Đorđević, Verica

Link to this page

Authority KeyName Variants
orcid::0000-0002-2154-7502
  • Đorđević, Verica (4)
  • Đorđević, Verica B. (2)

Author's Bibliography

Polymer‐lipid matrice based on carboxymethyl cellulose/solagum and liposomes for controlled release of folic acid

Batinić, Petar M.; Đorđević, Verica; Obradović, Nataša S.; Krstić, Aleksandar D.; Stevanović, Sanja; Balanč, Bojana; Marković, Smilja; Pjanović, Rada; Mijin, Dušan; Bugarski, Branko

(Wiley, 2023)

TY  - JOUR
AU  - Batinić, Petar M.
AU  - Đorđević, Verica
AU  - Obradović, Nataša S.
AU  - Krstić, Aleksandar D.
AU  - Stevanović, Sanja
AU  - Balanč, Bojana
AU  - Marković, Smilja
AU  - Pjanović, Rada
AU  - Mijin, Dušan
AU  - Bugarski, Branko
PY  - 2023
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/6422
AB  - Liposome-encapsulated folic acid was incorporated into the films made from sodium carboxymethyl cellulose (CMC) (2 mas%) and a mixture of carboxymethyl cellulose and solagum (9:1 w/w) using the film-forming cast solution method. Histidine was used to increase solubility for folic acid in liposomes (1-5 mg/ml), and propylene glycol was used as a film plasticizer (2.6 mas%). The obtained films (50-60 µm tick) containing 3.12-20.19 mg of folic acid per gram of film are envisaged to be used as patches for transdermal delivery of folic acid. Therefore, some physical, mechanical, release and structural attributes of the films were scrutinized. Folic acid gave yellow color to the films and contributed to stronger chemical bonds which resulted in improved strength of the film. Liposomes prolonged the release of folic acid from films to 24 h without adverse effects on mechanical properties of the films, but degraded homogeneity of the films, which could be ascribed to its agglomeration within the film matrix as revealed by AFM. According to the release at pH 5.5, the film formulation based on a blend of CMC and solagum containing 3 mg/ml liposome-encapsulated folic acid is recommended from the point of view of release kinetics determined by its solubility.  Practical application: Folic acid is effective in reducing oxidative stress levels in the skin and neutralizing the harmful free radicals and is also essential for various metabolic reactions in the body. However, the limited solubility of folic acid linked with its poor absorption in an organism, low storage stability, short half-life upon oral consumption, specific food preferences of some people, extensive liver metabolism, and pregnancy-induced vomiting point to a large potential in transdermal usage of folic acid. This has motivated us to design new multicomponent polymer-lipid systems as an alternative solution to overcome some of these drawbacks. The results obtained for these multicomponent films pointed to their potential for prolonged release of folic acid to 24 h, which can also be useful for scientists interested in encapsulating similar poorly soluble compounds in CMC patches. The finding can be also valuable information for pharmaceutical manufacturers and scientists worldwide.
PB  - Wiley
T2  - European Journal of Lipid Science and Technology
T1  - Polymer‐lipid matrice based on carboxymethyl cellulose/solagum and liposomes for controlled release of folic acid
SP  - 2200169
DO  - 10.1002/ejlt.202200169
ER  - 
@article{
author = "Batinić, Petar M. and Đorđević, Verica and Obradović, Nataša S. and Krstić, Aleksandar D. and Stevanović, Sanja and Balanč, Bojana and Marković, Smilja and Pjanović, Rada and Mijin, Dušan and Bugarski, Branko",
year = "2023",
abstract = "Liposome-encapsulated folic acid was incorporated into the films made from sodium carboxymethyl cellulose (CMC) (2 mas%) and a mixture of carboxymethyl cellulose and solagum (9:1 w/w) using the film-forming cast solution method. Histidine was used to increase solubility for folic acid in liposomes (1-5 mg/ml), and propylene glycol was used as a film plasticizer (2.6 mas%). The obtained films (50-60 µm tick) containing 3.12-20.19 mg of folic acid per gram of film are envisaged to be used as patches for transdermal delivery of folic acid. Therefore, some physical, mechanical, release and structural attributes of the films were scrutinized. Folic acid gave yellow color to the films and contributed to stronger chemical bonds which resulted in improved strength of the film. Liposomes prolonged the release of folic acid from films to 24 h without adverse effects on mechanical properties of the films, but degraded homogeneity of the films, which could be ascribed to its agglomeration within the film matrix as revealed by AFM. According to the release at pH 5.5, the film formulation based on a blend of CMC and solagum containing 3 mg/ml liposome-encapsulated folic acid is recommended from the point of view of release kinetics determined by its solubility.  Practical application: Folic acid is effective in reducing oxidative stress levels in the skin and neutralizing the harmful free radicals and is also essential for various metabolic reactions in the body. However, the limited solubility of folic acid linked with its poor absorption in an organism, low storage stability, short half-life upon oral consumption, specific food preferences of some people, extensive liver metabolism, and pregnancy-induced vomiting point to a large potential in transdermal usage of folic acid. This has motivated us to design new multicomponent polymer-lipid systems as an alternative solution to overcome some of these drawbacks. The results obtained for these multicomponent films pointed to their potential for prolonged release of folic acid to 24 h, which can also be useful for scientists interested in encapsulating similar poorly soluble compounds in CMC patches. The finding can be also valuable information for pharmaceutical manufacturers and scientists worldwide.",
publisher = "Wiley",
journal = "European Journal of Lipid Science and Technology",
title = "Polymer‐lipid matrice based on carboxymethyl cellulose/solagum and liposomes for controlled release of folic acid",
pages = "2200169",
doi = "10.1002/ejlt.202200169"
}
Batinić, P. M., Đorđević, V., Obradović, N. S., Krstić, A. D., Stevanović, S., Balanč, B., Marković, S., Pjanović, R., Mijin, D.,& Bugarski, B.. (2023). Polymer‐lipid matrice based on carboxymethyl cellulose/solagum and liposomes for controlled release of folic acid. in European Journal of Lipid Science and Technology
Wiley., 2200169.
https://doi.org/10.1002/ejlt.202200169
Batinić PM, Đorđević V, Obradović NS, Krstić AD, Stevanović S, Balanč B, Marković S, Pjanović R, Mijin D, Bugarski B. Polymer‐lipid matrice based on carboxymethyl cellulose/solagum and liposomes for controlled release of folic acid. in European Journal of Lipid Science and Technology. 2023;:2200169.
doi:10.1002/ejlt.202200169 .
Batinić, Petar M., Đorđević, Verica, Obradović, Nataša S., Krstić, Aleksandar D., Stevanović, Sanja, Balanč, Bojana, Marković, Smilja, Pjanović, Rada, Mijin, Dušan, Bugarski, Branko, "Polymer‐lipid matrice based on carboxymethyl cellulose/solagum and liposomes for controlled release of folic acid" in European Journal of Lipid Science and Technology (2023):2200169,
https://doi.org/10.1002/ejlt.202200169 . .
1
1

Polymer‐lipid matrice based on carboxymethyl cellulose/solagum and liposomes for controlled release of folic acid

Batinić, Petar M.; Đorđević, Verica; Obradović, Nataša S.; Krstić, Aleksandar D.; Stevanović, Sanja; Balanč, Bojana; Marković, Smilja; Pjanović, Rada; Mijin, Dušan; Bugarski, Branko

(Wiley, 2023)

TY  - JOUR
AU  - Batinić, Petar M.
AU  - Đorđević, Verica
AU  - Obradović, Nataša S.
AU  - Krstić, Aleksandar D.
AU  - Stevanović, Sanja
AU  - Balanč, Bojana
AU  - Marković, Smilja
AU  - Pjanović, Rada
AU  - Mijin, Dušan
AU  - Bugarski, Branko
PY  - 2023
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/6421
AB  - Liposome-encapsulated folic acid was incorporated into the films made from sodium carboxymethyl cellulose (CMC) (2 mas%) and a mixture of carboxymethyl cellulose and solagum (9:1 w/w) using the film-forming cast solution method. Histidine was used to increase solubility for folic acid in liposomes (1-5 mg/ml), and propylene glycol was used as a film plasticizer (2.6 mas%). The obtained films (50-60 µm tick) containing 3.12-20.19 mg of folic acid per gram of film are envisaged to be used as patches for transdermal delivery of folic acid. Therefore, some physical, mechanical, release and structural attributes of the films were scrutinized. Folic acid gave yellow color to the films and contributed to stronger chemical bonds which resulted in improved strength of the film. Liposomes prolonged the release of folic acid from films to 24 h without adverse effects on mechanical properties of the films, but degraded homogeneity of the films, which could be ascribed to its agglomeration within the film matrix as revealed by AFM. According to the release at pH 5.5, the film formulation based on a blend of CMC and solagum containing 3 mg/ml liposome-encapsulated folic acid is recommended from the point of view of release kinetics determined by its solubility.  Practical application: Folic acid is effective in reducing oxidative stress levels in the skin and neutralizing the harmful free radicals and is also essential for various metabolic reactions in the body. However, the limited solubility of folic acid linked with its poor absorption in an organism, low storage stability, short half-life upon oral consumption, specific food preferences of some people, extensive liver metabolism, and pregnancy-induced vomiting point to a large potential in transdermal usage of folic acid. This has motivated us to design new multicomponent polymer-lipid systems as an alternative solution to overcome some of these drawbacks. The results obtained for these multicomponent films pointed to their potential for prolonged release of folic acid to 24 h, which can also be useful for scientists interested in encapsulating similar poorly soluble compounds in CMC patches. The finding can be also valuable information for pharmaceutical manufacturers and scientists worldwide.
PB  - Wiley
T2  - European Journal of Lipid Science and Technology
T1  - Polymer‐lipid matrice based on carboxymethyl cellulose/solagum and liposomes for controlled release of folic acid
SP  - 2200169
DO  - 10.1002/ejlt.202200169
ER  - 
@article{
author = "Batinić, Petar M. and Đorđević, Verica and Obradović, Nataša S. and Krstić, Aleksandar D. and Stevanović, Sanja and Balanč, Bojana and Marković, Smilja and Pjanović, Rada and Mijin, Dušan and Bugarski, Branko",
year = "2023",
abstract = "Liposome-encapsulated folic acid was incorporated into the films made from sodium carboxymethyl cellulose (CMC) (2 mas%) and a mixture of carboxymethyl cellulose and solagum (9:1 w/w) using the film-forming cast solution method. Histidine was used to increase solubility for folic acid in liposomes (1-5 mg/ml), and propylene glycol was used as a film plasticizer (2.6 mas%). The obtained films (50-60 µm tick) containing 3.12-20.19 mg of folic acid per gram of film are envisaged to be used as patches for transdermal delivery of folic acid. Therefore, some physical, mechanical, release and structural attributes of the films were scrutinized. Folic acid gave yellow color to the films and contributed to stronger chemical bonds which resulted in improved strength of the film. Liposomes prolonged the release of folic acid from films to 24 h without adverse effects on mechanical properties of the films, but degraded homogeneity of the films, which could be ascribed to its agglomeration within the film matrix as revealed by AFM. According to the release at pH 5.5, the film formulation based on a blend of CMC and solagum containing 3 mg/ml liposome-encapsulated folic acid is recommended from the point of view of release kinetics determined by its solubility.  Practical application: Folic acid is effective in reducing oxidative stress levels in the skin and neutralizing the harmful free radicals and is also essential for various metabolic reactions in the body. However, the limited solubility of folic acid linked with its poor absorption in an organism, low storage stability, short half-life upon oral consumption, specific food preferences of some people, extensive liver metabolism, and pregnancy-induced vomiting point to a large potential in transdermal usage of folic acid. This has motivated us to design new multicomponent polymer-lipid systems as an alternative solution to overcome some of these drawbacks. The results obtained for these multicomponent films pointed to their potential for prolonged release of folic acid to 24 h, which can also be useful for scientists interested in encapsulating similar poorly soluble compounds in CMC patches. The finding can be also valuable information for pharmaceutical manufacturers and scientists worldwide.",
publisher = "Wiley",
journal = "European Journal of Lipid Science and Technology",
title = "Polymer‐lipid matrice based on carboxymethyl cellulose/solagum and liposomes for controlled release of folic acid",
pages = "2200169",
doi = "10.1002/ejlt.202200169"
}
Batinić, P. M., Đorđević, V., Obradović, N. S., Krstić, A. D., Stevanović, S., Balanč, B., Marković, S., Pjanović, R., Mijin, D.,& Bugarski, B.. (2023). Polymer‐lipid matrice based on carboxymethyl cellulose/solagum and liposomes for controlled release of folic acid. in European Journal of Lipid Science and Technology
Wiley., 2200169.
https://doi.org/10.1002/ejlt.202200169
Batinić PM, Đorđević V, Obradović NS, Krstić AD, Stevanović S, Balanč B, Marković S, Pjanović R, Mijin D, Bugarski B. Polymer‐lipid matrice based on carboxymethyl cellulose/solagum and liposomes for controlled release of folic acid. in European Journal of Lipid Science and Technology. 2023;:2200169.
doi:10.1002/ejlt.202200169 .
Batinić, Petar M., Đorđević, Verica, Obradović, Nataša S., Krstić, Aleksandar D., Stevanović, Sanja, Balanč, Bojana, Marković, Smilja, Pjanović, Rada, Mijin, Dušan, Bugarski, Branko, "Polymer‐lipid matrice based on carboxymethyl cellulose/solagum and liposomes for controlled release of folic acid" in European Journal of Lipid Science and Technology (2023):2200169,
https://doi.org/10.1002/ejlt.202200169 . .
1
1

Immobilization of Horseradish Peroxidase on Magnetite-Alginate Beads to Enable Effective Strong Binding and Enzyme Recycling during Anthraquinone Dyes’ Degradation

Jonović, Marko; Jugović, Branimir; Žuža, Milena; Đorđević, Verica; Milašinović, Nikola; Bugarski, Branko; Knežević-Jugović, Zorica

(MDPI, 2022)

TY  - JOUR
AU  - Jonović, Marko
AU  - Jugović, Branimir
AU  - Žuža, Milena
AU  - Đorđević, Verica
AU  - Milašinović, Nikola
AU  - Bugarski, Branko
AU  - Knežević-Jugović, Zorica
PY  - 2022
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/5239
AB  - The aim of this study was to investigate covalent immobilization of horseradish peroxidase (HRP) on magnetic nanoparticles (Mag) encapsulated in calcium alginate beads (MABs) for color degradation, combining easy and fast removal of biocatalyst from the reaction mixture due to its magnetic properties and strong binding due to surface alginate functional groups. MABs obtained by extrusion techniques were analyzed by optical microscopy, FEG-SEM and characterized regarding mechanical properties, magnetization and HRP binding. HRP with initial concentration of 10 mg/gcarrier was successfully covalently bonded on MABs (diameter ~1 mm, magnetite/alginate ratio 1:4), with protein loading of 8.9 mg/gcarrier, immobilization yield 96.9% and activity 32.8 U/g. Immobilized HRP on MABs (HRP-MABs) was then used to catalyze degradation of two anthraquinonic dyes, Acid Blue 225 (AB225) and Acid Violet 109 (AV109), as models for wastewater pollutants. HRP-MABs decolorized 77.3% and 76.1% of AV109 and AB225, respectively after 15 min under optimal conditions (0.097 mM H2O2, 200 mg of HRP-MABs (8.9 mg/gcarrier), 0.08 and 0.1 g/mg beads/dye ratio for AV109 and AB225, respectively). Biocatalyst was used for 7 repeated cycles retaining 75% and 51% of initial activity for AB225 and AV109, respectively, showing potential for use in large scale applications for colored wastewater treatment.
PB  - MDPI
T2  - Polymers
T1  - Immobilization of Horseradish Peroxidase on Magnetite-Alginate Beads to Enable Effective Strong Binding and Enzyme Recycling during Anthraquinone Dyes’ Degradation
VL  - 14
IS  - 13
SP  - 2614
DO  - 10.3390/polym14132614
ER  - 
@article{
author = "Jonović, Marko and Jugović, Branimir and Žuža, Milena and Đorđević, Verica and Milašinović, Nikola and Bugarski, Branko and Knežević-Jugović, Zorica",
year = "2022",
abstract = "The aim of this study was to investigate covalent immobilization of horseradish peroxidase (HRP) on magnetic nanoparticles (Mag) encapsulated in calcium alginate beads (MABs) for color degradation, combining easy and fast removal of biocatalyst from the reaction mixture due to its magnetic properties and strong binding due to surface alginate functional groups. MABs obtained by extrusion techniques were analyzed by optical microscopy, FEG-SEM and characterized regarding mechanical properties, magnetization and HRP binding. HRP with initial concentration of 10 mg/gcarrier was successfully covalently bonded on MABs (diameter ~1 mm, magnetite/alginate ratio 1:4), with protein loading of 8.9 mg/gcarrier, immobilization yield 96.9% and activity 32.8 U/g. Immobilized HRP on MABs (HRP-MABs) was then used to catalyze degradation of two anthraquinonic dyes, Acid Blue 225 (AB225) and Acid Violet 109 (AV109), as models for wastewater pollutants. HRP-MABs decolorized 77.3% and 76.1% of AV109 and AB225, respectively after 15 min under optimal conditions (0.097 mM H2O2, 200 mg of HRP-MABs (8.9 mg/gcarrier), 0.08 and 0.1 g/mg beads/dye ratio for AV109 and AB225, respectively). Biocatalyst was used for 7 repeated cycles retaining 75% and 51% of initial activity for AB225 and AV109, respectively, showing potential for use in large scale applications for colored wastewater treatment.",
publisher = "MDPI",
journal = "Polymers",
title = "Immobilization of Horseradish Peroxidase on Magnetite-Alginate Beads to Enable Effective Strong Binding and Enzyme Recycling during Anthraquinone Dyes’ Degradation",
volume = "14",
number = "13",
pages = "2614",
doi = "10.3390/polym14132614"
}
Jonović, M., Jugović, B., Žuža, M., Đorđević, V., Milašinović, N., Bugarski, B.,& Knežević-Jugović, Z.. (2022). Immobilization of Horseradish Peroxidase on Magnetite-Alginate Beads to Enable Effective Strong Binding and Enzyme Recycling during Anthraquinone Dyes’ Degradation. in Polymers
MDPI., 14(13), 2614.
https://doi.org/10.3390/polym14132614
Jonović M, Jugović B, Žuža M, Đorđević V, Milašinović N, Bugarski B, Knežević-Jugović Z. Immobilization of Horseradish Peroxidase on Magnetite-Alginate Beads to Enable Effective Strong Binding and Enzyme Recycling during Anthraquinone Dyes’ Degradation. in Polymers. 2022;14(13):2614.
doi:10.3390/polym14132614 .
Jonović, Marko, Jugović, Branimir, Žuža, Milena, Đorđević, Verica, Milašinović, Nikola, Bugarski, Branko, Knežević-Jugović, Zorica, "Immobilization of Horseradish Peroxidase on Magnetite-Alginate Beads to Enable Effective Strong Binding and Enzyme Recycling during Anthraquinone Dyes’ Degradation" in Polymers, 14, no. 13 (2022):2614,
https://doi.org/10.3390/polym14132614 . .
8
6

Immobilized Alcalase on Micron- and Submicron-Sized Alginate Beads as a Potential Biocatalyst for Hydrolysis of Food Proteins

Jonović, Marko; Žuža, Milena; Đorđević, Verica; Šekuljica, Nataša; Milivojević, Milan; Jugović, Branimir; Bugarski, Branko; Knežević-Jugović, Zorica

(MDPI, 2021)

TY  - JOUR
AU  - Jonović, Marko
AU  - Žuža, Milena
AU  - Đorđević, Verica
AU  - Šekuljica, Nataša
AU  - Milivojević, Milan
AU  - Jugović, Branimir
AU  - Bugarski, Branko
AU  - Knežević-Jugović, Zorica
PY  - 2021
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/4834
AB  - Enzymatic hydrolysis of food proteins is convenient method to improve their functional properties and physiological activity. Herein, the successful covalent attachment of alcalase on alginate micron and submicron beads using the carbodiimide based chemistry reaction and the subsequent application of the beads for egg white and soy proteins hydrolysis were studied. In addition to the electrostatic extrusion technique (EE) previously used by others, the potential utilization of a novel ultrasonic spray atomization technique without drying (UA) and with drying (UAD) for alginate submicron beads production has been attempted. The immobilization parameters were optimized on microbeads obtained by EE technique (803 +/- 23 mu m) with respect to enzyme loading and alcalase activity. UA and UAD techniques resulted in much smaller particles (607 +/- 103 nm and 394 +/- 51 nm in diameter, respectively), enabling even higher enzyme loading of 671.6 +/- 4 mg g(-1) on the carrier and the highest immobilized alcalase activity of 2716.1 IU g(-1) in the standard reaction. The UAD biocatalyst exhibited also better performances in the real food system based on egg white or soy proteins. It has been shown that the immobilized alcalase can be reused in seven successive soy protein hydrolysis cycles with a little decrease in the activity.
PB  - MDPI
T2  - Catalysts
T1  - Immobilized Alcalase on Micron- and Submicron-Sized Alginate Beads as a Potential Biocatalyst for Hydrolysis of Food Proteins
VL  - 11
IS  - 3
SP  - 305
DO  - 10.3390/catal11030305
ER  - 
@article{
author = "Jonović, Marko and Žuža, Milena and Đorđević, Verica and Šekuljica, Nataša and Milivojević, Milan and Jugović, Branimir and Bugarski, Branko and Knežević-Jugović, Zorica",
year = "2021",
abstract = "Enzymatic hydrolysis of food proteins is convenient method to improve their functional properties and physiological activity. Herein, the successful covalent attachment of alcalase on alginate micron and submicron beads using the carbodiimide based chemistry reaction and the subsequent application of the beads for egg white and soy proteins hydrolysis were studied. In addition to the electrostatic extrusion technique (EE) previously used by others, the potential utilization of a novel ultrasonic spray atomization technique without drying (UA) and with drying (UAD) for alginate submicron beads production has been attempted. The immobilization parameters were optimized on microbeads obtained by EE technique (803 +/- 23 mu m) with respect to enzyme loading and alcalase activity. UA and UAD techniques resulted in much smaller particles (607 +/- 103 nm and 394 +/- 51 nm in diameter, respectively), enabling even higher enzyme loading of 671.6 +/- 4 mg g(-1) on the carrier and the highest immobilized alcalase activity of 2716.1 IU g(-1) in the standard reaction. The UAD biocatalyst exhibited also better performances in the real food system based on egg white or soy proteins. It has been shown that the immobilized alcalase can be reused in seven successive soy protein hydrolysis cycles with a little decrease in the activity.",
publisher = "MDPI",
journal = "Catalysts",
title = "Immobilized Alcalase on Micron- and Submicron-Sized Alginate Beads as a Potential Biocatalyst for Hydrolysis of Food Proteins",
volume = "11",
number = "3",
pages = "305",
doi = "10.3390/catal11030305"
}
Jonović, M., Žuža, M., Đorđević, V., Šekuljica, N., Milivojević, M., Jugović, B., Bugarski, B.,& Knežević-Jugović, Z.. (2021). Immobilized Alcalase on Micron- and Submicron-Sized Alginate Beads as a Potential Biocatalyst for Hydrolysis of Food Proteins. in Catalysts
MDPI., 11(3), 305.
https://doi.org/10.3390/catal11030305
Jonović M, Žuža M, Đorđević V, Šekuljica N, Milivojević M, Jugović B, Bugarski B, Knežević-Jugović Z. Immobilized Alcalase on Micron- and Submicron-Sized Alginate Beads as a Potential Biocatalyst for Hydrolysis of Food Proteins. in Catalysts. 2021;11(3):305.
doi:10.3390/catal11030305 .
Jonović, Marko, Žuža, Milena, Đorđević, Verica, Šekuljica, Nataša, Milivojević, Milan, Jugović, Branimir, Bugarski, Branko, Knežević-Jugović, Zorica, "Immobilized Alcalase on Micron- and Submicron-Sized Alginate Beads as a Potential Biocatalyst for Hydrolysis of Food Proteins" in Catalysts, 11, no. 3 (2021):305,
https://doi.org/10.3390/catal11030305 . .
5
6

Formulation and characterization of novel liposomes containing histidine for encapsulation of a poorly soluble vitamin

Batinić, Petar M.; Đorđević, Verica B.; Stevanović, Sanja; Balanč, Bojana D.; Marković, Smilja; Luković, Nevena; Mijin, Dušan; Bugarski, Branko

(Elsevier, 2020)

TY  - JOUR
AU  - Batinić, Petar M.
AU  - Đorđević, Verica B.
AU  - Stevanović, Sanja
AU  - Balanč, Bojana D.
AU  - Marković, Smilja
AU  - Luković, Nevena
AU  - Mijin, Dušan
AU  - Bugarski, Branko
PY  - 2020
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3682
AB  - In this study, development of folic acid-loaded liposomes using a basic amino acid, histidine as a solubilizing agent for folic acid was presented, which tackled the poor solubility of this vitamin. The effect of the liposomal membrane modifiers, cholesterol and SPAN 20 on the characteristics of the final formulations was examined. Liposomes prepared from a commercially available purified soybean lecithin (Phospholipon 90G) by proliposome method were between 503 and 877 nm in average diameter, where cholesterol induced enlargement and SPAN.20 reduction of vesicles. High encapsulation efficiency of 84% and drug loading of 0.123 mg g−1 were achieved, irrespective to the composition. According to AFM images, folic acid-loaded liposomes of a fraction with a nano size were flattened compared to globular empty liposomes. FTIR analysis revealed possible interactions between phospholipids and histidine, while DSC study suggested interactions between folic acid and lipids during heating. Release study done by a Franz diffusion cell showed prolonged release of folic acid from liposomes and the release rate was determined by folic acid solubility.
PB  - Elsevier
T2  - Journal of Drug Delivery Science and Technology
T1  - Formulation and characterization of novel liposomes containing histidine for encapsulation of a poorly soluble vitamin
VL  - 59
SP  - 101920
DO  - 10.1016/j.jddst.2020.101920
ER  - 
@article{
author = "Batinić, Petar M. and Đorđević, Verica B. and Stevanović, Sanja and Balanč, Bojana D. and Marković, Smilja and Luković, Nevena and Mijin, Dušan and Bugarski, Branko",
year = "2020",
abstract = "In this study, development of folic acid-loaded liposomes using a basic amino acid, histidine as a solubilizing agent for folic acid was presented, which tackled the poor solubility of this vitamin. The effect of the liposomal membrane modifiers, cholesterol and SPAN 20 on the characteristics of the final formulations was examined. Liposomes prepared from a commercially available purified soybean lecithin (Phospholipon 90G) by proliposome method were between 503 and 877 nm in average diameter, where cholesterol induced enlargement and SPAN.20 reduction of vesicles. High encapsulation efficiency of 84% and drug loading of 0.123 mg g−1 were achieved, irrespective to the composition. According to AFM images, folic acid-loaded liposomes of a fraction with a nano size were flattened compared to globular empty liposomes. FTIR analysis revealed possible interactions between phospholipids and histidine, while DSC study suggested interactions between folic acid and lipids during heating. Release study done by a Franz diffusion cell showed prolonged release of folic acid from liposomes and the release rate was determined by folic acid solubility.",
publisher = "Elsevier",
journal = "Journal of Drug Delivery Science and Technology",
title = "Formulation and characterization of novel liposomes containing histidine for encapsulation of a poorly soluble vitamin",
volume = "59",
pages = "101920",
doi = "10.1016/j.jddst.2020.101920"
}
Batinić, P. M., Đorđević, V. B., Stevanović, S., Balanč, B. D., Marković, S., Luković, N., Mijin, D.,& Bugarski, B.. (2020). Formulation and characterization of novel liposomes containing histidine for encapsulation of a poorly soluble vitamin. in Journal of Drug Delivery Science and Technology
Elsevier., 59, 101920.
https://doi.org/10.1016/j.jddst.2020.101920
Batinić PM, Đorđević VB, Stevanović S, Balanč BD, Marković S, Luković N, Mijin D, Bugarski B. Formulation and characterization of novel liposomes containing histidine for encapsulation of a poorly soluble vitamin. in Journal of Drug Delivery Science and Technology. 2020;59:101920.
doi:10.1016/j.jddst.2020.101920 .
Batinić, Petar M., Đorđević, Verica B., Stevanović, Sanja, Balanč, Bojana D., Marković, Smilja, Luković, Nevena, Mijin, Dušan, Bugarski, Branko, "Formulation and characterization of novel liposomes containing histidine for encapsulation of a poorly soluble vitamin" in Journal of Drug Delivery Science and Technology, 59 (2020):101920,
https://doi.org/10.1016/j.jddst.2020.101920 . .
14
2
17

Formulation and characterization of novel liposomes containing histidine for encapsulation of a poorly soluble vitamin

Batinić, Petar M.; Đorđević, Verica B.; Stevanović, Sanja; Balanč, Bojana D.; Marković, Smilja B.; Luković, Nevena; Mijin, Dušan; Bugarski, Branko

(Elsevier, 2020)

TY  - JOUR
AU  - Batinić, Petar M.
AU  - Đorđević, Verica B.
AU  - Stevanović, Sanja
AU  - Balanč, Bojana D.
AU  - Marković, Smilja B.
AU  - Luković, Nevena
AU  - Mijin, Dušan
AU  - Bugarski, Branko
PY  - 2020
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3681
AB  - In this study, development of folic acid-loaded liposomes using a basic amino acid, histidine as a solubilizing agent for folic acid was presented, which tackled the poor solubility of this vitamin. The effect of the liposomal membrane modifiers, cholesterol and SPAN 20 on the characteristics of the final formulations was examined. Liposomes prepared from a commercially available purified soybean lecithin (Phospholipon 90G) by proliposome method were between 503 and 877 nm in average diameter, where cholesterol induced enlargement and SPAN.20 reduction of vesicles. High encapsulation efficiency of 84% and drug loading of 0.123 mg g−1 were achieved, irrespective to the composition. According to AFM images, folic acid-loaded liposomes of a fraction with a nano size were flattened compared to globular empty liposomes. FTIR analysis revealed possible interactions between phospholipids and histidine, while DSC study suggested interactions between folic acid and lipids during heating. Release study done by a Franz diffusion cell showed prolonged release of folic acid from liposomes and the release rate was determined by folic acid solubility.
PB  - Elsevier
T2  - Journal of Drug Delivery Science and Technology
T1  - Formulation and characterization of novel liposomes containing histidine for encapsulation of a poorly soluble vitamin
VL  - 59
SP  - 101920
DO  - 10.1016/j.jddst.2020.101920
ER  - 
@article{
author = "Batinić, Petar M. and Đorđević, Verica B. and Stevanović, Sanja and Balanč, Bojana D. and Marković, Smilja B. and Luković, Nevena and Mijin, Dušan and Bugarski, Branko",
year = "2020",
abstract = "In this study, development of folic acid-loaded liposomes using a basic amino acid, histidine as a solubilizing agent for folic acid was presented, which tackled the poor solubility of this vitamin. The effect of the liposomal membrane modifiers, cholesterol and SPAN 20 on the characteristics of the final formulations was examined. Liposomes prepared from a commercially available purified soybean lecithin (Phospholipon 90G) by proliposome method were between 503 and 877 nm in average diameter, where cholesterol induced enlargement and SPAN.20 reduction of vesicles. High encapsulation efficiency of 84% and drug loading of 0.123 mg g−1 were achieved, irrespective to the composition. According to AFM images, folic acid-loaded liposomes of a fraction with a nano size were flattened compared to globular empty liposomes. FTIR analysis revealed possible interactions between phospholipids and histidine, while DSC study suggested interactions between folic acid and lipids during heating. Release study done by a Franz diffusion cell showed prolonged release of folic acid from liposomes and the release rate was determined by folic acid solubility.",
publisher = "Elsevier",
journal = "Journal of Drug Delivery Science and Technology",
title = "Formulation and characterization of novel liposomes containing histidine for encapsulation of a poorly soluble vitamin",
volume = "59",
pages = "101920",
doi = "10.1016/j.jddst.2020.101920"
}
Batinić, P. M., Đorđević, V. B., Stevanović, S., Balanč, B. D., Marković, S. B., Luković, N., Mijin, D.,& Bugarski, B.. (2020). Formulation and characterization of novel liposomes containing histidine for encapsulation of a poorly soluble vitamin. in Journal of Drug Delivery Science and Technology
Elsevier., 59, 101920.
https://doi.org/10.1016/j.jddst.2020.101920
Batinić PM, Đorđević VB, Stevanović S, Balanč BD, Marković SB, Luković N, Mijin D, Bugarski B. Formulation and characterization of novel liposomes containing histidine for encapsulation of a poorly soluble vitamin. in Journal of Drug Delivery Science and Technology. 2020;59:101920.
doi:10.1016/j.jddst.2020.101920 .
Batinić, Petar M., Đorđević, Verica B., Stevanović, Sanja, Balanč, Bojana D., Marković, Smilja B., Luković, Nevena, Mijin, Dušan, Bugarski, Branko, "Formulation and characterization of novel liposomes containing histidine for encapsulation of a poorly soluble vitamin" in Journal of Drug Delivery Science and Technology, 59 (2020):101920,
https://doi.org/10.1016/j.jddst.2020.101920 . .
14
2
17