Pavić, Aleksandar

Link to this page

Authority KeyName Variants
orcid::0000-0003-3233-1341
  • Pavić, Aleksandar (7)
Projects
Microbial diversity study and characterization of beneficial environmental microorganisms The synthesis of aminoquinoline-based antimalarials and botulinum neurotoxin A inhibitors
Structure-properties relationships of natural and synthetic molecules and their metal complexes Synthesis of new metal complexes and investigation of their reactions with peptides
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200042 (University of Belgrade, Institute of Molecular Genetics and Genetic Engineering) Preclinical investigation of bioactive substances
Studies of enzyme interactions with toxic and pharmacologically active molecules Rational design and synthesis of biologically active and coordination compounds and functional materials, relevant for (bio)nanotechnology
Graph theory and mathematical programming with applications in chemistry and computer science Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200026 (University of Belgrade, Institute of Chemistry, Technology and Metallurgy - IChTM)
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200135 (University of Belgrade, Faculty of Technology and Metallurgy) Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200168 (University of Belgrade, Faculty of Chemistry)
Serbian Academy of Sciences and Arts Serbian Academy of Sciences and Arts (01-2019-F128)
Serbian Academy of Sciences and Arts (01-2019-F65) Serbian Academy of Sciences and Arts (Project No. F80)
SupraMedChem"Balkans.Net SCOPES Institutional Partnership [IZ74Z0_160515]

Author's Bibliography

Unraveling the anti-virulence potential and antifungal efficacy of 5-aminotetrazoles using the zebrafish model of disseminated candidiasis

Radaković, Nataša; Nikolić, Andrea; Terzić-Jovanović, Nataša; Stojković, Pavle; Stanković, Nada; Šolaja, Bogdan; Opsenica, Igor; Pavić, Aleksandar

(Elsevier, 2022)

TY  - JOUR
AU  - Radaković, Nataša
AU  - Nikolić, Andrea
AU  - Terzić-Jovanović, Nataša
AU  - Stojković, Pavle
AU  - Stanković, Nada
AU  - Šolaja, Bogdan
AU  - Opsenica, Igor
AU  - Pavić, Aleksandar
PY  - 2022
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/5235
AB  - Candida albicans remains the main causal agent of candidiasis, the most common fungal infection with disturbingly high mortality rates worldwide. The limited diversity and efficacy of clinical antifungal drugs, exacerbated by emerging drug resistance, have resulted in the failure of current antifungal therapies. This imposes an urgent demand for the development of innovative strategies for effective eradication of candidal infections. While the existing clinical drugs display fungicidal or fungistatic activity, the strategy specifically targeting C. albicans filamentation, as the most important virulence trait, represents an attractive approach for overcoming the drawbacks related to clinical antifungals. The results acquired in this study revealed the significant potential of 5-aminotetrazoles as a new class of effective and safe anti-virulence agents. Moreover, these novel agents were active when applied both alone and in combination with clinically approved polyenes. Complete prevention of C. albicans morphogenetic yeast-to-hyphae transition was achieved at doses as low as 1.3 μM under conditions mimicking various filamentation-responsive stimuli in the human body, while no cardio- or hepatotoxicity was observed at doses as high as 200 μM. The treatment of C. albicans-infected zebrafish embryos with nystatin alone had low efficacy, while the combination of nystatin and selected 5-aminotetrazoles prevented fungal filamentation, successfully eliminating the infection and rescuing the infected embryos from lethal disseminated candidiasis. In addition, the most potent anti-virulence 5-aminotetrazole prevented C. albicans in developing the resistance to nystatin when applied in combination, keeping the fungus sensitive to the antifungal drug.
PB  - Elsevier
T2  - European Journal of Medicinal Chemistry
T1  - Unraveling the anti-virulence potential and antifungal efficacy of 5-aminotetrazoles using the zebrafish model of disseminated candidiasis
VL  - 230
SP  - 114137
DO  - 10.1016/j.ejmech.2022.114137
ER  - 
@article{
author = "Radaković, Nataša and Nikolić, Andrea and Terzić-Jovanović, Nataša and Stojković, Pavle and Stanković, Nada and Šolaja, Bogdan and Opsenica, Igor and Pavić, Aleksandar",
year = "2022",
abstract = "Candida albicans remains the main causal agent of candidiasis, the most common fungal infection with disturbingly high mortality rates worldwide. The limited diversity and efficacy of clinical antifungal drugs, exacerbated by emerging drug resistance, have resulted in the failure of current antifungal therapies. This imposes an urgent demand for the development of innovative strategies for effective eradication of candidal infections. While the existing clinical drugs display fungicidal or fungistatic activity, the strategy specifically targeting C. albicans filamentation, as the most important virulence trait, represents an attractive approach for overcoming the drawbacks related to clinical antifungals. The results acquired in this study revealed the significant potential of 5-aminotetrazoles as a new class of effective and safe anti-virulence agents. Moreover, these novel agents were active when applied both alone and in combination with clinically approved polyenes. Complete prevention of C. albicans morphogenetic yeast-to-hyphae transition was achieved at doses as low as 1.3 μM under conditions mimicking various filamentation-responsive stimuli in the human body, while no cardio- or hepatotoxicity was observed at doses as high as 200 μM. The treatment of C. albicans-infected zebrafish embryos with nystatin alone had low efficacy, while the combination of nystatin and selected 5-aminotetrazoles prevented fungal filamentation, successfully eliminating the infection and rescuing the infected embryos from lethal disseminated candidiasis. In addition, the most potent anti-virulence 5-aminotetrazole prevented C. albicans in developing the resistance to nystatin when applied in combination, keeping the fungus sensitive to the antifungal drug.",
publisher = "Elsevier",
journal = "European Journal of Medicinal Chemistry",
title = "Unraveling the anti-virulence potential and antifungal efficacy of 5-aminotetrazoles using the zebrafish model of disseminated candidiasis",
volume = "230",
pages = "114137",
doi = "10.1016/j.ejmech.2022.114137"
}
Radaković, N., Nikolić, A., Terzić-Jovanović, N., Stojković, P., Stanković, N., Šolaja, B., Opsenica, I.,& Pavić, A.. (2022). Unraveling the anti-virulence potential and antifungal efficacy of 5-aminotetrazoles using the zebrafish model of disseminated candidiasis. in European Journal of Medicinal Chemistry
Elsevier., 230, 114137.
https://doi.org/10.1016/j.ejmech.2022.114137
Radaković N, Nikolić A, Terzić-Jovanović N, Stojković P, Stanković N, Šolaja B, Opsenica I, Pavić A. Unraveling the anti-virulence potential and antifungal efficacy of 5-aminotetrazoles using the zebrafish model of disseminated candidiasis. in European Journal of Medicinal Chemistry. 2022;230:114137.
doi:10.1016/j.ejmech.2022.114137 .
Radaković, Nataša, Nikolić, Andrea, Terzić-Jovanović, Nataša, Stojković, Pavle, Stanković, Nada, Šolaja, Bogdan, Opsenica, Igor, Pavić, Aleksandar, "Unraveling the anti-virulence potential and antifungal efficacy of 5-aminotetrazoles using the zebrafish model of disseminated candidiasis" in European Journal of Medicinal Chemistry, 230 (2022):114137,
https://doi.org/10.1016/j.ejmech.2022.114137 . .
2
4
4

Hydrolytic degradation of star-shaped poly(ε-caprolactone)s with different number of arms and their cytotoxic effects

Ponjavić, Marijana; Nikolić, Marija S.; Stevanović, Sanja; Nikodinović-Runić, Jasmina; Jeremić, Sanja; Pavić, Aleksandar; Đongalić, Jasna

(SAGE Publications, 2020)

TY  - JOUR
AU  - Ponjavić, Marijana
AU  - Nikolić, Marija S.
AU  - Stevanović, Sanja
AU  - Nikodinović-Runić, Jasmina
AU  - Jeremić, Sanja
AU  - Pavić, Aleksandar
AU  - Đongalić, Jasna
PY  - 2020
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/4019
AB  - Star-shaped polymers of biodegradable aliphatic polyester, poly(ε-caprolactone), PCL, with different number of arms (three, four, and six) were synthesized by ring-opening polymerization initiated by multifunctional alcohols used as cores. As potential biomaterials, synthesized star-shaped poly(ε-caprolactone)s, sPCL, were thoroughly characterized in terms of their degradation under different pH conditions and in respect to their cytotoxicity. The in vitro degradation was performed in phosphate buffer (pH 7.4) and hydrochloric acid solution (pH 1.0) over 5 weeks. Degradation of sPCL films was followed by the weight loss measurements, GPC, FTIR, and AFM analysis. While the most of the samples were stable against the abiotic hydrolysis at pH 7.4 after 5 weeks of degradation, degradation was significantly accelerated in the acidic medium. Degradation rate of polymer films was affected by the polymer architecture and molecular weight. The molecular weight profiles during the degradation revealed random chain scission of the ester bonds indicating bulk degradation mechanism of hydrolysis at pH 7.4, while acidic hydrolysis proceeded through the bulk degradation associated with surface erosion, confirmed by AFM. The in vitro toxicity tests, cytotoxicity applying normal human fibroblasts (MRC5) and embryotoxicity assessment (using zebra fish model, Danio rerio), suggested those polymeric materials as suitable for biomedical application.
PB  - SAGE Publications
T2  - Journal of Bioactive and Compatible Polymers
T1  - Hydrolytic degradation of star-shaped poly(ε-caprolactone)s with different number of arms and their cytotoxic effects
VL  - 35
IS  - 6
SP  - 517
EP  - 537
DO  - 10.1177/0883911520951826
ER  - 
@article{
author = "Ponjavić, Marijana and Nikolić, Marija S. and Stevanović, Sanja and Nikodinović-Runić, Jasmina and Jeremić, Sanja and Pavić, Aleksandar and Đongalić, Jasna",
year = "2020",
abstract = "Star-shaped polymers of biodegradable aliphatic polyester, poly(ε-caprolactone), PCL, with different number of arms (three, four, and six) were synthesized by ring-opening polymerization initiated by multifunctional alcohols used as cores. As potential biomaterials, synthesized star-shaped poly(ε-caprolactone)s, sPCL, were thoroughly characterized in terms of their degradation under different pH conditions and in respect to their cytotoxicity. The in vitro degradation was performed in phosphate buffer (pH 7.4) and hydrochloric acid solution (pH 1.0) over 5 weeks. Degradation of sPCL films was followed by the weight loss measurements, GPC, FTIR, and AFM analysis. While the most of the samples were stable against the abiotic hydrolysis at pH 7.4 after 5 weeks of degradation, degradation was significantly accelerated in the acidic medium. Degradation rate of polymer films was affected by the polymer architecture and molecular weight. The molecular weight profiles during the degradation revealed random chain scission of the ester bonds indicating bulk degradation mechanism of hydrolysis at pH 7.4, while acidic hydrolysis proceeded through the bulk degradation associated with surface erosion, confirmed by AFM. The in vitro toxicity tests, cytotoxicity applying normal human fibroblasts (MRC5) and embryotoxicity assessment (using zebra fish model, Danio rerio), suggested those polymeric materials as suitable for biomedical application.",
publisher = "SAGE Publications",
journal = "Journal of Bioactive and Compatible Polymers",
title = "Hydrolytic degradation of star-shaped poly(ε-caprolactone)s with different number of arms and their cytotoxic effects",
volume = "35",
number = "6",
pages = "517-537",
doi = "10.1177/0883911520951826"
}
Ponjavić, M., Nikolić, M. S., Stevanović, S., Nikodinović-Runić, J., Jeremić, S., Pavić, A.,& Đongalić, J.. (2020). Hydrolytic degradation of star-shaped poly(ε-caprolactone)s with different number of arms and their cytotoxic effects. in Journal of Bioactive and Compatible Polymers
SAGE Publications., 35(6), 517-537.
https://doi.org/10.1177/0883911520951826
Ponjavić M, Nikolić MS, Stevanović S, Nikodinović-Runić J, Jeremić S, Pavić A, Đongalić J. Hydrolytic degradation of star-shaped poly(ε-caprolactone)s with different number of arms and their cytotoxic effects. in Journal of Bioactive and Compatible Polymers. 2020;35(6):517-537.
doi:10.1177/0883911520951826 .
Ponjavić, Marijana, Nikolić, Marija S., Stevanović, Sanja, Nikodinović-Runić, Jasmina, Jeremić, Sanja, Pavić, Aleksandar, Đongalić, Jasna, "Hydrolytic degradation of star-shaped poly(ε-caprolactone)s with different number of arms and their cytotoxic effects" in Journal of Bioactive and Compatible Polymers, 35, no. 6 (2020):517-537,
https://doi.org/10.1177/0883911520951826 . .
6
1
5

New minor groove covering DNA binding mode of dinuclear Pt(II) complexes with various pyridine-linked bridging ligands and dual anticancer-antiangiogenic activities

Franich, Andjela; Živković, Marija D.; Ilić-Tomić, Tatjana; Đorđević, Ivana; Nikodinović-Runić, Jasmina; Pavić, Aleksandar; Janjić, Goran; Rajković, Snežana

(Springer, 2020)

TY  - JOUR
AU  - Franich, Andjela
AU  - Živković, Marija D.
AU  - Ilić-Tomić, Tatjana
AU  - Đorđević, Ivana
AU  - Nikodinović-Runić, Jasmina
AU  - Pavić, Aleksandar
AU  - Janjić, Goran
AU  - Rajković, Snežana
PY  - 2020
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3883
AB  - New anticancer platinum(II) compounds simultaneously targeting tumor cells and tumor-derived neoangiogenesis, with new DNA interacting mode and large therapeutic window are appealing alternative to improve efficacy of clinical platinum chemotherapeutics. Herein, we describe three novel dinuclear [{Pt(en)Cl}2(μ-L)]2+ complexes with different pyridine-like bridging ligands (L), 4,4′-bipyridine (Pt1), 1,2-bis(4-pyridyl)ethane (Pt2) and 1,2-bis(4-pyridyl)ethene (Pt3), which highly, positively charged aqua derivatives, [{Pt(en)(H2O)}2(μ-L)]4+, interact with the phosphate backbone forming DNA-Pt adducts with an unique and previously undescribed binding mode, called a minor groove covering. The results of this study suggested that the new binding mode of the aqua-Pt(II) complexes with DNA could be attributed to the higher anticancer activities of their chloride analogues. All three compounds, particularly complex [{Pt(en)Cl}2(μ-4,4′-bipy)]Cl2·2H2O (4,4′-bipy is 4,4′-bipyridine) (Pt1), overcame cisplatin resistance in vivo in the zebrafish–mouse melanoma xenograft model, showed much higher therapeutic potential than antiangiogenic drug sunitinib malate, while effectively blocking tumor neovascularization and melanoma cell metastasis. Overall therapeutic profile showed new dinuclear Pt(II) complexes could be novel, effective and safe anticancer agents. Finally, the correlation with the structural characteristics of these complexes can serve as a useful tool for developing new and more effective anticancer drugs.
PB  - Springer
T2  - Journal of Biological Inorganic Chemistry
T1  - New minor groove covering DNA binding mode of dinuclear Pt(II) complexes with various pyridine-linked bridging ligands and dual anticancer-antiangiogenic activities
VL  - 409
IS  - 25
SP  - 395
EP  - 409
DO  - 10.1007/s00775-020-01770-7
ER  - 
@article{
author = "Franich, Andjela and Živković, Marija D. and Ilić-Tomić, Tatjana and Đorđević, Ivana and Nikodinović-Runić, Jasmina and Pavić, Aleksandar and Janjić, Goran and Rajković, Snežana",
year = "2020",
abstract = "New anticancer platinum(II) compounds simultaneously targeting tumor cells and tumor-derived neoangiogenesis, with new DNA interacting mode and large therapeutic window are appealing alternative to improve efficacy of clinical platinum chemotherapeutics. Herein, we describe three novel dinuclear [{Pt(en)Cl}2(μ-L)]2+ complexes with different pyridine-like bridging ligands (L), 4,4′-bipyridine (Pt1), 1,2-bis(4-pyridyl)ethane (Pt2) and 1,2-bis(4-pyridyl)ethene (Pt3), which highly, positively charged aqua derivatives, [{Pt(en)(H2O)}2(μ-L)]4+, interact with the phosphate backbone forming DNA-Pt adducts with an unique and previously undescribed binding mode, called a minor groove covering. The results of this study suggested that the new binding mode of the aqua-Pt(II) complexes with DNA could be attributed to the higher anticancer activities of their chloride analogues. All three compounds, particularly complex [{Pt(en)Cl}2(μ-4,4′-bipy)]Cl2·2H2O (4,4′-bipy is 4,4′-bipyridine) (Pt1), overcame cisplatin resistance in vivo in the zebrafish–mouse melanoma xenograft model, showed much higher therapeutic potential than antiangiogenic drug sunitinib malate, while effectively blocking tumor neovascularization and melanoma cell metastasis. Overall therapeutic profile showed new dinuclear Pt(II) complexes could be novel, effective and safe anticancer agents. Finally, the correlation with the structural characteristics of these complexes can serve as a useful tool for developing new and more effective anticancer drugs.",
publisher = "Springer",
journal = "Journal of Biological Inorganic Chemistry",
title = "New minor groove covering DNA binding mode of dinuclear Pt(II) complexes with various pyridine-linked bridging ligands and dual anticancer-antiangiogenic activities",
volume = "409",
number = "25",
pages = "395-409",
doi = "10.1007/s00775-020-01770-7"
}
Franich, A., Živković, M. D., Ilić-Tomić, T., Đorđević, I., Nikodinović-Runić, J., Pavić, A., Janjić, G.,& Rajković, S.. (2020). New minor groove covering DNA binding mode of dinuclear Pt(II) complexes with various pyridine-linked bridging ligands and dual anticancer-antiangiogenic activities. in Journal of Biological Inorganic Chemistry
Springer., 409(25), 395-409.
https://doi.org/10.1007/s00775-020-01770-7
Franich A, Živković MD, Ilić-Tomić T, Đorđević I, Nikodinović-Runić J, Pavić A, Janjić G, Rajković S. New minor groove covering DNA binding mode of dinuclear Pt(II) complexes with various pyridine-linked bridging ligands and dual anticancer-antiangiogenic activities. in Journal of Biological Inorganic Chemistry. 2020;409(25):395-409.
doi:10.1007/s00775-020-01770-7 .
Franich, Andjela, Živković, Marija D., Ilić-Tomić, Tatjana, Đorđević, Ivana, Nikodinović-Runić, Jasmina, Pavić, Aleksandar, Janjić, Goran, Rajković, Snežana, "New minor groove covering DNA binding mode of dinuclear Pt(II) complexes with various pyridine-linked bridging ligands and dual anticancer-antiangiogenic activities" in Journal of Biological Inorganic Chemistry, 409, no. 25 (2020):395-409,
https://doi.org/10.1007/s00775-020-01770-7 . .
20
9
20

Anti-quorum sensing activity, toxicity in zebrafish (Danio rerio) embryos and phytochemical characterization of Trapa natans leaf extracts

Aleksić, Ivana; Ristivojević, Petar; Pavić, Aleksandar; Radojević, Ivana; Čomić, Ljiljana R.; Vasiljević, Branka; Opsenica, Dejan; Milojković-Opsenica, Dušanka; Šenerović, Lidija

(Elsevier Ireland Ltd, Clare, 2018)

TY  - JOUR
AU  - Aleksić, Ivana
AU  - Ristivojević, Petar
AU  - Pavić, Aleksandar
AU  - Radojević, Ivana
AU  - Čomić, Ljiljana R.
AU  - Vasiljević, Branka
AU  - Opsenica, Dejan
AU  - Milojković-Opsenica, Dušanka
AU  - Šenerović, Lidija
PY  - 2018
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/2932
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3139
AB  - Ethnopharmacological relevance: Trapa natans L. (water chestnut or water caltrop) is a widespread aquatic plant, which has been cultivated for food and traditional medicine since ancient times. Pharmacological studies showed that water chestnut exhibits the wide range of biological activities, such as antimicrobial, antioxidative, analgesic, anti-inflammatory, as well as antiulcer. Aim of the study: Evaluation of anti-virulence potential and toxicity of T. natans methanol (TnM), acetone (TnA) and ethyl acetate (TnEA) leaf extracts. Materials and methods: The anti-quorum sensing activity of Tn extracts was addressed by measuring their effects on biofilm formation, swarming motility and pyocyanin and elastase production in Pseudomonas aeruginosa. Specific P. aeruginosa biosensors were used to identify which of the signaling pathways were affected. The lethal and developmental toxicity of extracts were addressed in vivo using the zebrafish (Danio rerio) model system. The phenolic composition of T. natans leafs extracts was analyzed by a linear ion trap-OrbiTrap hybrid mass spectrometer (LTQ OrbiTrapMS) and UHPLC system configured with a diode array detector (DAD) hyphenated with the triple quadrupole mass spectrometer. Results: Subinhibitory concentrations of Tn leaf extracts (0.2 MIC) inhibited pyocyanin and elastase production up to 50% and 60%, respectively, and reduced swarming zones, comparing to non-treated P. aeruginosa. TnA inhibited biofilm formation by 15%, TnM showed a stimulatory effect on biofilm formation up to 20%, while TnEA showed no effect. The bioactive concentrations of TnM and TnA were not toxic in the zebrafish model system. Twenty-two phenolic compounds were tentatively identified in TnM, where thirteen of them were identified in T. natans for the first time. Tn extracts, as well as their major components, ellagic and ferulic acids, demonstrated the ability to interfere with P. aeruginosa Las and PQS signaling pathways. Conclusions: This study demonstrates anti-virulence potential of Tn leaf extracts against medically important pathogen P. aeruginosa and confirms the ethnopharmacological application of this plant against microbial infections.
PB  - Elsevier Ireland Ltd, Clare
T2  - Journal of Ethnopharmacology
T1  - Anti-quorum sensing activity, toxicity in zebrafish (Danio rerio) embryos and phytochemical characterization of Trapa natans leaf extracts
VL  - 222
SP  - 148
EP  - 158
DO  - 10.1016/j.jep.2018.05.005
ER  - 
@article{
author = "Aleksić, Ivana and Ristivojević, Petar and Pavić, Aleksandar and Radojević, Ivana and Čomić, Ljiljana R. and Vasiljević, Branka and Opsenica, Dejan and Milojković-Opsenica, Dušanka and Šenerović, Lidija",
year = "2018",
abstract = "Ethnopharmacological relevance: Trapa natans L. (water chestnut or water caltrop) is a widespread aquatic plant, which has been cultivated for food and traditional medicine since ancient times. Pharmacological studies showed that water chestnut exhibits the wide range of biological activities, such as antimicrobial, antioxidative, analgesic, anti-inflammatory, as well as antiulcer. Aim of the study: Evaluation of anti-virulence potential and toxicity of T. natans methanol (TnM), acetone (TnA) and ethyl acetate (TnEA) leaf extracts. Materials and methods: The anti-quorum sensing activity of Tn extracts was addressed by measuring their effects on biofilm formation, swarming motility and pyocyanin and elastase production in Pseudomonas aeruginosa. Specific P. aeruginosa biosensors were used to identify which of the signaling pathways were affected. The lethal and developmental toxicity of extracts were addressed in vivo using the zebrafish (Danio rerio) model system. The phenolic composition of T. natans leafs extracts was analyzed by a linear ion trap-OrbiTrap hybrid mass spectrometer (LTQ OrbiTrapMS) and UHPLC system configured with a diode array detector (DAD) hyphenated with the triple quadrupole mass spectrometer. Results: Subinhibitory concentrations of Tn leaf extracts (0.2 MIC) inhibited pyocyanin and elastase production up to 50% and 60%, respectively, and reduced swarming zones, comparing to non-treated P. aeruginosa. TnA inhibited biofilm formation by 15%, TnM showed a stimulatory effect on biofilm formation up to 20%, while TnEA showed no effect. The bioactive concentrations of TnM and TnA were not toxic in the zebrafish model system. Twenty-two phenolic compounds were tentatively identified in TnM, where thirteen of them were identified in T. natans for the first time. Tn extracts, as well as their major components, ellagic and ferulic acids, demonstrated the ability to interfere with P. aeruginosa Las and PQS signaling pathways. Conclusions: This study demonstrates anti-virulence potential of Tn leaf extracts against medically important pathogen P. aeruginosa and confirms the ethnopharmacological application of this plant against microbial infections.",
publisher = "Elsevier Ireland Ltd, Clare",
journal = "Journal of Ethnopharmacology",
title = "Anti-quorum sensing activity, toxicity in zebrafish (Danio rerio) embryos and phytochemical characterization of Trapa natans leaf extracts",
volume = "222",
pages = "148-158",
doi = "10.1016/j.jep.2018.05.005"
}
Aleksić, I., Ristivojević, P., Pavić, A., Radojević, I., Čomić, L. R., Vasiljević, B., Opsenica, D., Milojković-Opsenica, D.,& Šenerović, L.. (2018). Anti-quorum sensing activity, toxicity in zebrafish (Danio rerio) embryos and phytochemical characterization of Trapa natans leaf extracts. in Journal of Ethnopharmacology
Elsevier Ireland Ltd, Clare., 222, 148-158.
https://doi.org/10.1016/j.jep.2018.05.005
Aleksić I, Ristivojević P, Pavić A, Radojević I, Čomić LR, Vasiljević B, Opsenica D, Milojković-Opsenica D, Šenerović L. Anti-quorum sensing activity, toxicity in zebrafish (Danio rerio) embryos and phytochemical characterization of Trapa natans leaf extracts. in Journal of Ethnopharmacology. 2018;222:148-158.
doi:10.1016/j.jep.2018.05.005 .
Aleksić, Ivana, Ristivojević, Petar, Pavić, Aleksandar, Radojević, Ivana, Čomić, Ljiljana R., Vasiljević, Branka, Opsenica, Dejan, Milojković-Opsenica, Dušanka, Šenerović, Lidija, "Anti-quorum sensing activity, toxicity in zebrafish (Danio rerio) embryos and phytochemical characterization of Trapa natans leaf extracts" in Journal of Ethnopharmacology, 222 (2018):148-158,
https://doi.org/10.1016/j.jep.2018.05.005 . .
1
16
7
14

Anti-quorum sensing activity, toxicity in zebrafish (Danio rerio) embryos and phytochemical characterization of Trapa natans leaf extracts

Aleksić, Ivana; Ristivojevic, Petar; Pavić, Aleksandar; Radojevic, Ivana; Čomić, Ljiljana R.; Vasiljevic, Branka; Opsenica, Dejan; Milojković-Opsenica, Dušanka; Senerovic, Lidija

(Elsevier Ireland Ltd, Clare, 2018)

TY  - JOUR
AU  - Aleksić, Ivana
AU  - Ristivojevic, Petar
AU  - Pavić, Aleksandar
AU  - Radojevic, Ivana
AU  - Čomić, Ljiljana R.
AU  - Vasiljevic, Branka
AU  - Opsenica, Dejan
AU  - Milojković-Opsenica, Dušanka
AU  - Senerovic, Lidija
PY  - 2018
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/2310
AB  - Ethnopharmacological relevance: Trapa natans L. (water chestnut or water caltrop) is a widespread aquatic plant, which has been cultivated for food and traditional medicine since ancient times. Pharmacological studies showed that water chestnut exhibits the wide range of biological activities, such as antimicrobial, antioxidative, analgesic, anti-inflammatory, as well as antiulcer. Aim of the study: Evaluation of anti-virulence potential and toxicity of T. natans methanol (TnM), acetone (TnA) and ethyl acetate (TnEA) leaf extracts. Materials and methods: The anti-quorum sensing activity of Tn extracts was addressed by measuring their effects on biofilm formation, swarming motility and pyocyanin and elastase production in Pseudomonas aeruginosa. Specific P. aeruginosa biosensors were used to identify which of the signaling pathways were affected. The lethal and developmental toxicity of extracts were addressed in vivo using the zebrafish (Danio rerio) model system. The phenolic composition of T. natans leafs extracts was analyzed by a linear ion trap-OrbiTrap hybrid mass spectrometer (LTQ OrbiTrapMS) and UHPLC system configured with a diode array detector (DAD) hyphenated with the triple quadrupole mass spectrometer. Results: Subinhibitory concentrations of Tn leaf extracts (0.2 MIC) inhibited pyocyanin and elastase production up to 50% and 60%, respectively, and reduced swarming zones, comparing to non-treated P. aeruginosa. TnA inhibited biofilm formation by 15%, TnM showed a stimulatory effect on biofilm formation up to 20%, while TnEA showed no effect. The bioactive concentrations of TnM and TnA were not toxic in the zebrafish model system. Twenty-two phenolic compounds were tentatively identified in TnM, where thirteen of them were identified in T. natans for the first time. Tn extracts, as well as their major components, ellagic and ferulic acids, demonstrated the ability to interfere with P. aeruginosa Las and PQS signaling pathways. Conclusions: This study demonstrates anti-virulence potential of Tn leaf extracts against medically important pathogen P. aeruginosa and confirms the ethnopharmacological application of this plant against microbial infections.
PB  - Elsevier Ireland Ltd, Clare
T2  - Journal of Ethnopharmacology
T1  - Anti-quorum sensing activity, toxicity in zebrafish (Danio rerio) embryos and phytochemical characterization of Trapa natans leaf extracts
VL  - 222
SP  - 148
EP  - 158
DO  - 10.1016/j.jep.2018.05.005
ER  - 
@article{
author = "Aleksić, Ivana and Ristivojevic, Petar and Pavić, Aleksandar and Radojevic, Ivana and Čomić, Ljiljana R. and Vasiljevic, Branka and Opsenica, Dejan and Milojković-Opsenica, Dušanka and Senerovic, Lidija",
year = "2018",
abstract = "Ethnopharmacological relevance: Trapa natans L. (water chestnut or water caltrop) is a widespread aquatic plant, which has been cultivated for food and traditional medicine since ancient times. Pharmacological studies showed that water chestnut exhibits the wide range of biological activities, such as antimicrobial, antioxidative, analgesic, anti-inflammatory, as well as antiulcer. Aim of the study: Evaluation of anti-virulence potential and toxicity of T. natans methanol (TnM), acetone (TnA) and ethyl acetate (TnEA) leaf extracts. Materials and methods: The anti-quorum sensing activity of Tn extracts was addressed by measuring their effects on biofilm formation, swarming motility and pyocyanin and elastase production in Pseudomonas aeruginosa. Specific P. aeruginosa biosensors were used to identify which of the signaling pathways were affected. The lethal and developmental toxicity of extracts were addressed in vivo using the zebrafish (Danio rerio) model system. The phenolic composition of T. natans leafs extracts was analyzed by a linear ion trap-OrbiTrap hybrid mass spectrometer (LTQ OrbiTrapMS) and UHPLC system configured with a diode array detector (DAD) hyphenated with the triple quadrupole mass spectrometer. Results: Subinhibitory concentrations of Tn leaf extracts (0.2 MIC) inhibited pyocyanin and elastase production up to 50% and 60%, respectively, and reduced swarming zones, comparing to non-treated P. aeruginosa. TnA inhibited biofilm formation by 15%, TnM showed a stimulatory effect on biofilm formation up to 20%, while TnEA showed no effect. The bioactive concentrations of TnM and TnA were not toxic in the zebrafish model system. Twenty-two phenolic compounds were tentatively identified in TnM, where thirteen of them were identified in T. natans for the first time. Tn extracts, as well as their major components, ellagic and ferulic acids, demonstrated the ability to interfere with P. aeruginosa Las and PQS signaling pathways. Conclusions: This study demonstrates anti-virulence potential of Tn leaf extracts against medically important pathogen P. aeruginosa and confirms the ethnopharmacological application of this plant against microbial infections.",
publisher = "Elsevier Ireland Ltd, Clare",
journal = "Journal of Ethnopharmacology",
title = "Anti-quorum sensing activity, toxicity in zebrafish (Danio rerio) embryos and phytochemical characterization of Trapa natans leaf extracts",
volume = "222",
pages = "148-158",
doi = "10.1016/j.jep.2018.05.005"
}
Aleksić, I., Ristivojevic, P., Pavić, A., Radojevic, I., Čomić, L. R., Vasiljevic, B., Opsenica, D., Milojković-Opsenica, D.,& Senerovic, L.. (2018). Anti-quorum sensing activity, toxicity in zebrafish (Danio rerio) embryos and phytochemical characterization of Trapa natans leaf extracts. in Journal of Ethnopharmacology
Elsevier Ireland Ltd, Clare., 222, 148-158.
https://doi.org/10.1016/j.jep.2018.05.005
Aleksić I, Ristivojevic P, Pavić A, Radojevic I, Čomić LR, Vasiljevic B, Opsenica D, Milojković-Opsenica D, Senerovic L. Anti-quorum sensing activity, toxicity in zebrafish (Danio rerio) embryos and phytochemical characterization of Trapa natans leaf extracts. in Journal of Ethnopharmacology. 2018;222:148-158.
doi:10.1016/j.jep.2018.05.005 .
Aleksić, Ivana, Ristivojevic, Petar, Pavić, Aleksandar, Radojevic, Ivana, Čomić, Ljiljana R., Vasiljevic, Branka, Opsenica, Dejan, Milojković-Opsenica, Dušanka, Senerovic, Lidija, "Anti-quorum sensing activity, toxicity in zebrafish (Danio rerio) embryos and phytochemical characterization of Trapa natans leaf extracts" in Journal of Ethnopharmacology, 222 (2018):148-158,
https://doi.org/10.1016/j.jep.2018.05.005 . .
1
16
7
14

Mononuclear gold(III) complexes with phenanthroline ligands as efficient inhibitors of angiogenesis: A comparative study with auranofin and sunitinib

Pavić, Aleksandar; Glišić, Biljana; Vojnovic, Sandra; Warzajtis, Beata; Savic, Nada D.; Antic, Marija; Radenković, Slavko; Janjić, Goran; Nikodinović-Runić, Jasmina; Rychlewska, Urszula; Đuran, Miloš

(Elsevier Science Inc, New York, 2017)

TY  - JOUR
AU  - Pavić, Aleksandar
AU  - Glišić, Biljana
AU  - Vojnovic, Sandra
AU  - Warzajtis, Beata
AU  - Savic, Nada D.
AU  - Antic, Marija
AU  - Radenković, Slavko
AU  - Janjić, Goran
AU  - Nikodinović-Runić, Jasmina
AU  - Rychlewska, Urszula
AU  - Đuran, Miloš
PY  - 2017
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/2939
AB  - Gold(III) complexes with 1,7- and 4,7-phenanthroline ligands, [AuCl3(1,7-phen-kappa N7)] (1) and [AuCl3(4,7-phen-kappa N4)] (2) were synthesized and structurally characterized by spectroscopic (NMR, IR and UV-vis) and single crystal X-ray diffraction techniques. In these complexes, 1,7- and 4,7-phenanthrolines are monodentatedly coordinated to the Au(III) ion through the N7 and N4 nitrogen atoms, respectively. In comparison to the clinically relevant anti-angiogenic compounds auranofin and sunitinib, gold(III)-phenanthroline complexes showed from 1.5- to 20-fold higher anti-angiogenic potential, and 13- and 118-fold lower toxicity. Among the tested compounds, complex 1 was the most potent and may be an excellent anti-angiogenic drug candidate, since it showed strong anti-angiogenic activity in zebrafish embryos achieving IC50 value (concentration resulting in an anti-angiogenic phenotype at 50% of embryos) of 2.89 mu M, while had low toxicity with LC50 value (the concentration inducing the lethal effect of 50% embryos) of 128 mu M. Molecular docking study revealed that both complexes and ligands could suppress angiogenesis targeting the multiple major regulators of angiogenesis, such as the vascular endothelial growth factor receptor (VEGFR-2), the matrix metalloproteases (MMP-2 and MMP-9), and thioredoxin reductase (TrxR1), where the complexes showed higher binding affinity in comparison to ligands, and particularly to auranofin, but comparable to sunitinib, an anti-angiogenic drug of clinical relevance.
PB  - Elsevier Science Inc, New York
T2  - Journal of Inorganic Biochemistry
T1  - Mononuclear gold(III) complexes with phenanthroline ligands as efficient inhibitors of angiogenesis: A comparative study with auranofin and sunitinib
VL  - 174
SP  - 156
EP  - 168
DO  - 10.1016/j.jinorgbio.2017.06.009
ER  - 
@article{
author = "Pavić, Aleksandar and Glišić, Biljana and Vojnovic, Sandra and Warzajtis, Beata and Savic, Nada D. and Antic, Marija and Radenković, Slavko and Janjić, Goran and Nikodinović-Runić, Jasmina and Rychlewska, Urszula and Đuran, Miloš",
year = "2017",
abstract = "Gold(III) complexes with 1,7- and 4,7-phenanthroline ligands, [AuCl3(1,7-phen-kappa N7)] (1) and [AuCl3(4,7-phen-kappa N4)] (2) were synthesized and structurally characterized by spectroscopic (NMR, IR and UV-vis) and single crystal X-ray diffraction techniques. In these complexes, 1,7- and 4,7-phenanthrolines are monodentatedly coordinated to the Au(III) ion through the N7 and N4 nitrogen atoms, respectively. In comparison to the clinically relevant anti-angiogenic compounds auranofin and sunitinib, gold(III)-phenanthroline complexes showed from 1.5- to 20-fold higher anti-angiogenic potential, and 13- and 118-fold lower toxicity. Among the tested compounds, complex 1 was the most potent and may be an excellent anti-angiogenic drug candidate, since it showed strong anti-angiogenic activity in zebrafish embryos achieving IC50 value (concentration resulting in an anti-angiogenic phenotype at 50% of embryos) of 2.89 mu M, while had low toxicity with LC50 value (the concentration inducing the lethal effect of 50% embryos) of 128 mu M. Molecular docking study revealed that both complexes and ligands could suppress angiogenesis targeting the multiple major regulators of angiogenesis, such as the vascular endothelial growth factor receptor (VEGFR-2), the matrix metalloproteases (MMP-2 and MMP-9), and thioredoxin reductase (TrxR1), where the complexes showed higher binding affinity in comparison to ligands, and particularly to auranofin, but comparable to sunitinib, an anti-angiogenic drug of clinical relevance.",
publisher = "Elsevier Science Inc, New York",
journal = "Journal of Inorganic Biochemistry",
title = "Mononuclear gold(III) complexes with phenanthroline ligands as efficient inhibitors of angiogenesis: A comparative study with auranofin and sunitinib",
volume = "174",
pages = "156-168",
doi = "10.1016/j.jinorgbio.2017.06.009"
}
Pavić, A., Glišić, B., Vojnovic, S., Warzajtis, B., Savic, N. D., Antic, M., Radenković, S., Janjić, G., Nikodinović-Runić, J., Rychlewska, U.,& Đuran, M.. (2017). Mononuclear gold(III) complexes with phenanthroline ligands as efficient inhibitors of angiogenesis: A comparative study with auranofin and sunitinib. in Journal of Inorganic Biochemistry
Elsevier Science Inc, New York., 174, 156-168.
https://doi.org/10.1016/j.jinorgbio.2017.06.009
Pavić A, Glišić B, Vojnovic S, Warzajtis B, Savic ND, Antic M, Radenković S, Janjić G, Nikodinović-Runić J, Rychlewska U, Đuran M. Mononuclear gold(III) complexes with phenanthroline ligands as efficient inhibitors of angiogenesis: A comparative study with auranofin and sunitinib. in Journal of Inorganic Biochemistry. 2017;174:156-168.
doi:10.1016/j.jinorgbio.2017.06.009 .
Pavić, Aleksandar, Glišić, Biljana, Vojnovic, Sandra, Warzajtis, Beata, Savic, Nada D., Antic, Marija, Radenković, Slavko, Janjić, Goran, Nikodinović-Runić, Jasmina, Rychlewska, Urszula, Đuran, Miloš, "Mononuclear gold(III) complexes with phenanthroline ligands as efficient inhibitors of angiogenesis: A comparative study with auranofin and sunitinib" in Journal of Inorganic Biochemistry, 174 (2017):156-168,
https://doi.org/10.1016/j.jinorgbio.2017.06.009 . .
22
20
24

Synthesis and anti-Candida activity of novel benzothiepino[3,2-c]pyridine derivatives

Bozinovic, Nina; Šegan, Sandra; Vojnovic, Sandra; Pavić, Aleksandar; Šolaja, Bogdan; Nikodinović-Runić, Jasmina; Opsenica, Igor

(Wiley, Hoboken, 2016)

TY  - JOUR
AU  - Bozinovic, Nina
AU  - Šegan, Sandra
AU  - Vojnovic, Sandra
AU  - Pavić, Aleksandar
AU  - Šolaja, Bogdan
AU  - Nikodinović-Runić, Jasmina
AU  - Opsenica, Igor
PY  - 2016
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3192
AB  - A novel series of thiepine derivatives were synthesized and evaluated as potential antimicrobials. All the synthesized compounds were evaluated for their antimicrobial activities in vitro against the fungi Candida albicans (ATCC 10231), C.parapsilosis (clinical isolate), Gram-negative bacterium Pseudomonas aeruginosa (ATCC 44752), and Gram-positive bacterium Staphylococcus aureus (ATCC 25923). Synthesized compounds showed higher antifungal activity than antibacterial activity, indicating that they could be used as selective antimicrobials. Selected thiepines efficiently inhibited Candida hyphae formation, a trait necessary for their pathogenicity. Thiepine 8-phenyl[1]benzothiepino[3,2-c]pyridine (16) efficiently killed Candida albicans at 15.6g/mL and showed no embryotoxicity at 75g/mL. Derivative 8-[4-(4,5-dihydro-1H-imidazol-2-yl)phenyl][1]benzothiepino[3,2-c]pyridine (23) caused significant hemolysis and in vitro DNA interaction. The position of the phenyl ring was essential for the antifungal activity, while the electronic effects of the substituents did not significantly influence activity. Results obtained from in vivo embryotoxicity on zebrafish (Danio rerio) encourage further structure optimizations.
PB  - Wiley, Hoboken
T2  - Chemical Biology & Drug Design
T1  - Synthesis and anti-Candida activity of novel benzothiepino[3,2-c]pyridine derivatives
VL  - 88
IS  - 6
SP  - 795
EP  - 806
DO  - 10.1111/cbdd.12809
ER  - 
@article{
author = "Bozinovic, Nina and Šegan, Sandra and Vojnovic, Sandra and Pavić, Aleksandar and Šolaja, Bogdan and Nikodinović-Runić, Jasmina and Opsenica, Igor",
year = "2016",
abstract = "A novel series of thiepine derivatives were synthesized and evaluated as potential antimicrobials. All the synthesized compounds were evaluated for their antimicrobial activities in vitro against the fungi Candida albicans (ATCC 10231), C.parapsilosis (clinical isolate), Gram-negative bacterium Pseudomonas aeruginosa (ATCC 44752), and Gram-positive bacterium Staphylococcus aureus (ATCC 25923). Synthesized compounds showed higher antifungal activity than antibacterial activity, indicating that they could be used as selective antimicrobials. Selected thiepines efficiently inhibited Candida hyphae formation, a trait necessary for their pathogenicity. Thiepine 8-phenyl[1]benzothiepino[3,2-c]pyridine (16) efficiently killed Candida albicans at 15.6g/mL and showed no embryotoxicity at 75g/mL. Derivative 8-[4-(4,5-dihydro-1H-imidazol-2-yl)phenyl][1]benzothiepino[3,2-c]pyridine (23) caused significant hemolysis and in vitro DNA interaction. The position of the phenyl ring was essential for the antifungal activity, while the electronic effects of the substituents did not significantly influence activity. Results obtained from in vivo embryotoxicity on zebrafish (Danio rerio) encourage further structure optimizations.",
publisher = "Wiley, Hoboken",
journal = "Chemical Biology & Drug Design",
title = "Synthesis and anti-Candida activity of novel benzothiepino[3,2-c]pyridine derivatives",
volume = "88",
number = "6",
pages = "795-806",
doi = "10.1111/cbdd.12809"
}
Bozinovic, N., Šegan, S., Vojnovic, S., Pavić, A., Šolaja, B., Nikodinović-Runić, J.,& Opsenica, I.. (2016). Synthesis and anti-Candida activity of novel benzothiepino[3,2-c]pyridine derivatives. in Chemical Biology & Drug Design
Wiley, Hoboken., 88(6), 795-806.
https://doi.org/10.1111/cbdd.12809
Bozinovic N, Šegan S, Vojnovic S, Pavić A, Šolaja B, Nikodinović-Runić J, Opsenica I. Synthesis and anti-Candida activity of novel benzothiepino[3,2-c]pyridine derivatives. in Chemical Biology & Drug Design. 2016;88(6):795-806.
doi:10.1111/cbdd.12809 .
Bozinovic, Nina, Šegan, Sandra, Vojnovic, Sandra, Pavić, Aleksandar, Šolaja, Bogdan, Nikodinović-Runić, Jasmina, Opsenica, Igor, "Synthesis and anti-Candida activity of novel benzothiepino[3,2-c]pyridine derivatives" in Chemical Biology & Drug Design, 88, no. 6 (2016):795-806,
https://doi.org/10.1111/cbdd.12809 . .
10
8
7
10