(ethylidyne-1-hydrazinyl-2-ylidene)]bis[N,N,N-trimethyl-2-oxoethanaminium] equatorial ligand and isothiocyanato axial ligands has been investigated by magnetic susceptibility measurements, powder X-band electron paramagnetic resonance (EPR) spectroscopy, Mössbauer spectroscopy, ab initio, and ligand-field density functional theory (LFDFT) calculations. The studied complexes display three distinct types of magnetic anisotropy. Co(II) complexes (1 and 2) show an easy plane anisotropy with large and positive D values and negligible rhombicity. The Ni(II) complex (5) has uniaxial magnetic anisotropy with a negative D value. Fe(III) complexes (3 and 4) have small zero-field splitting (ZFS) parameters. Theoretical modeling is used to rationalize the magnetic anisotropy in these systems and to identify the most important excited states that are responsible for the zero-field splitting. These excitations are a consequence of the electronic structure of the central metal ion in ideal pentagonal bipyramidal coordination.
PB  - American Chemical Society (ACS)
T2  - The Journal of Physical Chemistry C
T1  - Combined Experimental and Theoretical Investigation of the Origin of Magnetic Anisotropy in Pentagonal Bipyramidal Isothiocyanato Co(II), Ni(II), and Fe(III) Complexes with Quaternary-Ammonium-Functionalized 2,6-Diacetylpyridine Bisacylhydrazone
VL  - 123
IS  - 51
SP  - 31142
EP  - 31155
DO  - 10.1021/acs.jpcc.9b08066
ER  - 
@article{
author = "Darmanović, Darinka and Shcherbakov, Igor N. and Duboc, Carole and Spasojević, Vojislav and Hanžel, Darko and Anđelković, Katarina and Radanović, Dušanka and Turel, Iztok and Milenković, Milica R. and Gruden, Maja and Čobeljić, Božidar and Zlatar, Matija",
year = "2019",
abstract = "Magnetic anisotropy in pentagonal bipyramidal complexes of Co(II) (1 and 2), Fe(III) (3 and 4), and Ni(II) (5) with a 2,2′-[2,6-pyridinediylbis(ethylidyne-1-hydrazinyl-2-ylidene)]bis[N,N,N-trimethyl-2-oxoethanaminium] equatorial ligand and isothiocyanato axial ligands has been investigated by magnetic susceptibility measurements, powder X-band electron paramagnetic resonance (EPR) spectroscopy, Mössbauer spectroscopy, ab initio, and ligand-field density functional theory (LFDFT) calculations. The studied complexes display three distinct types of magnetic anisotropy. Co(II) complexes (1 and 2) show an easy plane anisotropy with large and positive D values and negligible rhombicity. The Ni(II) complex (5) has uniaxial magnetic anisotropy with a negative D value. Fe(III) complexes (3 and 4) have small zero-field splitting (ZFS) parameters. Theoretical modeling is used to rationalize the magnetic anisotropy in these systems and to identify the most important excited states that are responsible for the zero-field splitting. These excitations are a consequence of the electronic structure of the central metal ion in ideal pentagonal bipyramidal coordination.",
publisher = "American Chemical Society (ACS)",
journal = "The Journal of Physical Chemistry C",
title = "Combined Experimental and Theoretical Investigation of the Origin of Magnetic Anisotropy in Pentagonal Bipyramidal Isothiocyanato Co(II), Ni(II), and Fe(III) Complexes with Quaternary-Ammonium-Functionalized 2,6-Diacetylpyridine Bisacylhydrazone",
volume = "123",
number = "51",
pages = "31142-31155",
doi = "10.1021/acs.jpcc.9b08066"
}
Darmanović, D., Shcherbakov, I. N., Duboc, C., Spasojević, V., Hanžel, D., Anđelković, K., Radanović, D., Turel, I., Milenković, M. R., Gruden, M., Čobeljić, B.,& Zlatar, M.. (2019). Combined Experimental and Theoretical Investigation of the Origin of Magnetic Anisotropy in Pentagonal Bipyramidal Isothiocyanato Co(II), Ni(II), and Fe(III) Complexes with Quaternary-Ammonium-Functionalized 2,6-Diacetylpyridine Bisacylhydrazone. in The Journal of Physical Chemistry C
American Chemical Society (ACS)., 123(51), 31142-31155.
https://doi.org/10.1021/acs.jpcc.9b08066
Darmanović D, Shcherbakov IN, Duboc C, Spasojević V, Hanžel D, Anđelković K, Radanović D, Turel I, Milenković MR, Gruden M, Čobeljić B, Zlatar M. Combined Experimental and Theoretical Investigation of the Origin of Magnetic Anisotropy in Pentagonal Bipyramidal Isothiocyanato Co(II), Ni(II), and Fe(III) Complexes with Quaternary-Ammonium-Functionalized 2,6-Diacetylpyridine Bisacylhydrazone. in The Journal of Physical Chemistry C. 2019;123(51):31142-31155.
doi:10.1021/acs.jpcc.9b08066 .
Darmanović, Darinka, Shcherbakov, Igor N., Duboc, Carole, Spasojević, Vojislav, Hanžel, Darko, Anđelković, Katarina, Radanović, Dušanka, Turel, Iztok, Milenković, Milica R., Gruden, Maja, Čobeljić, Božidar, Zlatar, Matija, "Combined Experimental and Theoretical Investigation of the Origin of Magnetic Anisotropy in Pentagonal Bipyramidal Isothiocyanato Co(II), Ni(II), and Fe(III) Complexes with Quaternary-Ammonium-Functionalized 2,6-Diacetylpyridine Bisacylhydrazone" in The Journal of Physical Chemistry C, 123, no. 51 (2019):31142-31155,
https://doi.org/10.1021/acs.jpcc.9b08066 . .
1
14
6
14

Supporting Information for: "Combined Experimental and Theoretical Investigation of the Origin of Magnetic Anisotropy in Pentagonal Bipyramidal Isothiocyanato Co(II), Ni(II), and Fe(III) Complexes with Quaternary-Ammonium-Functionalized 2,6-Diacetylpyridine Bisacylhydrazone"

Darmanović, Darinka; Shcherbakov, Igor N.; Duboc, Carole; Spasojević, Vojislav; Hanžel, Darko; Anđelković, Katarina; Radanović, Dušanka; Turel, Iztok; Milenković, Milica R.; Gruden, Maja; Čobeljić, Božidar; Zlatar, Matija

(American Chemical Society (ACS), 2019)

TY  - DATA
AU  - Darmanović, Darinka
AU  - Shcherbakov, Igor N.
AU  - Duboc, Carole
AU  - Spasojević, Vojislav
AU  - Hanžel, Darko
AU  - Anđelković, Katarina
AU  - Radanović, Dušanka
AU  - Turel, Iztok
AU  - Milenković, Milica R.
AU  - Gruden, Maja
AU  - Čobeljić, Božidar
AU  - Zlatar, Matija
PY  - 2019
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/4438
AB  - Comparison of the EPR spectra of 1 and 2 (Figure S1); additional Mössbauer spectra (Figures S2–S5); Kohn–Sham molecular orbitals with dominant metal d character (Figures S6–S8); calculated principal components of the g-tensor (Table S1); calculated J values (Table S2); transition energies and contributions of the excited states to D and E (Tables S3–S6); d-orbital splitting according to AI-LFT (Table S7); composition of the multideterminant wave function of the ground and selected excited states (Table S8).
PB  - American Chemical Society (ACS)
T2  - The Journal of Physical Chemistry C
T1  - Supporting Information for: "Combined Experimental and Theoretical Investigation of the Origin of Magnetic Anisotropy in Pentagonal Bipyramidal Isothiocyanato Co(II), Ni(II), and Fe(III) Complexes with Quaternary-Ammonium-Functionalized 2,6-Diacetylpyridine Bisacylhydrazone"
DO  - 10.1021/acs.jpcc.9b08066.s001
ER  - 
@misc{
author = "Darmanović, Darinka and Shcherbakov, Igor N. and Duboc, Carole and Spasojević, Vojislav and Hanžel, Darko and Anđelković, Katarina and Radanović, Dušanka and Turel, Iztok and Milenković, Milica R. and Gruden, Maja and Čobeljić, Božidar and Zlatar, Matija",
year = "2019",
abstract = "Comparison of the EPR spectra of 1 and 2 (Figure S1); additional Mössbauer spectra (Figures S2–S5); Kohn–Sham molecular orbitals with dominant metal d character (Figures S6–S8); calculated principal components of the g-tensor (Table S1); calculated J values (Table S2); transition energies and contributions of the excited states to D and E (Tables S3–S6); d-orbital splitting according to AI-LFT (Table S7); composition of the multideterminant wave function of the ground and selected excited states (Table S8).",
publisher = "American Chemical Society (ACS)",
journal = "The Journal of Physical Chemistry C",
title = "Supporting Information for: "Combined Experimental and Theoretical Investigation of the Origin of Magnetic Anisotropy in Pentagonal Bipyramidal Isothiocyanato Co(II), Ni(II), and Fe(III) Complexes with Quaternary-Ammonium-Functionalized 2,6-Diacetylpyridine Bisacylhydrazone"",
doi = "10.1021/acs.jpcc.9b08066.s001"
}
Darmanović, D., Shcherbakov, I. N., Duboc, C., Spasojević, V., Hanžel, D., Anđelković, K., Radanović, D., Turel, I., Milenković, M. R., Gruden, M., Čobeljić, B.,& Zlatar, M.. (2019). Supporting Information for: "Combined Experimental and Theoretical Investigation of the Origin of Magnetic Anisotropy in Pentagonal Bipyramidal Isothiocyanato Co(II), Ni(II), and Fe(III) Complexes with Quaternary-Ammonium-Functionalized 2,6-Diacetylpyridine Bisacylhydrazone". in The Journal of Physical Chemistry C
American Chemical Society (ACS)..
https://doi.org/10.1021/acs.jpcc.9b08066.s001
Darmanović D, Shcherbakov IN, Duboc C, Spasojević V, Hanžel D, Anđelković K, Radanović D, Turel I, Milenković MR, Gruden M, Čobeljić B, Zlatar M. Supporting Information for: "Combined Experimental and Theoretical Investigation of the Origin of Magnetic Anisotropy in Pentagonal Bipyramidal Isothiocyanato Co(II), Ni(II), and Fe(III) Complexes with Quaternary-Ammonium-Functionalized 2,6-Diacetylpyridine Bisacylhydrazone". in The Journal of Physical Chemistry C. 2019;.
doi:10.1021/acs.jpcc.9b08066.s001 .
Darmanović, Darinka, Shcherbakov, Igor N., Duboc, Carole, Spasojević, Vojislav, Hanžel, Darko, Anđelković, Katarina, Radanović, Dušanka, Turel, Iztok, Milenković, Milica R., Gruden, Maja, Čobeljić, Božidar, Zlatar, Matija, "Supporting Information for: "Combined Experimental and Theoretical Investigation of the Origin of Magnetic Anisotropy in Pentagonal Bipyramidal Isothiocyanato Co(II), Ni(II), and Fe(III) Complexes with Quaternary-Ammonium-Functionalized 2,6-Diacetylpyridine Bisacylhydrazone"" in The Journal of Physical Chemistry C (2019),
https://doi.org/10.1021/acs.jpcc.9b08066.s001 . .