Jovanovic, Katarina K.

Link to this page

Authority KeyName Variants
d977f10a-b198-479d-b461-d31507fd16a6
  • Jovanovic, Katarina K. (2)
  • Jovanovic, Katarina K (1)
Projects

Author's Bibliography

Cell cycle, apoptosis, cellular uptake and whole-transcriptome microarray gene expression analysis of HeLa cells treated with a ruthenium(II)-arene complex with an isoquinoline-3-carboxylic acid ligand

Jovanovic, Katarina K.; Tanic, Miljana; Ivanovic, Ivanka; Gligorijević, Nevenka; Dojčinović, Biljana; Radulovic, Sinisa

(Elsevier, 2016)

TY  - JOUR
AU  - Jovanovic, Katarina K.
AU  - Tanic, Miljana
AU  - Ivanovic, Ivanka
AU  - Gligorijević, Nevenka
AU  - Dojčinović, Biljana
AU  - Radulovic, Sinisa
PY  - 2016
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/4386
AB  - Ruthenium(II)-arene complexes are promising drug candidates for the therapy of solid tumors. In previous work, seven new compounds of the general formula [Ru(eta(6)-p-cymene)(L1-7)Cl] were synthesized and characterized, of which the complex with L = isoquinoline-3-carboxylic acid (RuT7) was two times as active on HeLa cells compared to normal cell line MRC-5, as indicated by ICso values determined after 48 h of incubation (45.4 +/- 3.0 vs. 842 +/- 5.7 mu M, respectively). In the present study, cell cycle analysis of HeLa cells treated with RuT7 showed S phase arrest and an increase in sub-G1 population. The apoptotic potential of the title compound was confirmed with the Annexin V-FITC/PI assay together with a morphological evaluation of cells using fluorescent microscopy. Analysis of the intracellular accumulation of ruthenium showed 8.9 ng Ru/10(6) cells after 6 h of incubation. To gain further insight in the molecular mechanism of action of RuT7 on HeLa cells, a whole-transcriptome microarray gene expression analysis was performed. Analysis of functional categories and signaling and biochemical pathways associated with the response of HeLa cells to treatment with RuT7 showed that it leads the cells through the intrinsic (mitochondrial) apoptotic pathway, via indirect DNA damage due to the action of reactive oxygen species, and through direct DNA binding of RuT7. Statistical analysis for enrichment of gene sets associated with known drug-induced toxicities identified fewer associated toxicity profiles in RuT7-treated cells compared to cisplatin treatment. Altogether these results provide the basis for further development of RuT7 in animal and pre-clinical studies as a potential drug candidate.
PB  - Elsevier
T2  - Journal of Inorganic Biochemistry
T1  - Cell cycle, apoptosis, cellular uptake and whole-transcriptome microarray gene expression analysis of HeLa cells treated with a ruthenium(II)-arene complex with an isoquinoline-3-carboxylic acid ligand
VL  - 163
SP  - 362
EP  - 373
DO  - 10.1016/j.jinorgbio.2016.04.011
ER  - 
@article{
author = "Jovanovic, Katarina K. and Tanic, Miljana and Ivanovic, Ivanka and Gligorijević, Nevenka and Dojčinović, Biljana and Radulovic, Sinisa",
year = "2016",
abstract = "Ruthenium(II)-arene complexes are promising drug candidates for the therapy of solid tumors. In previous work, seven new compounds of the general formula [Ru(eta(6)-p-cymene)(L1-7)Cl] were synthesized and characterized, of which the complex with L = isoquinoline-3-carboxylic acid (RuT7) was two times as active on HeLa cells compared to normal cell line MRC-5, as indicated by ICso values determined after 48 h of incubation (45.4 +/- 3.0 vs. 842 +/- 5.7 mu M, respectively). In the present study, cell cycle analysis of HeLa cells treated with RuT7 showed S phase arrest and an increase in sub-G1 population. The apoptotic potential of the title compound was confirmed with the Annexin V-FITC/PI assay together with a morphological evaluation of cells using fluorescent microscopy. Analysis of the intracellular accumulation of ruthenium showed 8.9 ng Ru/10(6) cells after 6 h of incubation. To gain further insight in the molecular mechanism of action of RuT7 on HeLa cells, a whole-transcriptome microarray gene expression analysis was performed. Analysis of functional categories and signaling and biochemical pathways associated with the response of HeLa cells to treatment with RuT7 showed that it leads the cells through the intrinsic (mitochondrial) apoptotic pathway, via indirect DNA damage due to the action of reactive oxygen species, and through direct DNA binding of RuT7. Statistical analysis for enrichment of gene sets associated with known drug-induced toxicities identified fewer associated toxicity profiles in RuT7-treated cells compared to cisplatin treatment. Altogether these results provide the basis for further development of RuT7 in animal and pre-clinical studies as a potential drug candidate.",
publisher = "Elsevier",
journal = "Journal of Inorganic Biochemistry",
title = "Cell cycle, apoptosis, cellular uptake and whole-transcriptome microarray gene expression analysis of HeLa cells treated with a ruthenium(II)-arene complex with an isoquinoline-3-carboxylic acid ligand",
volume = "163",
pages = "362-373",
doi = "10.1016/j.jinorgbio.2016.04.011"
}
Jovanovic, K. K., Tanic, M., Ivanovic, I., Gligorijević, N., Dojčinović, B.,& Radulovic, S.. (2016). Cell cycle, apoptosis, cellular uptake and whole-transcriptome microarray gene expression analysis of HeLa cells treated with a ruthenium(II)-arene complex with an isoquinoline-3-carboxylic acid ligand. in Journal of Inorganic Biochemistry
Elsevier., 163, 362-373.
https://doi.org/10.1016/j.jinorgbio.2016.04.011
Jovanovic KK, Tanic M, Ivanovic I, Gligorijević N, Dojčinović B, Radulovic S. Cell cycle, apoptosis, cellular uptake and whole-transcriptome microarray gene expression analysis of HeLa cells treated with a ruthenium(II)-arene complex with an isoquinoline-3-carboxylic acid ligand. in Journal of Inorganic Biochemistry. 2016;163:362-373.
doi:10.1016/j.jinorgbio.2016.04.011 .
Jovanovic, Katarina K., Tanic, Miljana, Ivanovic, Ivanka, Gligorijević, Nevenka, Dojčinović, Biljana, Radulovic, Sinisa, "Cell cycle, apoptosis, cellular uptake and whole-transcriptome microarray gene expression analysis of HeLa cells treated with a ruthenium(II)-arene complex with an isoquinoline-3-carboxylic acid ligand" in Journal of Inorganic Biochemistry, 163 (2016):362-373,
https://doi.org/10.1016/j.jinorgbio.2016.04.011 . .
2
20
19
21

Cell cycle, apoptosis, cellular uptake and whole-transcriptome microarray gene expression analysis of HeLa cells treated with a ruthenium(II)-arene complex with an isoquinoline-3-carboxylic acid ligand

Jovanovic, Katarina K.; Tanic, Miljana; Ivanovic, Ivanka; Gligorijević, Nevenka; Dojčinović, Biljana; Radulovic, Sinisa

(Elsevier Science Inc, New York, 2016)

TY  - JOUR
AU  - Jovanovic, Katarina K.
AU  - Tanic, Miljana
AU  - Ivanovic, Ivanka
AU  - Gligorijević, Nevenka
AU  - Dojčinović, Biljana
AU  - Radulovic, Sinisa
PY  - 2016
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/1984
AB  - Ruthenium(II)-arene complexes are promising drug candidates for the therapy of solid tumors. In previous work, seven new compounds of the general formula [Ru(eta(6)-p-cymene)(L1-7)Cl] were synthesized and characterized, of which the complex with L = isoquinoline-3-carboxylic acid (RuT7) was two times as active on HeLa cells compared to normal cell line MRC-5, as indicated by ICso values determined after 48 h of incubation (45.4 +/- 3.0 vs. 842 +/- 5.7 mu M, respectively). In the present study, cell cycle analysis of HeLa cells treated with RuT7 showed S phase arrest and an increase in sub-G1 population. The apoptotic potential of the title compound was confirmed with the Annexin V-FITC/PI assay together with a morphological evaluation of cells using fluorescent microscopy. Analysis of the intracellular accumulation of ruthenium showed 8.9 ng Ru/10(6) cells after 6 h of incubation. To gain further insight in the molecular mechanism of action of RuT7 on HeLa cells, a whole-transcriptome microarray gene expression analysis was performed. Analysis of functional categories and signaling and biochemical pathways associated with the response of HeLa cells to treatment with RuT7 showed that it leads the cells through the intrinsic (mitochondrial) apoptotic pathway, via indirect DNA damage due to the action of reactive oxygen species, and through direct DNA binding of RuT7. Statistical analysis for enrichment of gene sets associated with known drug-induced toxicities identified fewer associated toxicity profiles in RuT7-treated cells compared to cisplatin treatment. Altogether these results provide the basis for further development of RuT7 in animal and pre-clinical studies as a potential drug candidate.
PB  - Elsevier Science Inc, New York
T2  - Journal of Inorganic Biochemistry
T1  - Cell cycle, apoptosis, cellular uptake and whole-transcriptome microarray gene expression analysis of HeLa cells treated with a ruthenium(II)-arene complex with an isoquinoline-3-carboxylic acid ligand
VL  - 163
SP  - 362
EP  - 373
DO  - 10.1016/j.jinorgbio.2016.04.011
ER  - 
@article{
author = "Jovanovic, Katarina K. and Tanic, Miljana and Ivanovic, Ivanka and Gligorijević, Nevenka and Dojčinović, Biljana and Radulovic, Sinisa",
year = "2016",
abstract = "Ruthenium(II)-arene complexes are promising drug candidates for the therapy of solid tumors. In previous work, seven new compounds of the general formula [Ru(eta(6)-p-cymene)(L1-7)Cl] were synthesized and characterized, of which the complex with L = isoquinoline-3-carboxylic acid (RuT7) was two times as active on HeLa cells compared to normal cell line MRC-5, as indicated by ICso values determined after 48 h of incubation (45.4 +/- 3.0 vs. 842 +/- 5.7 mu M, respectively). In the present study, cell cycle analysis of HeLa cells treated with RuT7 showed S phase arrest and an increase in sub-G1 population. The apoptotic potential of the title compound was confirmed with the Annexin V-FITC/PI assay together with a morphological evaluation of cells using fluorescent microscopy. Analysis of the intracellular accumulation of ruthenium showed 8.9 ng Ru/10(6) cells after 6 h of incubation. To gain further insight in the molecular mechanism of action of RuT7 on HeLa cells, a whole-transcriptome microarray gene expression analysis was performed. Analysis of functional categories and signaling and biochemical pathways associated with the response of HeLa cells to treatment with RuT7 showed that it leads the cells through the intrinsic (mitochondrial) apoptotic pathway, via indirect DNA damage due to the action of reactive oxygen species, and through direct DNA binding of RuT7. Statistical analysis for enrichment of gene sets associated with known drug-induced toxicities identified fewer associated toxicity profiles in RuT7-treated cells compared to cisplatin treatment. Altogether these results provide the basis for further development of RuT7 in animal and pre-clinical studies as a potential drug candidate.",
publisher = "Elsevier Science Inc, New York",
journal = "Journal of Inorganic Biochemistry",
title = "Cell cycle, apoptosis, cellular uptake and whole-transcriptome microarray gene expression analysis of HeLa cells treated with a ruthenium(II)-arene complex with an isoquinoline-3-carboxylic acid ligand",
volume = "163",
pages = "362-373",
doi = "10.1016/j.jinorgbio.2016.04.011"
}
Jovanovic, K. K., Tanic, M., Ivanovic, I., Gligorijević, N., Dojčinović, B.,& Radulovic, S.. (2016). Cell cycle, apoptosis, cellular uptake and whole-transcriptome microarray gene expression analysis of HeLa cells treated with a ruthenium(II)-arene complex with an isoquinoline-3-carboxylic acid ligand. in Journal of Inorganic Biochemistry
Elsevier Science Inc, New York., 163, 362-373.
https://doi.org/10.1016/j.jinorgbio.2016.04.011
Jovanovic KK, Tanic M, Ivanovic I, Gligorijević N, Dojčinović B, Radulovic S. Cell cycle, apoptosis, cellular uptake and whole-transcriptome microarray gene expression analysis of HeLa cells treated with a ruthenium(II)-arene complex with an isoquinoline-3-carboxylic acid ligand. in Journal of Inorganic Biochemistry. 2016;163:362-373.
doi:10.1016/j.jinorgbio.2016.04.011 .
Jovanovic, Katarina K., Tanic, Miljana, Ivanovic, Ivanka, Gligorijević, Nevenka, Dojčinović, Biljana, Radulovic, Sinisa, "Cell cycle, apoptosis, cellular uptake and whole-transcriptome microarray gene expression analysis of HeLa cells treated with a ruthenium(II)-arene complex with an isoquinoline-3-carboxylic acid ligand" in Journal of Inorganic Biochemistry, 163 (2016):362-373,
https://doi.org/10.1016/j.jinorgbio.2016.04.011 . .
2
20
19
21

Heteropentanuclear Oxalato-Bridged nd-4f (n=4, 5) Metal Complexes with NO Ligand: Synthesis, Crystal Structures, Aqueous Stability and Antiproliferative Activity

Kuhn, Paul-Steffen; Cremer, Laura; Gavriluta, Anatolie; Jovanovic, Katarina K; Filipovic, Lana; Hummer, Alfred A; Buechel, Gabriel E; Dojčinović, Biljana; Meier, Samuel M; Rompel, Annette; Radulovic, Sinisa; Tommasino, Jean Bernard; Luneau, Dominique; Arion, Vladimir B

(Wiley-V C H Verlag Gmbh, Weinheim, 2015)

TY  - JOUR
AU  - Kuhn, Paul-Steffen
AU  - Cremer, Laura
AU  - Gavriluta, Anatolie
AU  - Jovanovic, Katarina K
AU  - Filipovic, Lana
AU  - Hummer, Alfred A
AU  - Buechel, Gabriel E
AU  - Dojčinović, Biljana
AU  - Meier, Samuel M
AU  - Rompel, Annette
AU  - Radulovic, Sinisa
AU  - Tommasino, Jean Bernard
AU  - Luneau, Dominique
AU  - Arion, Vladimir B
PY  - 2015
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/1680
AB  - A series of heteropentanuclear oxalate-bridged Ru(NO)-Ln (4d-4f) metal complexes of the general formula (nBu(4)N)(5)[Ln{RuCl3(-ox)(NO)}(4)], where Ln=Y (2), Gd (3), Tb (4), Dy (5) and ox=oxalate anion, were obtained by treatment of (nBu(4)N)(2)[RuCl3(ox)(NO)] (1) with the respective lanthanide salt in 4:1 molar ratio. The compounds were characterized by elemental analysis, IR spectroscopy, electrospray ionization (ESI) mass spectrometry, while 1, 2, and 5 were in addition analyzed by X-ray crystallography, 1 by Ru K-edge XAS and 1 and 2 by (CNMR)-C-13 spectroscopy. X-ray diffraction showed that in 2 and 5 four complex anions [RuCl3(ox)(NO)](2-) are coordinated to Y-III and Dy-III, respectively, with formation of [Ln{RuCl3(-ox)(NO)}(4)](5-) (Ln=Y, Dy). While Y-III is eight-coordinate in 2, Dy-III is nine-coordinate in 5, with an additional coordination of an EtOH molecule. The negative charge is counterbalanced by five nBu(4)N(+) ions present in the crystal structure. The stability of complexes 2 and 5 in aqueous medium was monitored by UV/Vis spectroscopy. The antiproliferative activity of ruthenium-lanthanide complexes 2-5 were assayed in two human cancer cell lines (HeLa and A549) and in a noncancerous cell line (MRC-5) and compared with those obtained for the previously reported Os(NO)-Ln (5d-4f) analogues (nBu(4)N)(5)[Ln{OsCl3(ox)(NO)}(4)] (Ln=Y (6), Gd (7), Tb (8), Dy (9)). Complexes 2-5 were found to be slightly more active than 1 in inhibiting the proliferation of HeLa and A549 cells, and significantly more cytotoxic than 5d-4f metal complexes 6-9 in terms of IC50 values. The highest antiproliferative activity with IC50 values of 20.0 and 22.4M was found for 4 in HeLa and A549 cell lines, respectively. These cytotoxicity results are in accord with the presented ICP-MS data, indicating five- to eightfold greater accumulation of ruthenium versus osmium in human A549 cancer cells.
PB  - Wiley-V C H Verlag Gmbh, Weinheim
T2  - Chemistry-A European Journal
T1  - Heteropentanuclear Oxalato-Bridged nd-4f (n=4, 5) Metal Complexes with NO Ligand: Synthesis, Crystal Structures, Aqueous Stability and Antiproliferative Activity
VL  - 21
IS  - 39
SP  - 13703
EP  - 13713
DO  - 10.1002/chem.201502026
ER  - 
@article{
author = "Kuhn, Paul-Steffen and Cremer, Laura and Gavriluta, Anatolie and Jovanovic, Katarina K and Filipovic, Lana and Hummer, Alfred A and Buechel, Gabriel E and Dojčinović, Biljana and Meier, Samuel M and Rompel, Annette and Radulovic, Sinisa and Tommasino, Jean Bernard and Luneau, Dominique and Arion, Vladimir B",
year = "2015",
abstract = "A series of heteropentanuclear oxalate-bridged Ru(NO)-Ln (4d-4f) metal complexes of the general formula (nBu(4)N)(5)[Ln{RuCl3(-ox)(NO)}(4)], where Ln=Y (2), Gd (3), Tb (4), Dy (5) and ox=oxalate anion, were obtained by treatment of (nBu(4)N)(2)[RuCl3(ox)(NO)] (1) with the respective lanthanide salt in 4:1 molar ratio. The compounds were characterized by elemental analysis, IR spectroscopy, electrospray ionization (ESI) mass spectrometry, while 1, 2, and 5 were in addition analyzed by X-ray crystallography, 1 by Ru K-edge XAS and 1 and 2 by (CNMR)-C-13 spectroscopy. X-ray diffraction showed that in 2 and 5 four complex anions [RuCl3(ox)(NO)](2-) are coordinated to Y-III and Dy-III, respectively, with formation of [Ln{RuCl3(-ox)(NO)}(4)](5-) (Ln=Y, Dy). While Y-III is eight-coordinate in 2, Dy-III is nine-coordinate in 5, with an additional coordination of an EtOH molecule. The negative charge is counterbalanced by five nBu(4)N(+) ions present in the crystal structure. The stability of complexes 2 and 5 in aqueous medium was monitored by UV/Vis spectroscopy. The antiproliferative activity of ruthenium-lanthanide complexes 2-5 were assayed in two human cancer cell lines (HeLa and A549) and in a noncancerous cell line (MRC-5) and compared with those obtained for the previously reported Os(NO)-Ln (5d-4f) analogues (nBu(4)N)(5)[Ln{OsCl3(ox)(NO)}(4)] (Ln=Y (6), Gd (7), Tb (8), Dy (9)). Complexes 2-5 were found to be slightly more active than 1 in inhibiting the proliferation of HeLa and A549 cells, and significantly more cytotoxic than 5d-4f metal complexes 6-9 in terms of IC50 values. The highest antiproliferative activity with IC50 values of 20.0 and 22.4M was found for 4 in HeLa and A549 cell lines, respectively. These cytotoxicity results are in accord with the presented ICP-MS data, indicating five- to eightfold greater accumulation of ruthenium versus osmium in human A549 cancer cells.",
publisher = "Wiley-V C H Verlag Gmbh, Weinheim",
journal = "Chemistry-A European Journal",
title = "Heteropentanuclear Oxalato-Bridged nd-4f (n=4, 5) Metal Complexes with NO Ligand: Synthesis, Crystal Structures, Aqueous Stability and Antiproliferative Activity",
volume = "21",
number = "39",
pages = "13703-13713",
doi = "10.1002/chem.201502026"
}
Kuhn, P., Cremer, L., Gavriluta, A., Jovanovic, K. K., Filipovic, L., Hummer, A. A., Buechel, G. E., Dojčinović, B., Meier, S. M., Rompel, A., Radulovic, S., Tommasino, J. B., Luneau, D.,& Arion, V. B.. (2015). Heteropentanuclear Oxalato-Bridged nd-4f (n=4, 5) Metal Complexes with NO Ligand: Synthesis, Crystal Structures, Aqueous Stability and Antiproliferative Activity. in Chemistry-A European Journal
Wiley-V C H Verlag Gmbh, Weinheim., 21(39), 13703-13713.
https://doi.org/10.1002/chem.201502026
Kuhn P, Cremer L, Gavriluta A, Jovanovic KK, Filipovic L, Hummer AA, Buechel GE, Dojčinović B, Meier SM, Rompel A, Radulovic S, Tommasino JB, Luneau D, Arion VB. Heteropentanuclear Oxalato-Bridged nd-4f (n=4, 5) Metal Complexes with NO Ligand: Synthesis, Crystal Structures, Aqueous Stability and Antiproliferative Activity. in Chemistry-A European Journal. 2015;21(39):13703-13713.
doi:10.1002/chem.201502026 .
Kuhn, Paul-Steffen, Cremer, Laura, Gavriluta, Anatolie, Jovanovic, Katarina K, Filipovic, Lana, Hummer, Alfred A, Buechel, Gabriel E, Dojčinović, Biljana, Meier, Samuel M, Rompel, Annette, Radulovic, Sinisa, Tommasino, Jean Bernard, Luneau, Dominique, Arion, Vladimir B, "Heteropentanuclear Oxalato-Bridged nd-4f (n=4, 5) Metal Complexes with NO Ligand: Synthesis, Crystal Structures, Aqueous Stability and Antiproliferative Activity" in Chemistry-A European Journal, 21, no. 39 (2015):13703-13713,
https://doi.org/10.1002/chem.201502026 . .
14
13
13