Stijcpovic, Mirko Z.

Link to this page

Authority KeyName Variants
d3cd8438-f3d4-4eab-b483-fc15f75423e3
  • Stijcpovic, Mirko Z. (1)
Projects

Author's Bibliography

Targeting and Design of Organic Rankine Cycle Systems for Multiple Heat Sources with Simultaneous Working Fluid Selection

Stijcpovic, Mirko Z.; Papadopoulos, Athanasios I.; Linke, Patrick; Stijepović, Vladimir; Grujić, Aleksandar; Kijevčanin, Mirjana; Seferlis, Panos

(Elsevier, 2017)

TY  - CONF
AU  - Stijcpovic, Mirko Z.
AU  - Papadopoulos, Athanasios I.
AU  - Linke, Patrick
AU  - Stijepović, Vladimir
AU  - Grujić, Aleksandar
AU  - Kijevčanin, Mirjana
AU  - Seferlis, Panos
PY  - 2017
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/2119
AB  - We propose a systematic model for the optimum design of Organic Rankine Cycles (ORC) used for power generation from multiple heat sources available at different temperatures. The model enables the automated generation of inclusive and flexible ORC cascades and is optimized using a global optimization algorithm. Design parameters include the number of ORC cascades, the shared structure of the heat exchanger network, the operating conditions and the working fluid used in each cascade in order to identify an overall ORC structure that maximizes the power output. Results indicate significant operating improvements from using a double ORC cascade with different working fluids.
PB  - Elsevier
C3  - 27th European Symposium on Computer Aided Process Engineering, Pt A
T1  - Targeting and Design of Organic Rankine Cycle Systems for Multiple Heat Sources with Simultaneous Working Fluid Selection
SP  - 769
EP  - 774
DO  - 10.1016/B978-0-444-63965-3.50130-6
ER  - 
@conference{
author = "Stijcpovic, Mirko Z. and Papadopoulos, Athanasios I. and Linke, Patrick and Stijepović, Vladimir and Grujić, Aleksandar and Kijevčanin, Mirjana and Seferlis, Panos",
year = "2017",
abstract = "We propose a systematic model for the optimum design of Organic Rankine Cycles (ORC) used for power generation from multiple heat sources available at different temperatures. The model enables the automated generation of inclusive and flexible ORC cascades and is optimized using a global optimization algorithm. Design parameters include the number of ORC cascades, the shared structure of the heat exchanger network, the operating conditions and the working fluid used in each cascade in order to identify an overall ORC structure that maximizes the power output. Results indicate significant operating improvements from using a double ORC cascade with different working fluids.",
publisher = "Elsevier",
journal = "27th European Symposium on Computer Aided Process Engineering, Pt A",
title = "Targeting and Design of Organic Rankine Cycle Systems for Multiple Heat Sources with Simultaneous Working Fluid Selection",
pages = "769-774",
doi = "10.1016/B978-0-444-63965-3.50130-6"
}
Stijcpovic, M. Z., Papadopoulos, A. I., Linke, P., Stijepović, V., Grujić, A., Kijevčanin, M.,& Seferlis, P.. (2017). Targeting and Design of Organic Rankine Cycle Systems for Multiple Heat Sources with Simultaneous Working Fluid Selection. in 27th European Symposium on Computer Aided Process Engineering, Pt A
Elsevier., 769-774.
https://doi.org/10.1016/B978-0-444-63965-3.50130-6
Stijcpovic MZ, Papadopoulos AI, Linke P, Stijepović V, Grujić A, Kijevčanin M, Seferlis P. Targeting and Design of Organic Rankine Cycle Systems for Multiple Heat Sources with Simultaneous Working Fluid Selection. in 27th European Symposium on Computer Aided Process Engineering, Pt A. 2017;:769-774.
doi:10.1016/B978-0-444-63965-3.50130-6 .
Stijcpovic, Mirko Z., Papadopoulos, Athanasios I., Linke, Patrick, Stijepović, Vladimir, Grujić, Aleksandar, Kijevčanin, Mirjana, Seferlis, Panos, "Targeting and Design of Organic Rankine Cycle Systems for Multiple Heat Sources with Simultaneous Working Fluid Selection" in 27th European Symposium on Computer Aided Process Engineering, Pt A (2017):769-774,
https://doi.org/10.1016/B978-0-444-63965-3.50130-6 . .
1
1
1