Apel, Pavel Yu

Link to this page

Authority KeyName Variants
orcid::0000-0003-1259-163X
  • Apel, Pavel Yu (1)
Projects

Author's Bibliography

Porous carbon thin films for electrochemical capacitors

Laušević, Zoran; Apel, Pavel Yu; Krstić, Jugoslav; Blonskaya, Irina V.

(Oxford : Pergamon-Elsevier Science Ltd, 2013)

TY  - JOUR
AU  - Laušević, Zoran
AU  - Apel, Pavel Yu
AU  - Krstić, Jugoslav
AU  - Blonskaya, Irina V.
PY  - 2013
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/1299
AB  - Activation effects on carbon films, derived from commercial aromatic polyimide films (Kapton, DuPont), in CO2 atmosphere at 1203 K on capacitance properties were studied. Two thicknesses of polyimide films were used: 7 and 25 gm. Pore formation during the activation process progresses in two steps due to the existence of a denser surface layer and a more porous core material. In the first step micropores are opening in the dense surface region of the material with average pore diameter smaller than 1 nm. During the second step, mesopores start opening, while micropore volume remains constant with the average micropore diameter of over 1 nm, producing bimodal texture. The first step finishes after 30 min for the thinner samples while for the thicker samples it finishes after 60 mm of activation. As a consequence of such textural changes during activation, the thicker sample has a maximum areal capacitance of 0.35 F/cm(2). The thinner sample activated for 30 min has a maximum volumetric capacitance of 220 F/cm(3) and achieves a maximum gravimetric capacitance of 240 F/g when the texture becomes bimodal after 240 min of activation. These results confirm that activation of carbonized Kapton films gives promising electrode materials for supercapacitors.
PB  - Oxford : Pergamon-Elsevier Science Ltd
T2  - Carbon
T1  - Porous carbon thin films for electrochemical capacitors
VL  - 64
SP  - 456
EP  - 463
DO  - 10.1016/j.carbon.2013.07.098
ER  - 
@article{
author = "Laušević, Zoran and Apel, Pavel Yu and Krstić, Jugoslav and Blonskaya, Irina V.",
year = "2013",
abstract = "Activation effects on carbon films, derived from commercial aromatic polyimide films (Kapton, DuPont), in CO2 atmosphere at 1203 K on capacitance properties were studied. Two thicknesses of polyimide films were used: 7 and 25 gm. Pore formation during the activation process progresses in two steps due to the existence of a denser surface layer and a more porous core material. In the first step micropores are opening in the dense surface region of the material with average pore diameter smaller than 1 nm. During the second step, mesopores start opening, while micropore volume remains constant with the average micropore diameter of over 1 nm, producing bimodal texture. The first step finishes after 30 min for the thinner samples while for the thicker samples it finishes after 60 mm of activation. As a consequence of such textural changes during activation, the thicker sample has a maximum areal capacitance of 0.35 F/cm(2). The thinner sample activated for 30 min has a maximum volumetric capacitance of 220 F/cm(3) and achieves a maximum gravimetric capacitance of 240 F/g when the texture becomes bimodal after 240 min of activation. These results confirm that activation of carbonized Kapton films gives promising electrode materials for supercapacitors.",
publisher = "Oxford : Pergamon-Elsevier Science Ltd",
journal = "Carbon",
title = "Porous carbon thin films for electrochemical capacitors",
volume = "64",
pages = "456-463",
doi = "10.1016/j.carbon.2013.07.098"
}
Laušević, Z., Apel, P. Y., Krstić, J.,& Blonskaya, I. V.. (2013). Porous carbon thin films for electrochemical capacitors. in Carbon
Oxford : Pergamon-Elsevier Science Ltd., 64, 456-463.
https://doi.org/10.1016/j.carbon.2013.07.098
Laušević Z, Apel PY, Krstić J, Blonskaya IV. Porous carbon thin films for electrochemical capacitors. in Carbon. 2013;64:456-463.
doi:10.1016/j.carbon.2013.07.098 .
Laušević, Zoran, Apel, Pavel Yu, Krstić, Jugoslav, Blonskaya, Irina V., "Porous carbon thin films for electrochemical capacitors" in Carbon, 64 (2013):456-463,
https://doi.org/10.1016/j.carbon.2013.07.098 . .
42
35
41