Cekic, Nebojsa

Link to this page

Authority KeyName Variants
orcid::0000-0001-7271-0544
  • Cekic, Nebojsa (9)
Projects

Author's Bibliography

Biocompatible microemulsions for improved dermal delivery of sertaconazole nitrate: Phase behavior study and microstructure influence on drug biopharamaceutical properties

Pajic, Natasa Bubic; Nikolić, Ines; Mitsou, Evgenia; Papadimitriou, Vassiliki; Xenakis, Aristotelis; Randjelović, Danijela; Dobricic, Vladimir; Smitran, Aleksandra; Cekic, Nebojsa; Calija, Bojan; Savić, Snežana D.

(Elsevier, 2018)

TY  - JOUR
AU  - Pajic, Natasa Bubic
AU  - Nikolić, Ines
AU  - Mitsou, Evgenia
AU  - Papadimitriou, Vassiliki
AU  - Xenakis, Aristotelis
AU  - Randjelović, Danijela
AU  - Dobricic, Vladimir
AU  - Smitran, Aleksandra
AU  - Cekic, Nebojsa
AU  - Calija, Bojan
AU  - Savić, Snežana D.
PY  - 2018
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/4291
AB  - The aim of this study was development of biocompatible topical microemulsions (MEs) for incorporation and improved dermal delivery of sertaconazole nitrate (SN). For this purpose, phase behavior and microstructure of pseudo-ternary glycereth-7-caprylate/caprate (Emanon EV-E, EV)/cosurfactant/Capryol (TM) 90/water systems were investigated. Furhermore, the influence of these properties on the drug skin delivery was also assessed. Expansion of ME single-phase regions with the use of short chain alcohols was a consequence of the more fluid interface when compared to other investigated systems, which was confirmed by electron paramagnetic resonance spectroscopy-EPR. The chosen bicontinuous to inverted bicontinuous formulations were assessed against the ME based on polysorbate 80 as referent sample. Despite incorporation of SN within the selected formulations induced similar alternations in electrical conductivity, viscosity and pH values, obtained EPR spectra suggested different SN localization: within the oil phase (for most of the EV based formulations), or interacting with the interface (polysorbate 80 based formulation). Due to higher in vitro drug release (12.24%-18.53%), ex vivo SN penetration into porcine ear skin (dermal retention Enhancement Ratio (ERO) ranged from 2.66 to 4.25) and pronounced antifungal activity, the chosen MEs represent promising vehicles for dermal delivery of SN in treatment of cutaneous fungal infections. The biopharmaceutical and skin performance differences obtained with different formulations were possible to be explained on the basis of their physicochemical characteristics.
PB  - Elsevier
T2  - Journal of Molecular Liquids
T1  - Biocompatible microemulsions for improved dermal delivery of sertaconazole nitrate: Phase behavior study and microstructure influence on drug biopharamaceutical properties
VL  - 272
SP  - 746
EP  - 758
DO  - 10.1016/j.molliq.2018.10.002
ER  - 
@article{
author = "Pajic, Natasa Bubic and Nikolić, Ines and Mitsou, Evgenia and Papadimitriou, Vassiliki and Xenakis, Aristotelis and Randjelović, Danijela and Dobricic, Vladimir and Smitran, Aleksandra and Cekic, Nebojsa and Calija, Bojan and Savić, Snežana D.",
year = "2018",
abstract = "The aim of this study was development of biocompatible topical microemulsions (MEs) for incorporation and improved dermal delivery of sertaconazole nitrate (SN). For this purpose, phase behavior and microstructure of pseudo-ternary glycereth-7-caprylate/caprate (Emanon EV-E, EV)/cosurfactant/Capryol (TM) 90/water systems were investigated. Furhermore, the influence of these properties on the drug skin delivery was also assessed. Expansion of ME single-phase regions with the use of short chain alcohols was a consequence of the more fluid interface when compared to other investigated systems, which was confirmed by electron paramagnetic resonance spectroscopy-EPR. The chosen bicontinuous to inverted bicontinuous formulations were assessed against the ME based on polysorbate 80 as referent sample. Despite incorporation of SN within the selected formulations induced similar alternations in electrical conductivity, viscosity and pH values, obtained EPR spectra suggested different SN localization: within the oil phase (for most of the EV based formulations), or interacting with the interface (polysorbate 80 based formulation). Due to higher in vitro drug release (12.24%-18.53%), ex vivo SN penetration into porcine ear skin (dermal retention Enhancement Ratio (ERO) ranged from 2.66 to 4.25) and pronounced antifungal activity, the chosen MEs represent promising vehicles for dermal delivery of SN in treatment of cutaneous fungal infections. The biopharmaceutical and skin performance differences obtained with different formulations were possible to be explained on the basis of their physicochemical characteristics.",
publisher = "Elsevier",
journal = "Journal of Molecular Liquids",
title = "Biocompatible microemulsions for improved dermal delivery of sertaconazole nitrate: Phase behavior study and microstructure influence on drug biopharamaceutical properties",
volume = "272",
pages = "746-758",
doi = "10.1016/j.molliq.2018.10.002"
}
Pajic, N. B., Nikolić, I., Mitsou, E., Papadimitriou, V., Xenakis, A., Randjelović, D., Dobricic, V., Smitran, A., Cekic, N., Calija, B.,& Savić, S. D.. (2018). Biocompatible microemulsions for improved dermal delivery of sertaconazole nitrate: Phase behavior study and microstructure influence on drug biopharamaceutical properties. in Journal of Molecular Liquids
Elsevier., 272, 746-758.
https://doi.org/10.1016/j.molliq.2018.10.002
Pajic NB, Nikolić I, Mitsou E, Papadimitriou V, Xenakis A, Randjelović D, Dobricic V, Smitran A, Cekic N, Calija B, Savić SD. Biocompatible microemulsions for improved dermal delivery of sertaconazole nitrate: Phase behavior study and microstructure influence on drug biopharamaceutical properties. in Journal of Molecular Liquids. 2018;272:746-758.
doi:10.1016/j.molliq.2018.10.002 .
Pajic, Natasa Bubic, Nikolić, Ines, Mitsou, Evgenia, Papadimitriou, Vassiliki, Xenakis, Aristotelis, Randjelović, Danijela, Dobricic, Vladimir, Smitran, Aleksandra, Cekic, Nebojsa, Calija, Bojan, Savić, Snežana D., "Biocompatible microemulsions for improved dermal delivery of sertaconazole nitrate: Phase behavior study and microstructure influence on drug biopharamaceutical properties" in Journal of Molecular Liquids, 272 (2018):746-758,
https://doi.org/10.1016/j.molliq.2018.10.002 . .
21
16
22

Curcumin-loaded low-energy nanoemulsions as a prototype of multifunctional vehicles for different administration routes: Physicochemical and in vitro peculiarities important for dermal application

Nikolić, Ines; Lunter, Dominique Jasmin; Randjelović, Danijela; Žugić, Ana; Tadić, Vanja; Marković, Bojan D.; Cekic, Nebojsa; Živković, Lada; Topalovic, Dijana; Spremo-Potparević, Biljana; Daniels, Rolf; Savić, Snežana D.

(Elsevier, 2018)

TY  - JOUR
AU  - Nikolić, Ines
AU  - Lunter, Dominique Jasmin
AU  - Randjelović, Danijela
AU  - Žugić, Ana
AU  - Tadić, Vanja
AU  - Marković, Bojan D.
AU  - Cekic, Nebojsa
AU  - Živković, Lada
AU  - Topalovic, Dijana
AU  - Spremo-Potparević, Biljana
AU  - Daniels, Rolf
AU  - Savić, Snežana D.
PY  - 2018
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3719
AB  - The objective of this work was to investigate and profoundly characterize low-energy nanoemulsions as multifunctional carriers, with slight reference to dermal administration. An evidence-based approach was offered for deepening the knowledge on their formation via spontaneous emulsification. Curcumin, a compound of natural origin, potentially powerful therapeutic, was chosen as a model API. Due to curcumin's demanding properties (instability, poor solubility, low permeability), its potentials remain unreached. Low-energy nanoemulsions were considered carriers capable of overcoming imposed obstacles. Formulation consisting of Polysorbate 80 and soybean lecithin as stabilizers (9:1, 10%), medium-chain triglycerides as the oil phase (10%) and ultrapure water was selected for curcumin incorporation in 3 different concentrations (1, 2 and 3 mg/mL). Physicochemical stability was demonstrated during 3 months of monitoring (mean droplet size: 111.3-146.8 nm; PDI  LT  0.2; pH: 4.73-5.73). Curcumin's release from developed vehicles followed Higuchi's kinetics. DPPH (IC50 = 0.1187 mg/ mL) and FRAP (1.19 +/- 0.02 mmol/g) assays confirmed that curcumin acts as a potent antioxidant through different mechanisms, with no alterations after incorporation in the formulation. High biocompatibility in line with antigenotoxic activity of curcumin-loaded formulations (protective and reparative) was estimated through Comet assay. A multidisciplinary approach is needed to fully characterize developed systems, directing them to more concrete application possibilities.
PB  - Elsevier
T2  - International Journal of Pharmaceutics
T1  - Curcumin-loaded low-energy nanoemulsions as a prototype of multifunctional vehicles for different administration routes: Physicochemical and in vitro peculiarities important for dermal application
VL  - 550
IS  - 1-2
SP  - 333
EP  - 346
DO  - 10.1016/j.ijpharm.2018.08.060
ER  - 
@article{
author = "Nikolić, Ines and Lunter, Dominique Jasmin and Randjelović, Danijela and Žugić, Ana and Tadić, Vanja and Marković, Bojan D. and Cekic, Nebojsa and Živković, Lada and Topalovic, Dijana and Spremo-Potparević, Biljana and Daniels, Rolf and Savić, Snežana D.",
year = "2018",
abstract = "The objective of this work was to investigate and profoundly characterize low-energy nanoemulsions as multifunctional carriers, with slight reference to dermal administration. An evidence-based approach was offered for deepening the knowledge on their formation via spontaneous emulsification. Curcumin, a compound of natural origin, potentially powerful therapeutic, was chosen as a model API. Due to curcumin's demanding properties (instability, poor solubility, low permeability), its potentials remain unreached. Low-energy nanoemulsions were considered carriers capable of overcoming imposed obstacles. Formulation consisting of Polysorbate 80 and soybean lecithin as stabilizers (9:1, 10%), medium-chain triglycerides as the oil phase (10%) and ultrapure water was selected for curcumin incorporation in 3 different concentrations (1, 2 and 3 mg/mL). Physicochemical stability was demonstrated during 3 months of monitoring (mean droplet size: 111.3-146.8 nm; PDI  LT  0.2; pH: 4.73-5.73). Curcumin's release from developed vehicles followed Higuchi's kinetics. DPPH (IC50 = 0.1187 mg/ mL) and FRAP (1.19 +/- 0.02 mmol/g) assays confirmed that curcumin acts as a potent antioxidant through different mechanisms, with no alterations after incorporation in the formulation. High biocompatibility in line with antigenotoxic activity of curcumin-loaded formulations (protective and reparative) was estimated through Comet assay. A multidisciplinary approach is needed to fully characterize developed systems, directing them to more concrete application possibilities.",
publisher = "Elsevier",
journal = "International Journal of Pharmaceutics",
title = "Curcumin-loaded low-energy nanoemulsions as a prototype of multifunctional vehicles for different administration routes: Physicochemical and in vitro peculiarities important for dermal application",
volume = "550",
number = "1-2",
pages = "333-346",
doi = "10.1016/j.ijpharm.2018.08.060"
}
Nikolić, I., Lunter, D. J., Randjelović, D., Žugić, A., Tadić, V., Marković, B. D., Cekic, N., Živković, L., Topalovic, D., Spremo-Potparević, B., Daniels, R.,& Savić, S. D.. (2018). Curcumin-loaded low-energy nanoemulsions as a prototype of multifunctional vehicles for different administration routes: Physicochemical and in vitro peculiarities important for dermal application. in International Journal of Pharmaceutics
Elsevier., 550(1-2), 333-346.
https://doi.org/10.1016/j.ijpharm.2018.08.060
Nikolić I, Lunter DJ, Randjelović D, Žugić A, Tadić V, Marković BD, Cekic N, Živković L, Topalovic D, Spremo-Potparević B, Daniels R, Savić SD. Curcumin-loaded low-energy nanoemulsions as a prototype of multifunctional vehicles for different administration routes: Physicochemical and in vitro peculiarities important for dermal application. in International Journal of Pharmaceutics. 2018;550(1-2):333-346.
doi:10.1016/j.ijpharm.2018.08.060 .
Nikolić, Ines, Lunter, Dominique Jasmin, Randjelović, Danijela, Žugić, Ana, Tadić, Vanja, Marković, Bojan D., Cekic, Nebojsa, Živković, Lada, Topalovic, Dijana, Spremo-Potparević, Biljana, Daniels, Rolf, Savić, Snežana D., "Curcumin-loaded low-energy nanoemulsions as a prototype of multifunctional vehicles for different administration routes: Physicochemical and in vitro peculiarities important for dermal application" in International Journal of Pharmaceutics, 550, no. 1-2 (2018):333-346,
https://doi.org/10.1016/j.ijpharm.2018.08.060 . .
30
21
28

Biocompatible microemulsions for improved dermal delivery of sertaconazole nitrate: Phase behavior study and microstructure influence on drug biopharamaceutical properties

Pajic, Natasa Bubic; Nikolić, Ines; Mitsou, Evgenia; Papadimitriou, Vassiliki; Xenakis, Aristotelis; Randjelović, Danijela; Dobricic, Vladimir; Smitran, Aleksandra; Cekic, Nebojsa; Calija, Bojan; Savić, Snežana D.

(Elsevier, 2018)

TY  - JOUR
AU  - Pajic, Natasa Bubic
AU  - Nikolić, Ines
AU  - Mitsou, Evgenia
AU  - Papadimitriou, Vassiliki
AU  - Xenakis, Aristotelis
AU  - Randjelović, Danijela
AU  - Dobricic, Vladimir
AU  - Smitran, Aleksandra
AU  - Cekic, Nebojsa
AU  - Calija, Bojan
AU  - Savić, Snežana D.
PY  - 2018
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/2360
AB  - The aim of this study was development of biocompatible topical microemulsions (MEs) for incorporation and improved dermal delivery of sertaconazole nitrate (SN). For this purpose, phase behavior and microstructure of pseudo-ternary glycereth-7-caprylate/caprate (Emanon EV-E, EV)/cosurfactant/Capryol (TM) 90/water systems were investigated. Furhermore, the influence of these properties on the drug skin delivery was also assessed. Expansion of ME single-phase regions with the use of short chain alcohols was a consequence of the more fluid interface when compared to other investigated systems, which was confirmed by electron paramagnetic resonance spectroscopy-EPR. The chosen bicontinuous to inverted bicontinuous formulations were assessed against the ME based on polysorbate 80 as referent sample. Despite incorporation of SN within the selected formulations induced similar alternations in electrical conductivity, viscosity and pH values, obtained EPR spectra suggested different SN localization: within the oil phase (for most of the EV based formulations), or interacting with the interface (polysorbate 80 based formulation). Due to higher in vitro drug release (12.24%-18.53%), ex vivo SN penetration into porcine ear skin (dermal retention Enhancement Ratio (ERO) ranged from 2.66 to 4.25) and pronounced antifungal activity, the chosen MEs represent promising vehicles for dermal delivery of SN in treatment of cutaneous fungal infections. The biopharmaceutical and skin performance differences obtained with different formulations were possible to be explained on the basis of their physicochemical characteristics.
PB  - Elsevier
T2  - Journal of Molecular Liquids
T1  - Biocompatible microemulsions for improved dermal delivery of sertaconazole nitrate: Phase behavior study and microstructure influence on drug biopharamaceutical properties
VL  - 272
SP  - 746
EP  - 758
DO  - 10.1016/j.molliq.2018.10.002
ER  - 
@article{
author = "Pajic, Natasa Bubic and Nikolić, Ines and Mitsou, Evgenia and Papadimitriou, Vassiliki and Xenakis, Aristotelis and Randjelović, Danijela and Dobricic, Vladimir and Smitran, Aleksandra and Cekic, Nebojsa and Calija, Bojan and Savić, Snežana D.",
year = "2018",
abstract = "The aim of this study was development of biocompatible topical microemulsions (MEs) for incorporation and improved dermal delivery of sertaconazole nitrate (SN). For this purpose, phase behavior and microstructure of pseudo-ternary glycereth-7-caprylate/caprate (Emanon EV-E, EV)/cosurfactant/Capryol (TM) 90/water systems were investigated. Furhermore, the influence of these properties on the drug skin delivery was also assessed. Expansion of ME single-phase regions with the use of short chain alcohols was a consequence of the more fluid interface when compared to other investigated systems, which was confirmed by electron paramagnetic resonance spectroscopy-EPR. The chosen bicontinuous to inverted bicontinuous formulations were assessed against the ME based on polysorbate 80 as referent sample. Despite incorporation of SN within the selected formulations induced similar alternations in electrical conductivity, viscosity and pH values, obtained EPR spectra suggested different SN localization: within the oil phase (for most of the EV based formulations), or interacting with the interface (polysorbate 80 based formulation). Due to higher in vitro drug release (12.24%-18.53%), ex vivo SN penetration into porcine ear skin (dermal retention Enhancement Ratio (ERO) ranged from 2.66 to 4.25) and pronounced antifungal activity, the chosen MEs represent promising vehicles for dermal delivery of SN in treatment of cutaneous fungal infections. The biopharmaceutical and skin performance differences obtained with different formulations were possible to be explained on the basis of their physicochemical characteristics.",
publisher = "Elsevier",
journal = "Journal of Molecular Liquids",
title = "Biocompatible microemulsions for improved dermal delivery of sertaconazole nitrate: Phase behavior study and microstructure influence on drug biopharamaceutical properties",
volume = "272",
pages = "746-758",
doi = "10.1016/j.molliq.2018.10.002"
}
Pajic, N. B., Nikolić, I., Mitsou, E., Papadimitriou, V., Xenakis, A., Randjelović, D., Dobricic, V., Smitran, A., Cekic, N., Calija, B.,& Savić, S. D.. (2018). Biocompatible microemulsions for improved dermal delivery of sertaconazole nitrate: Phase behavior study and microstructure influence on drug biopharamaceutical properties. in Journal of Molecular Liquids
Elsevier., 272, 746-758.
https://doi.org/10.1016/j.molliq.2018.10.002
Pajic NB, Nikolić I, Mitsou E, Papadimitriou V, Xenakis A, Randjelović D, Dobricic V, Smitran A, Cekic N, Calija B, Savić SD. Biocompatible microemulsions for improved dermal delivery of sertaconazole nitrate: Phase behavior study and microstructure influence on drug biopharamaceutical properties. in Journal of Molecular Liquids. 2018;272:746-758.
doi:10.1016/j.molliq.2018.10.002 .
Pajic, Natasa Bubic, Nikolić, Ines, Mitsou, Evgenia, Papadimitriou, Vassiliki, Xenakis, Aristotelis, Randjelović, Danijela, Dobricic, Vladimir, Smitran, Aleksandra, Cekic, Nebojsa, Calija, Bojan, Savić, Snežana D., "Biocompatible microemulsions for improved dermal delivery of sertaconazole nitrate: Phase behavior study and microstructure influence on drug biopharamaceutical properties" in Journal of Molecular Liquids, 272 (2018):746-758,
https://doi.org/10.1016/j.molliq.2018.10.002 . .
21
16
22

Curcumin-loaded low-energy nanoemulsions as a prototype of multifunctional vehicles for different administration routes: Physicochemical and in vitro peculiarities important for dermal application

Nikolić, Ines; Lunter, Dominique Jasmin; Randjelović, Danijela; Žugić, Ana; Tadić, Vanja; Marković, Bojan D.; Cekic, Nebojsa; Živković, Lada; Topalovic, Dijana; Spremo-Potparević, Biljana; Daniels, Rolf; Savić, Snežana D.

(Elsevier, 2018)

TY  - JOUR
AU  - Nikolić, Ines
AU  - Lunter, Dominique Jasmin
AU  - Randjelović, Danijela
AU  - Žugić, Ana
AU  - Tadić, Vanja
AU  - Marković, Bojan D.
AU  - Cekic, Nebojsa
AU  - Živković, Lada
AU  - Topalovic, Dijana
AU  - Spremo-Potparević, Biljana
AU  - Daniels, Rolf
AU  - Savić, Snežana D.
PY  - 2018
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/2425
AB  - The objective of this work was to investigate and profoundly characterize low-energy nanoemulsions as multifunctional carriers, with slight reference to dermal administration. An evidence-based approach was offered for deepening the knowledge on their formation via spontaneous emulsification. Curcumin, a compound of natural origin, potentially powerful therapeutic, was chosen as a model API. Due to curcumin's demanding properties (instability, poor solubility, low permeability), its potentials remain unreached. Low-energy nanoemulsions were considered carriers capable of overcoming imposed obstacles. Formulation consisting of Polysorbate 80 and soybean lecithin as stabilizers (9:1, 10%), medium-chain triglycerides as the oil phase (10%) and ultrapure water was selected for curcumin incorporation in 3 different concentrations (1, 2 and 3 mg/mL). Physicochemical stability was demonstrated during 3 months of monitoring (mean droplet size: 111.3-146.8 nm; PDI  LT  0.2; pH: 4.73-5.73). Curcumin's release from developed vehicles followed Higuchi's kinetics. DPPH (IC50 = 0.1187 mg/ mL) and FRAP (1.19 +/- 0.02 mmol/g) assays confirmed that curcumin acts as a potent antioxidant through different mechanisms, with no alterations after incorporation in the formulation. High biocompatibility in line with antigenotoxic activity of curcumin-loaded formulations (protective and reparative) was estimated through Comet assay. A multidisciplinary approach is needed to fully characterize developed systems, directing them to more concrete application possibilities.
PB  - Elsevier
T2  - International Journal of Pharmaceutics
T1  - Curcumin-loaded low-energy nanoemulsions as a prototype of multifunctional vehicles for different administration routes: Physicochemical and in vitro peculiarities important for dermal application
VL  - 550
IS  - 1-2
SP  - 333
EP  - 346
DO  - 10.1016/j.ijpharm.2018.08.060
ER  - 
@article{
author = "Nikolić, Ines and Lunter, Dominique Jasmin and Randjelović, Danijela and Žugić, Ana and Tadić, Vanja and Marković, Bojan D. and Cekic, Nebojsa and Živković, Lada and Topalovic, Dijana and Spremo-Potparević, Biljana and Daniels, Rolf and Savić, Snežana D.",
year = "2018",
abstract = "The objective of this work was to investigate and profoundly characterize low-energy nanoemulsions as multifunctional carriers, with slight reference to dermal administration. An evidence-based approach was offered for deepening the knowledge on their formation via spontaneous emulsification. Curcumin, a compound of natural origin, potentially powerful therapeutic, was chosen as a model API. Due to curcumin's demanding properties (instability, poor solubility, low permeability), its potentials remain unreached. Low-energy nanoemulsions were considered carriers capable of overcoming imposed obstacles. Formulation consisting of Polysorbate 80 and soybean lecithin as stabilizers (9:1, 10%), medium-chain triglycerides as the oil phase (10%) and ultrapure water was selected for curcumin incorporation in 3 different concentrations (1, 2 and 3 mg/mL). Physicochemical stability was demonstrated during 3 months of monitoring (mean droplet size: 111.3-146.8 nm; PDI  LT  0.2; pH: 4.73-5.73). Curcumin's release from developed vehicles followed Higuchi's kinetics. DPPH (IC50 = 0.1187 mg/ mL) and FRAP (1.19 +/- 0.02 mmol/g) assays confirmed that curcumin acts as a potent antioxidant through different mechanisms, with no alterations after incorporation in the formulation. High biocompatibility in line with antigenotoxic activity of curcumin-loaded formulations (protective and reparative) was estimated through Comet assay. A multidisciplinary approach is needed to fully characterize developed systems, directing them to more concrete application possibilities.",
publisher = "Elsevier",
journal = "International Journal of Pharmaceutics",
title = "Curcumin-loaded low-energy nanoemulsions as a prototype of multifunctional vehicles for different administration routes: Physicochemical and in vitro peculiarities important for dermal application",
volume = "550",
number = "1-2",
pages = "333-346",
doi = "10.1016/j.ijpharm.2018.08.060"
}
Nikolić, I., Lunter, D. J., Randjelović, D., Žugić, A., Tadić, V., Marković, B. D., Cekic, N., Živković, L., Topalovic, D., Spremo-Potparević, B., Daniels, R.,& Savić, S. D.. (2018). Curcumin-loaded low-energy nanoemulsions as a prototype of multifunctional vehicles for different administration routes: Physicochemical and in vitro peculiarities important for dermal application. in International Journal of Pharmaceutics
Elsevier., 550(1-2), 333-346.
https://doi.org/10.1016/j.ijpharm.2018.08.060
Nikolić I, Lunter DJ, Randjelović D, Žugić A, Tadić V, Marković BD, Cekic N, Živković L, Topalovic D, Spremo-Potparević B, Daniels R, Savić SD. Curcumin-loaded low-energy nanoemulsions as a prototype of multifunctional vehicles for different administration routes: Physicochemical and in vitro peculiarities important for dermal application. in International Journal of Pharmaceutics. 2018;550(1-2):333-346.
doi:10.1016/j.ijpharm.2018.08.060 .
Nikolić, Ines, Lunter, Dominique Jasmin, Randjelović, Danijela, Žugić, Ana, Tadić, Vanja, Marković, Bojan D., Cekic, Nebojsa, Živković, Lada, Topalovic, Dijana, Spremo-Potparević, Biljana, Daniels, Rolf, Savić, Snežana D., "Curcumin-loaded low-energy nanoemulsions as a prototype of multifunctional vehicles for different administration routes: Physicochemical and in vitro peculiarities important for dermal application" in International Journal of Pharmaceutics, 550, no. 1-2 (2018):333-346,
https://doi.org/10.1016/j.ijpharm.2018.08.060 . .
30
21
28

Biocompatible Nanoemulsions for Improved Aceclofenac Skin Delivery: Formulation Approach Using Combined Mixture-Process Experimental Design

Isailovic, Tanja; Dordevic, Sanela; Marković, Bojan D.; Randjelović, Danijela; Cekic, Nebojsa; Lukić, Milica; Pantelić, Ivana; Daniels, Rolf; Savić, Snežana D.

(Wiley, Hoboken, 2016)

TY  - JOUR
AU  - Isailovic, Tanja
AU  - Dordevic, Sanela
AU  - Marković, Bojan D.
AU  - Randjelović, Danijela
AU  - Cekic, Nebojsa
AU  - Lukić, Milica
AU  - Pantelić, Ivana
AU  - Daniels, Rolf
AU  - Savić, Snežana D.
PY  - 2016
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/1846
AB  - We aimed to develop lecithin-based nanoemulsions intended for effective aceclofenac (ACF) skin delivery utilizing sucrose esters [sucrose palmitate (SP) and sucrose stearate (SS)] as additional stabilizers and penetration enhancers. To find the suitable surfactant mixtures and levels of process variables (homogenization pressure and number of cycles-high pressure homogenization manufacturing method) that result in drug-loaded nanoemulsions with minimal droplet size and narrow size distribution, a combined mixture-process experimental design was employed. Based on optimization data, selected nanoemulsions were evaluated regarding morphology, surface charge, drug-excipient interactions, physical stability, and in vivo skin performances (skin penetration and irritation potential). The predicted physicochemical properties and storage stability were proved satisfying for ACF-loaded nanoemulsions containing 2% of SP in the blend with 0%-1% of SS and 1%-2% of egg lecithin (produced at 50 degrees C/20 cycles/800 bar). Additionally, the in vivo tape stripping demonstrated superior ACF skin absorption from these nanoemulsions, particularly from those containing 2% of SP, 0.5% of SS, and 1.5% of egg lecithin, when comparing with the sample costabilized by conventional surfactant-polysorbate 80. In summary, the combined mixture-process experimental design was shown as a feasible tool for formulation development of multisurfactant-based nanosized delivery systems with potentially improved overall product performances.
PB  - Wiley, Hoboken
T2  - Journal of Pharmaceutical Sciences
T1  - Biocompatible Nanoemulsions for Improved Aceclofenac Skin Delivery: Formulation Approach Using Combined Mixture-Process Experimental Design
VL  - 105
IS  - 1
SP  - 308
EP  - 323
DO  - 10.1002/jps.24706
ER  - 
@article{
author = "Isailovic, Tanja and Dordevic, Sanela and Marković, Bojan D. and Randjelović, Danijela and Cekic, Nebojsa and Lukić, Milica and Pantelić, Ivana and Daniels, Rolf and Savić, Snežana D.",
year = "2016",
abstract = "We aimed to develop lecithin-based nanoemulsions intended for effective aceclofenac (ACF) skin delivery utilizing sucrose esters [sucrose palmitate (SP) and sucrose stearate (SS)] as additional stabilizers and penetration enhancers. To find the suitable surfactant mixtures and levels of process variables (homogenization pressure and number of cycles-high pressure homogenization manufacturing method) that result in drug-loaded nanoemulsions with minimal droplet size and narrow size distribution, a combined mixture-process experimental design was employed. Based on optimization data, selected nanoemulsions were evaluated regarding morphology, surface charge, drug-excipient interactions, physical stability, and in vivo skin performances (skin penetration and irritation potential). The predicted physicochemical properties and storage stability were proved satisfying for ACF-loaded nanoemulsions containing 2% of SP in the blend with 0%-1% of SS and 1%-2% of egg lecithin (produced at 50 degrees C/20 cycles/800 bar). Additionally, the in vivo tape stripping demonstrated superior ACF skin absorption from these nanoemulsions, particularly from those containing 2% of SP, 0.5% of SS, and 1.5% of egg lecithin, when comparing with the sample costabilized by conventional surfactant-polysorbate 80. In summary, the combined mixture-process experimental design was shown as a feasible tool for formulation development of multisurfactant-based nanosized delivery systems with potentially improved overall product performances.",
publisher = "Wiley, Hoboken",
journal = "Journal of Pharmaceutical Sciences",
title = "Biocompatible Nanoemulsions for Improved Aceclofenac Skin Delivery: Formulation Approach Using Combined Mixture-Process Experimental Design",
volume = "105",
number = "1",
pages = "308-323",
doi = "10.1002/jps.24706"
}
Isailovic, T., Dordevic, S., Marković, B. D., Randjelović, D., Cekic, N., Lukić, M., Pantelić, I., Daniels, R.,& Savić, S. D.. (2016). Biocompatible Nanoemulsions for Improved Aceclofenac Skin Delivery: Formulation Approach Using Combined Mixture-Process Experimental Design. in Journal of Pharmaceutical Sciences
Wiley, Hoboken., 105(1), 308-323.
https://doi.org/10.1002/jps.24706
Isailovic T, Dordevic S, Marković BD, Randjelović D, Cekic N, Lukić M, Pantelić I, Daniels R, Savić SD. Biocompatible Nanoemulsions for Improved Aceclofenac Skin Delivery: Formulation Approach Using Combined Mixture-Process Experimental Design. in Journal of Pharmaceutical Sciences. 2016;105(1):308-323.
doi:10.1002/jps.24706 .
Isailovic, Tanja, Dordevic, Sanela, Marković, Bojan D., Randjelović, Danijela, Cekic, Nebojsa, Lukić, Milica, Pantelić, Ivana, Daniels, Rolf, Savić, Snežana D., "Biocompatible Nanoemulsions for Improved Aceclofenac Skin Delivery: Formulation Approach Using Combined Mixture-Process Experimental Design" in Journal of Pharmaceutical Sciences, 105, no. 1 (2016):308-323,
https://doi.org/10.1002/jps.24706 . .
26
15
22

Parenteral nanoemulsions as promising carriers for brain delivery of risperidone: Design, characterization and in vivo pharmacokinetic evaluation

Dordevic, Sanela M; Cekic, Nebojsa; Savić, Miroslav M.; Isailovic, Tanja M; Randjelović, Danijela; Marković, Bojan D.; Savić, Saša R.; Stamenic, Tamara Timic; Daniels, Rolf; Savić, Snežana D.

(Elsevier, 2015)

TY  - JOUR
AU  - Dordevic, Sanela M
AU  - Cekic, Nebojsa
AU  - Savić, Miroslav M.
AU  - Isailovic, Tanja M
AU  - Randjelović, Danijela
AU  - Marković, Bojan D.
AU  - Savić, Saša R.
AU  - Stamenic, Tamara Timic
AU  - Daniels, Rolf
AU  - Savić, Snežana D.
PY  - 2015
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/1697
AB  - This paper describes design and evaluation of parenteral lecithin-based nanoemulsions intended for brain delivery of risperidone, a poorly water-soluble psychopharmacological drug. The nanoemulsions were prepared through cold/hot high pressure homogenization and characterized regarding droplet size, polydispersity, surface charge, morphology, drug-vehicle interactions, and physical stability. To estimate the simultaneous influence of nanoemulsion formulation and preparation parameters-co-emulsifier type, aqueous phase type, homogenization temperature-on the critical quality attributes of developed nanoemulsions, a general factorial experimental design was applied. From the established design space and stability data, promising risperidone-loaded nanoemulsions (mean size about 160 nm, size distribution  LT 0.15, zeta potential around -50 mV), containing sodium oleate in the aqueous phase and polysorbate 80, poloxamer 188 or Solutol (R) HS15 as co-emulsifier, were produced by hot homogenization and their ability to improve risperidone delivery to the brain was assessed in rats. Pharmacokinetic study demonstrated erratic brain profiles of risperidone following intraperitoneal administration in selected nanoemulsions, most probably due to their different droplet surface properties (different composition of the stabilizing layer). Namely, polysorbate 80-costabilized nanoemulsion showed increased (1.4-7.4-fold higher) risperidone brain availability compared to other nanoemulsions and drug solution, suggesting this nanoemulsion as a promising carrier worth exploring further for brain targeting.
PB  - Elsevier
T2  - International Journal of Pharmaceutics
T1  - Parenteral nanoemulsions as promising carriers for brain delivery of risperidone: Design, characterization and in vivo pharmacokinetic evaluation
VL  - 493
IS  - 1-2
SP  - 40
EP  - 54
DO  - 10.1016/j.ijpharm.2015.07.007
ER  - 
@article{
author = "Dordevic, Sanela M and Cekic, Nebojsa and Savić, Miroslav M. and Isailovic, Tanja M and Randjelović, Danijela and Marković, Bojan D. and Savić, Saša R. and Stamenic, Tamara Timic and Daniels, Rolf and Savić, Snežana D.",
year = "2015",
abstract = "This paper describes design and evaluation of parenteral lecithin-based nanoemulsions intended for brain delivery of risperidone, a poorly water-soluble psychopharmacological drug. The nanoemulsions were prepared through cold/hot high pressure homogenization and characterized regarding droplet size, polydispersity, surface charge, morphology, drug-vehicle interactions, and physical stability. To estimate the simultaneous influence of nanoemulsion formulation and preparation parameters-co-emulsifier type, aqueous phase type, homogenization temperature-on the critical quality attributes of developed nanoemulsions, a general factorial experimental design was applied. From the established design space and stability data, promising risperidone-loaded nanoemulsions (mean size about 160 nm, size distribution  LT 0.15, zeta potential around -50 mV), containing sodium oleate in the aqueous phase and polysorbate 80, poloxamer 188 or Solutol (R) HS15 as co-emulsifier, were produced by hot homogenization and their ability to improve risperidone delivery to the brain was assessed in rats. Pharmacokinetic study demonstrated erratic brain profiles of risperidone following intraperitoneal administration in selected nanoemulsions, most probably due to their different droplet surface properties (different composition of the stabilizing layer). Namely, polysorbate 80-costabilized nanoemulsion showed increased (1.4-7.4-fold higher) risperidone brain availability compared to other nanoemulsions and drug solution, suggesting this nanoemulsion as a promising carrier worth exploring further for brain targeting.",
publisher = "Elsevier",
journal = "International Journal of Pharmaceutics",
title = "Parenteral nanoemulsions as promising carriers for brain delivery of risperidone: Design, characterization and in vivo pharmacokinetic evaluation",
volume = "493",
number = "1-2",
pages = "40-54",
doi = "10.1016/j.ijpharm.2015.07.007"
}
Dordevic, S. M., Cekic, N., Savić, M. M., Isailovic, T. M., Randjelović, D., Marković, B. D., Savić, S. R., Stamenic, T. T., Daniels, R.,& Savić, S. D.. (2015). Parenteral nanoemulsions as promising carriers for brain delivery of risperidone: Design, characterization and in vivo pharmacokinetic evaluation. in International Journal of Pharmaceutics
Elsevier., 493(1-2), 40-54.
https://doi.org/10.1016/j.ijpharm.2015.07.007
Dordevic SM, Cekic N, Savić MM, Isailovic TM, Randjelović D, Marković BD, Savić SR, Stamenic TT, Daniels R, Savić SD. Parenteral nanoemulsions as promising carriers for brain delivery of risperidone: Design, characterization and in vivo pharmacokinetic evaluation. in International Journal of Pharmaceutics. 2015;493(1-2):40-54.
doi:10.1016/j.ijpharm.2015.07.007 .
Dordevic, Sanela M, Cekic, Nebojsa, Savić, Miroslav M., Isailovic, Tanja M, Randjelović, Danijela, Marković, Bojan D., Savić, Saša R., Stamenic, Tamara Timic, Daniels, Rolf, Savić, Snežana D., "Parenteral nanoemulsions as promising carriers for brain delivery of risperidone: Design, characterization and in vivo pharmacokinetic evaluation" in International Journal of Pharmaceutics, 493, no. 1-2 (2015):40-54,
https://doi.org/10.1016/j.ijpharm.2015.07.007 . .
69
38
69

Parenteral nanoemulsions as promising carriers for brain delivery of risperidone: Design, characterization and in vivo pharmacokinetic evaluation

Dordevic, Sanela M; Cekic, Nebojsa; Savić, Miroslav M.; Isailovic, Tanja M; Randjelović, Danijela; Marković, Bojan D.; Savić, Saša R.; Stamenic, Tamara Timic; Daniels, Rolf; Savić, Snežana D.

(Elsevier, 2015)

TY  - JOUR
AU  - Dordevic, Sanela M
AU  - Cekic, Nebojsa
AU  - Savić, Miroslav M.
AU  - Isailovic, Tanja M
AU  - Randjelović, Danijela
AU  - Marković, Bojan D.
AU  - Savić, Saša R.
AU  - Stamenic, Tamara Timic
AU  - Daniels, Rolf
AU  - Savić, Snežana D.
PY  - 2015
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3201
AB  - This paper describes design and evaluation of parenteral lecithin-based nanoemulsions intended for brain delivery of risperidone, a poorly water-soluble psychopharmacological drug. The nanoemulsions were prepared through cold/hot high pressure homogenization and characterized regarding droplet size, polydispersity, surface charge, morphology, drug-vehicle interactions, and physical stability. To estimate the simultaneous influence of nanoemulsion formulation and preparation parameters-co-emulsifier type, aqueous phase type, homogenization temperature-on the critical quality attributes of developed nanoemulsions, a general factorial experimental design was applied. From the established design space and stability data, promising risperidone-loaded nanoemulsions (mean size about 160 nm, size distribution  LT 0.15, zeta potential around -50 mV), containing sodium oleate in the aqueous phase and polysorbate 80, poloxamer 188 or Solutol (R) HS15 as co-emulsifier, were produced by hot homogenization and their ability to improve risperidone delivery to the brain was assessed in rats. Pharmacokinetic study demonstrated erratic brain profiles of risperidone following intraperitoneal administration in selected nanoemulsions, most probably due to their different droplet surface properties (different composition of the stabilizing layer). Namely, polysorbate 80-costabilized nanoemulsion showed increased (1.4-7.4-fold higher) risperidone brain availability compared to other nanoemulsions and drug solution, suggesting this nanoemulsion as a promising carrier worth exploring further for brain targeting.
PB  - Elsevier
T2  - International Journal of Pharmaceutics
T1  - Parenteral nanoemulsions as promising carriers for brain delivery of risperidone: Design, characterization and in vivo pharmacokinetic evaluation
VL  - 493
IS  - 1-2
SP  - 40
EP  - 54
DO  - 10.1016/j.ijpharm.2015.07.007
ER  - 
@article{
author = "Dordevic, Sanela M and Cekic, Nebojsa and Savić, Miroslav M. and Isailovic, Tanja M and Randjelović, Danijela and Marković, Bojan D. and Savić, Saša R. and Stamenic, Tamara Timic and Daniels, Rolf and Savić, Snežana D.",
year = "2015",
abstract = "This paper describes design and evaluation of parenteral lecithin-based nanoemulsions intended for brain delivery of risperidone, a poorly water-soluble psychopharmacological drug. The nanoemulsions were prepared through cold/hot high pressure homogenization and characterized regarding droplet size, polydispersity, surface charge, morphology, drug-vehicle interactions, and physical stability. To estimate the simultaneous influence of nanoemulsion formulation and preparation parameters-co-emulsifier type, aqueous phase type, homogenization temperature-on the critical quality attributes of developed nanoemulsions, a general factorial experimental design was applied. From the established design space and stability data, promising risperidone-loaded nanoemulsions (mean size about 160 nm, size distribution  LT 0.15, zeta potential around -50 mV), containing sodium oleate in the aqueous phase and polysorbate 80, poloxamer 188 or Solutol (R) HS15 as co-emulsifier, were produced by hot homogenization and their ability to improve risperidone delivery to the brain was assessed in rats. Pharmacokinetic study demonstrated erratic brain profiles of risperidone following intraperitoneal administration in selected nanoemulsions, most probably due to their different droplet surface properties (different composition of the stabilizing layer). Namely, polysorbate 80-costabilized nanoemulsion showed increased (1.4-7.4-fold higher) risperidone brain availability compared to other nanoemulsions and drug solution, suggesting this nanoemulsion as a promising carrier worth exploring further for brain targeting.",
publisher = "Elsevier",
journal = "International Journal of Pharmaceutics",
title = "Parenteral nanoemulsions as promising carriers for brain delivery of risperidone: Design, characterization and in vivo pharmacokinetic evaluation",
volume = "493",
number = "1-2",
pages = "40-54",
doi = "10.1016/j.ijpharm.2015.07.007"
}
Dordevic, S. M., Cekic, N., Savić, M. M., Isailovic, T. M., Randjelović, D., Marković, B. D., Savić, S. R., Stamenic, T. T., Daniels, R.,& Savić, S. D.. (2015). Parenteral nanoemulsions as promising carriers for brain delivery of risperidone: Design, characterization and in vivo pharmacokinetic evaluation. in International Journal of Pharmaceutics
Elsevier., 493(1-2), 40-54.
https://doi.org/10.1016/j.ijpharm.2015.07.007
Dordevic SM, Cekic N, Savić MM, Isailovic TM, Randjelović D, Marković BD, Savić SR, Stamenic TT, Daniels R, Savić SD. Parenteral nanoemulsions as promising carriers for brain delivery of risperidone: Design, characterization and in vivo pharmacokinetic evaluation. in International Journal of Pharmaceutics. 2015;493(1-2):40-54.
doi:10.1016/j.ijpharm.2015.07.007 .
Dordevic, Sanela M, Cekic, Nebojsa, Savić, Miroslav M., Isailovic, Tanja M, Randjelović, Danijela, Marković, Bojan D., Savić, Saša R., Stamenic, Tamara Timic, Daniels, Rolf, Savić, Snežana D., "Parenteral nanoemulsions as promising carriers for brain delivery of risperidone: Design, characterization and in vivo pharmacokinetic evaluation" in International Journal of Pharmaceutics, 493, no. 1-2 (2015):40-54,
https://doi.org/10.1016/j.ijpharm.2015.07.007 . .
69
38
68

Sucrose ester-based biocompatible microemulsions as vehicles for aceclofenac as a model drug: formulation approach using D-optimal mixture design

Todosijević, Marija; Cekic, Nebojsa; Savić, Miroslav M.; Gasperlin, Mirjana; Randjelović, Danijela; Savić, Snežana D.

(Springer, New York, 2014)

TY  - JOUR
AU  - Todosijević, Marija
AU  - Cekic, Nebojsa
AU  - Savić, Miroslav M.
AU  - Gasperlin, Mirjana
AU  - Randjelović, Danijela
AU  - Savić, Snežana D.
PY  - 2014
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/1411
AB  - We assessed the functionality of sucrose esters (sucrose laurate, myristate, palmitate, and stearate), relatively innocuous nonionic surfactants, in formulation of biocompatible microemulsions. The putative influence of surfactant structure on the extension of microemulsion region was explored through the construction of the pseudo-ternary phase diagrams for the isopropyl myristate/sucrose ester-isopropyl alcohol/water system, using the titration method and mixture experimental approach. Minor changes in surfactant tail length strongly affected the microemulsion area boundaries. D-optimal mixture design proved to be highly applicable in detecting the microemulsion regions. Examination of conductivity, rheology, and thermal behavior of the selected sucrose laurate and sucrose myristate-based microemulsions, upon dilution with water, indicated existence of percolation threshold and suggested the phase inversion from water-in-oil to oil-in-water via a bicontinuous structure. Atomic force micrographs confirmed the suggested type of microemulsions and were valuable in further exploring their inner structure. The solubilization capacity of aceclofenac as a model drug has decreased as the water volume fraction in microemulsion increased. High surfactant concentration and the measured solubility of aceclofenac in microemulsion components suggested that the interfacial film may mostly contribute to aceclofenac solubilization.
PB  - Springer, New York
T2  - Colloid and Polymer Science
T1  - Sucrose ester-based biocompatible microemulsions as vehicles for aceclofenac as a model drug: formulation approach using D-optimal mixture design
VL  - 292
IS  - 12
SP  - 3061
EP  - 3076
DO  - 10.1007/s00396-014-3351-4
ER  - 
@article{
author = "Todosijević, Marija and Cekic, Nebojsa and Savić, Miroslav M. and Gasperlin, Mirjana and Randjelović, Danijela and Savić, Snežana D.",
year = "2014",
abstract = "We assessed the functionality of sucrose esters (sucrose laurate, myristate, palmitate, and stearate), relatively innocuous nonionic surfactants, in formulation of biocompatible microemulsions. The putative influence of surfactant structure on the extension of microemulsion region was explored through the construction of the pseudo-ternary phase diagrams for the isopropyl myristate/sucrose ester-isopropyl alcohol/water system, using the titration method and mixture experimental approach. Minor changes in surfactant tail length strongly affected the microemulsion area boundaries. D-optimal mixture design proved to be highly applicable in detecting the microemulsion regions. Examination of conductivity, rheology, and thermal behavior of the selected sucrose laurate and sucrose myristate-based microemulsions, upon dilution with water, indicated existence of percolation threshold and suggested the phase inversion from water-in-oil to oil-in-water via a bicontinuous structure. Atomic force micrographs confirmed the suggested type of microemulsions and were valuable in further exploring their inner structure. The solubilization capacity of aceclofenac as a model drug has decreased as the water volume fraction in microemulsion increased. High surfactant concentration and the measured solubility of aceclofenac in microemulsion components suggested that the interfacial film may mostly contribute to aceclofenac solubilization.",
publisher = "Springer, New York",
journal = "Colloid and Polymer Science",
title = "Sucrose ester-based biocompatible microemulsions as vehicles for aceclofenac as a model drug: formulation approach using D-optimal mixture design",
volume = "292",
number = "12",
pages = "3061-3076",
doi = "10.1007/s00396-014-3351-4"
}
Todosijević, M., Cekic, N., Savić, M. M., Gasperlin, M., Randjelović, D.,& Savić, S. D.. (2014). Sucrose ester-based biocompatible microemulsions as vehicles for aceclofenac as a model drug: formulation approach using D-optimal mixture design. in Colloid and Polymer Science
Springer, New York., 292(12), 3061-3076.
https://doi.org/10.1007/s00396-014-3351-4
Todosijević M, Cekic N, Savić MM, Gasperlin M, Randjelović D, Savić SD. Sucrose ester-based biocompatible microemulsions as vehicles for aceclofenac as a model drug: formulation approach using D-optimal mixture design. in Colloid and Polymer Science. 2014;292(12):3061-3076.
doi:10.1007/s00396-014-3351-4 .
Todosijević, Marija, Cekic, Nebojsa, Savić, Miroslav M., Gasperlin, Mirjana, Randjelović, Danijela, Savić, Snežana D., "Sucrose ester-based biocompatible microemulsions as vehicles for aceclofenac as a model drug: formulation approach using D-optimal mixture design" in Colloid and Polymer Science, 292, no. 12 (2014):3061-3076,
https://doi.org/10.1007/s00396-014-3351-4 . .
23
17
19

Experimental Design in Formulation of Diazepam Nanoemulsions: Physicochemical and Pharmacokinetic Performances

Dordevic, Sanela M.; Radulovic, Tamara S.; Cekic, Nebojsa; Randjelović, Danijela; Savić, Miroslav M.; Krajisnik, Danina R.; Milic, Jela R.; Savić, Snežana D.

(Wiley-Blackwell, Hoboken, 2013)

TY  - JOUR
AU  - Dordevic, Sanela M.
AU  - Radulovic, Tamara S.
AU  - Cekic, Nebojsa
AU  - Randjelović, Danijela
AU  - Savić, Miroslav M.
AU  - Krajisnik, Danina R.
AU  - Milic, Jela R.
AU  - Savić, Snežana D.
PY  - 2013
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/1194
AB  - With the aid of experimental design, we developed and characterized nanoemulsions for parenteral drug delivery. Formulations containing a mixture of medium-chain triglycerides and soybean oil as oil phase, lecithin (soybean/egg) and polysorbate 80 as emulsifiers, and 0.1M phosphate buffer solution (pH 8) as aqueous phase were prepared by cold high-pressure homogenization. To study the effects of the oil content, lecithin type, and the presence of diazepam as a model drug and their interactions on physicochemical characteristics of nanoemulsions, a three factor two-level full factorial design was applied. The nanoemulsions were evaluated concerning droplet size and size distribution, surface charge, viscosity, morphology, drug-excipient interactions, and physical stability. The characterization revealed the small spherical droplets in the range 195-220nm with polydispersity index below 0.15 and zeta potential between -30 and -60mV. Interactions among the investigated factors, rather than factors alone, were shown to more profoundly affect nanoemulsion characteristics. In vivo pharmacokinetic study of selected diazepam nanoemulsions with different oil content (20%, 30%, and 40%, w/w) demonstrated fast and intense initial distribution into rat brain of diazepam from nanoemulsions with 20% and 30% (w/w) oil content, suggesting their applicability in urgent situations.
PB  - Wiley-Blackwell, Hoboken
T2  - Journal of Pharmaceutical Sciences
T1  - Experimental Design in Formulation of Diazepam Nanoemulsions: Physicochemical and Pharmacokinetic Performances
VL  - 102
IS  - 11
SP  - 4159
EP  - 4172
DO  - 10.1002/jps.23734
ER  - 
@article{
author = "Dordevic, Sanela M. and Radulovic, Tamara S. and Cekic, Nebojsa and Randjelović, Danijela and Savić, Miroslav M. and Krajisnik, Danina R. and Milic, Jela R. and Savić, Snežana D.",
year = "2013",
abstract = "With the aid of experimental design, we developed and characterized nanoemulsions for parenteral drug delivery. Formulations containing a mixture of medium-chain triglycerides and soybean oil as oil phase, lecithin (soybean/egg) and polysorbate 80 as emulsifiers, and 0.1M phosphate buffer solution (pH 8) as aqueous phase were prepared by cold high-pressure homogenization. To study the effects of the oil content, lecithin type, and the presence of diazepam as a model drug and their interactions on physicochemical characteristics of nanoemulsions, a three factor two-level full factorial design was applied. The nanoemulsions were evaluated concerning droplet size and size distribution, surface charge, viscosity, morphology, drug-excipient interactions, and physical stability. The characterization revealed the small spherical droplets in the range 195-220nm with polydispersity index below 0.15 and zeta potential between -30 and -60mV. Interactions among the investigated factors, rather than factors alone, were shown to more profoundly affect nanoemulsion characteristics. In vivo pharmacokinetic study of selected diazepam nanoemulsions with different oil content (20%, 30%, and 40%, w/w) demonstrated fast and intense initial distribution into rat brain of diazepam from nanoemulsions with 20% and 30% (w/w) oil content, suggesting their applicability in urgent situations.",
publisher = "Wiley-Blackwell, Hoboken",
journal = "Journal of Pharmaceutical Sciences",
title = "Experimental Design in Formulation of Diazepam Nanoemulsions: Physicochemical and Pharmacokinetic Performances",
volume = "102",
number = "11",
pages = "4159-4172",
doi = "10.1002/jps.23734"
}
Dordevic, S. M., Radulovic, T. S., Cekic, N., Randjelović, D., Savić, M. M., Krajisnik, D. R., Milic, J. R.,& Savić, S. D.. (2013). Experimental Design in Formulation of Diazepam Nanoemulsions: Physicochemical and Pharmacokinetic Performances. in Journal of Pharmaceutical Sciences
Wiley-Blackwell, Hoboken., 102(11), 4159-4172.
https://doi.org/10.1002/jps.23734
Dordevic SM, Radulovic TS, Cekic N, Randjelović D, Savić MM, Krajisnik DR, Milic JR, Savić SD. Experimental Design in Formulation of Diazepam Nanoemulsions: Physicochemical and Pharmacokinetic Performances. in Journal of Pharmaceutical Sciences. 2013;102(11):4159-4172.
doi:10.1002/jps.23734 .
Dordevic, Sanela M., Radulovic, Tamara S., Cekic, Nebojsa, Randjelović, Danijela, Savić, Miroslav M., Krajisnik, Danina R., Milic, Jela R., Savić, Snežana D., "Experimental Design in Formulation of Diazepam Nanoemulsions: Physicochemical and Pharmacokinetic Performances" in Journal of Pharmaceutical Sciences, 102, no. 11 (2013):4159-4172,
https://doi.org/10.1002/jps.23734 . .
45
31
43