Medarević, Đorđe

Link to this page

Authority KeyName Variants
06ece8ed-4d14-4850-992d-77f09fbf7c1b
  • Medarević, Đorđe (2)
Projects

Author's Bibliography

Understanding the Effect of Energy Density and Formulation Factors on the Printability and Characteristics of SLS Irbesartan Tablets-Application of the Decision Tree Model

Madžarević, Marijana; Medarević, Đorđe; Pavlović, Stefan; Ivković, Branka; Đuriš, Jelena; Ibrić, Svetlana

(MDPI, 2021)

TY  - JOUR
AU  - Madžarević, Marijana
AU  - Medarević, Đorđe
AU  - Pavlović, Stefan
AU  - Ivković, Branka
AU  - Đuriš, Jelena
AU  - Ibrić, Svetlana
PY  - 2021
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/4852
AB  - Selective laser sintering (SLS) is a rapid prototyping technique for the production of three-dimensional objects through selectively sintering powder-based layer materials. The aim of the study was to investigate the effect of energy density (ED) and formulation factors on the printability and characteristics of SLS irbesartan tablets. The correlation between formulation factors, ED, and printability was obtained using a decision tree model with an accuracy of 80%. FT-IR results revealed that there was no interaction between irbesartan and the applied excipients. DSC results indicated that irbesartan was present in an amorphous form in printed tablets. ED had a significant influence on tablets' physical, mechanical, and morphological characteristics. Adding lactose mon-ohydrate enabled faster drug release while reducing the possibility for printing with different laser speeds. However, formulations with crospovidone were printable with a wider range of laser speeds. The adjustment of formulation and process parameters enabled the production of SLS tablets with hydroxypropyl methylcellulose with complete release in less than 30 min. The results suggest that a decision tree could be a useful tool for predicting the printability of pharmaceutical formulations. Tailoring the characteristics of SLS irbesartan tablets by ED is possible; however, it needs to be governed by the composition of the whole formulation.
PB  - MDPI
T2  - Pharmaceutics
T1  - Understanding the Effect of Energy Density and Formulation Factors on the Printability and Characteristics of SLS Irbesartan Tablets-Application of the Decision Tree Model
VL  - 13
IS  - 11
SP  - 1969
DO  - 10.3390/pharmaceutics13111969
ER  - 
@article{
author = "Madžarević, Marijana and Medarević, Đorđe and Pavlović, Stefan and Ivković, Branka and Đuriš, Jelena and Ibrić, Svetlana",
year = "2021",
abstract = "Selective laser sintering (SLS) is a rapid prototyping technique for the production of three-dimensional objects through selectively sintering powder-based layer materials. The aim of the study was to investigate the effect of energy density (ED) and formulation factors on the printability and characteristics of SLS irbesartan tablets. The correlation between formulation factors, ED, and printability was obtained using a decision tree model with an accuracy of 80%. FT-IR results revealed that there was no interaction between irbesartan and the applied excipients. DSC results indicated that irbesartan was present in an amorphous form in printed tablets. ED had a significant influence on tablets' physical, mechanical, and morphological characteristics. Adding lactose mon-ohydrate enabled faster drug release while reducing the possibility for printing with different laser speeds. However, formulations with crospovidone were printable with a wider range of laser speeds. The adjustment of formulation and process parameters enabled the production of SLS tablets with hydroxypropyl methylcellulose with complete release in less than 30 min. The results suggest that a decision tree could be a useful tool for predicting the printability of pharmaceutical formulations. Tailoring the characteristics of SLS irbesartan tablets by ED is possible; however, it needs to be governed by the composition of the whole formulation.",
publisher = "MDPI",
journal = "Pharmaceutics",
title = "Understanding the Effect of Energy Density and Formulation Factors on the Printability and Characteristics of SLS Irbesartan Tablets-Application of the Decision Tree Model",
volume = "13",
number = "11",
pages = "1969",
doi = "10.3390/pharmaceutics13111969"
}
Madžarević, M., Medarević, Đ., Pavlović, S., Ivković, B., Đuriš, J.,& Ibrić, S.. (2021). Understanding the Effect of Energy Density and Formulation Factors on the Printability and Characteristics of SLS Irbesartan Tablets-Application of the Decision Tree Model. in Pharmaceutics
MDPI., 13(11), 1969.
https://doi.org/10.3390/pharmaceutics13111969
Madžarević M, Medarević Đ, Pavlović S, Ivković B, Đuriš J, Ibrić S. Understanding the Effect of Energy Density and Formulation Factors on the Printability and Characteristics of SLS Irbesartan Tablets-Application of the Decision Tree Model. in Pharmaceutics. 2021;13(11):1969.
doi:10.3390/pharmaceutics13111969 .
Madžarević, Marijana, Medarević, Đorđe, Pavlović, Stefan, Ivković, Branka, Đuriš, Jelena, Ibrić, Svetlana, "Understanding the Effect of Energy Density and Formulation Factors on the Printability and Characteristics of SLS Irbesartan Tablets-Application of the Decision Tree Model" in Pharmaceutics, 13, no. 11 (2021):1969,
https://doi.org/10.3390/pharmaceutics13111969 . .
1
18
1
12

Preparation of floating polymer-valsartan delivery systems using supercritical CO2

Milovanović, Stoja; Đuriš, Jelena; Dapčević, Aleksandra; Lučić-Škorić, Marija; Medarević, Đorđe; Pavlović, Stefan; Ibrić, Svetlana

(Springer, 2021)

TY  - JOUR
AU  - Milovanović, Stoja
AU  - Đuriš, Jelena
AU  - Dapčević, Aleksandra
AU  - Lučić-Škorić, Marija
AU  - Medarević, Đorđe
AU  - Pavlović, Stefan
AU  - Ibrić, Svetlana
PY  - 2021
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/4198
AB  - This study investigates pharmaceutical polymers (Soluplus®, HPMCAS, and Eudragit® E100) and supercritical CO2-assisted process for preparation of floating valsartan delivery systems. Tested process (at pressure of 30 MPa and temperature of 100 °C during 2 h) enabled preparation of stable porous valsartan formulations which was confirmed with FESEM and mercury intrusion porosimetry analysis. The bulk density of obtained formulations was lower than 550 kg/m3. FTIR, DSC, and PXRD analysis indicated that there was no chemical interaction between the drug and polymers and that amorphous solid dispersions were obtained. Formulations with Soluplus® and HPMCAS retained its buoyancy in 0.1 M HCl for longer than 24 h, while formulation with Eudragit® E100 retained its buoyancy up to 2 h. Controlled valsartan release was influenced by solubility of polymers in the tested release medium, which was confirmed by UV/VIS spectroscopy. The obtained results provided framework for further development of floating drug delivery system using an environmental friendly process.
PB  - Springer
T2  - Journal of Polymer Research
T1  - Preparation of floating polymer-valsartan delivery systems using supercritical CO2
VL  - 28
SP  - 74
DO  - 10.1007/s10965-021-02440-1
ER  - 
@article{
author = "Milovanović, Stoja and Đuriš, Jelena and Dapčević, Aleksandra and Lučić-Škorić, Marija and Medarević, Đorđe and Pavlović, Stefan and Ibrić, Svetlana",
year = "2021",
abstract = "This study investigates pharmaceutical polymers (Soluplus®, HPMCAS, and Eudragit® E100) and supercritical CO2-assisted process for preparation of floating valsartan delivery systems. Tested process (at pressure of 30 MPa and temperature of 100 °C during 2 h) enabled preparation of stable porous valsartan formulations which was confirmed with FESEM and mercury intrusion porosimetry analysis. The bulk density of obtained formulations was lower than 550 kg/m3. FTIR, DSC, and PXRD analysis indicated that there was no chemical interaction between the drug and polymers and that amorphous solid dispersions were obtained. Formulations with Soluplus® and HPMCAS retained its buoyancy in 0.1 M HCl for longer than 24 h, while formulation with Eudragit® E100 retained its buoyancy up to 2 h. Controlled valsartan release was influenced by solubility of polymers in the tested release medium, which was confirmed by UV/VIS spectroscopy. The obtained results provided framework for further development of floating drug delivery system using an environmental friendly process.",
publisher = "Springer",
journal = "Journal of Polymer Research",
title = "Preparation of floating polymer-valsartan delivery systems using supercritical CO2",
volume = "28",
pages = "74",
doi = "10.1007/s10965-021-02440-1"
}
Milovanović, S., Đuriš, J., Dapčević, A., Lučić-Škorić, M., Medarević, Đ., Pavlović, S.,& Ibrić, S.. (2021). Preparation of floating polymer-valsartan delivery systems using supercritical CO2. in Journal of Polymer Research
Springer., 28, 74.
https://doi.org/10.1007/s10965-021-02440-1
Milovanović S, Đuriš J, Dapčević A, Lučić-Škorić M, Medarević Đ, Pavlović S, Ibrić S. Preparation of floating polymer-valsartan delivery systems using supercritical CO2. in Journal of Polymer Research. 2021;28:74.
doi:10.1007/s10965-021-02440-1 .
Milovanović, Stoja, Đuriš, Jelena, Dapčević, Aleksandra, Lučić-Škorić, Marija, Medarević, Đorđe, Pavlović, Stefan, Ibrić, Svetlana, "Preparation of floating polymer-valsartan delivery systems using supercritical CO2" in Journal of Polymer Research, 28 (2021):74,
https://doi.org/10.1007/s10965-021-02440-1 . .
3