Stankovic, Nada

Link to this page

Authority KeyName Variants
d8409397-aef7-4f30-920f-992b6e2b65d5
  • Stankovic, Nada (2)
Projects

Author's Bibliography

Novel Quorum Quenching YtnP Lactonase From Bacillus paralicheniformis Reduces Pseudomonas aeruginosa Virulence and Increases Antibiotic Efficacy in vivo

Djokic, Lidija; Stankovic, Nada; Galic, Ivana; Moric, Ivana; Radakovic, Natasa; Šegan, Sandra; Pavic, Aleksandar; Senerovic, Lidija

(Frontiers Media SA, 2022)

TY  - JOUR
AU  - Djokic, Lidija
AU  - Stankovic, Nada
AU  - Galic, Ivana
AU  - Moric, Ivana
AU  - Radakovic, Natasa
AU  - Šegan, Sandra
AU  - Pavic, Aleksandar
AU  - Senerovic, Lidija
PY  - 2022
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/5579
AB  - Bacterial infections have become increasingly difficult to treat due to the occurrence of antibiotic-resistant strains. A promising strategy to increase the efficacy of therapy is to combine antibacterials with agents that decrease pathogen virulence via the modulation of the quorum sensing (QS). Lactonases inhibit acylated homoserine lactone (AHL)-mediated QS in Gram-negative bacteria, including the leading nosocomial pathogen Pseudomonas aeruginosa. Here we describe the characteristics of heterologously expressed YtnP lactonase from Bacillus paralicheniformis ZP1 (YtnP-ZP1) isolated from agricultural soil using the culture enrichment method. Purified YtnP-ZP1 hydrolyzed different AHLs with preference to substrates with long acyl residues as evaluated in assays with biosensors and HPLC. The enzyme showed good thermostability and activity in a wide temperature range. YtnP-ZP1 in 50 μg mL–1 concentration reduced the amount of P. aeruginosa-produced long-chain AHLs by 85%, while it hydrolyzed 50% of short-chain AHLs. Incubation of P. aeruginosa PAO1 with YtnP-ZP1 reduced its swarming motility and elastolytic activity without bactericidal effect. YtnP-ZP1 caused the inhibition of biofilm formation and disintegration of mature biofilms in P. aeruginosa PAO1 and multiresistant clinical strain BR5H that was visualized by crystal violet staining. The treatment with YtnP-ZP1 in concentrations higher than 25 μg mL–1 improved the survival of P. aeruginosa PAO1-infected zebrafish (Danio rerio), rescuing 80% of embryos, while in combination with tobramycin or gentamicin survival rate increased to 100%. The treatment of P. aeruginosa PAO1 biofilms on infected zebrafish tail wounds with 50 μg mL–1 YtnP-ZP1 and 2 × MIC tobramycin led to infection clearing in 2 days. The extensive toxicity studies proved YtnP-ZP1 was non-toxic to human cells and zebrafish. In conclusion, novel YtnP-ZP1 lactonase with its effective anti-virulence activity could be used to increase the efficacy of clinically approved antibiotics in clearing both systemic and biofilm-associated P. aeruginosa infections.
PB  - Frontiers Media SA
T2  - Frontiers in Microbiology
T1  - Novel Quorum Quenching YtnP Lactonase From Bacillus paralicheniformis Reduces Pseudomonas aeruginosa Virulence and Increases Antibiotic Efficacy in vivo
VL  - 13
SP  - 906312
DO  - 10.3389/fmicb.2022.906312
ER  - 
@article{
author = "Djokic, Lidija and Stankovic, Nada and Galic, Ivana and Moric, Ivana and Radakovic, Natasa and Šegan, Sandra and Pavic, Aleksandar and Senerovic, Lidija",
year = "2022",
abstract = "Bacterial infections have become increasingly difficult to treat due to the occurrence of antibiotic-resistant strains. A promising strategy to increase the efficacy of therapy is to combine antibacterials with agents that decrease pathogen virulence via the modulation of the quorum sensing (QS). Lactonases inhibit acylated homoserine lactone (AHL)-mediated QS in Gram-negative bacteria, including the leading nosocomial pathogen Pseudomonas aeruginosa. Here we describe the characteristics of heterologously expressed YtnP lactonase from Bacillus paralicheniformis ZP1 (YtnP-ZP1) isolated from agricultural soil using the culture enrichment method. Purified YtnP-ZP1 hydrolyzed different AHLs with preference to substrates with long acyl residues as evaluated in assays with biosensors and HPLC. The enzyme showed good thermostability and activity in a wide temperature range. YtnP-ZP1 in 50 μg mL–1 concentration reduced the amount of P. aeruginosa-produced long-chain AHLs by 85%, while it hydrolyzed 50% of short-chain AHLs. Incubation of P. aeruginosa PAO1 with YtnP-ZP1 reduced its swarming motility and elastolytic activity without bactericidal effect. YtnP-ZP1 caused the inhibition of biofilm formation and disintegration of mature biofilms in P. aeruginosa PAO1 and multiresistant clinical strain BR5H that was visualized by crystal violet staining. The treatment with YtnP-ZP1 in concentrations higher than 25 μg mL–1 improved the survival of P. aeruginosa PAO1-infected zebrafish (Danio rerio), rescuing 80% of embryos, while in combination with tobramycin or gentamicin survival rate increased to 100%. The treatment of P. aeruginosa PAO1 biofilms on infected zebrafish tail wounds with 50 μg mL–1 YtnP-ZP1 and 2 × MIC tobramycin led to infection clearing in 2 days. The extensive toxicity studies proved YtnP-ZP1 was non-toxic to human cells and zebrafish. In conclusion, novel YtnP-ZP1 lactonase with its effective anti-virulence activity could be used to increase the efficacy of clinically approved antibiotics in clearing both systemic and biofilm-associated P. aeruginosa infections.",
publisher = "Frontiers Media SA",
journal = "Frontiers in Microbiology",
title = "Novel Quorum Quenching YtnP Lactonase From Bacillus paralicheniformis Reduces Pseudomonas aeruginosa Virulence and Increases Antibiotic Efficacy in vivo",
volume = "13",
pages = "906312",
doi = "10.3389/fmicb.2022.906312"
}
Djokic, L., Stankovic, N., Galic, I., Moric, I., Radakovic, N., Šegan, S., Pavic, A.,& Senerovic, L.. (2022). Novel Quorum Quenching YtnP Lactonase From Bacillus paralicheniformis Reduces Pseudomonas aeruginosa Virulence and Increases Antibiotic Efficacy in vivo. in Frontiers in Microbiology
Frontiers Media SA., 13, 906312.
https://doi.org/10.3389/fmicb.2022.906312
Djokic L, Stankovic N, Galic I, Moric I, Radakovic N, Šegan S, Pavic A, Senerovic L. Novel Quorum Quenching YtnP Lactonase From Bacillus paralicheniformis Reduces Pseudomonas aeruginosa Virulence and Increases Antibiotic Efficacy in vivo. in Frontiers in Microbiology. 2022;13:906312.
doi:10.3389/fmicb.2022.906312 .
Djokic, Lidija, Stankovic, Nada, Galic, Ivana, Moric, Ivana, Radakovic, Natasa, Šegan, Sandra, Pavic, Aleksandar, Senerovic, Lidija, "Novel Quorum Quenching YtnP Lactonase From Bacillus paralicheniformis Reduces Pseudomonas aeruginosa Virulence and Increases Antibiotic Efficacy in vivo" in Frontiers in Microbiology, 13 (2022):906312,
https://doi.org/10.3389/fmicb.2022.906312 . .
3
13
6

Streptomyces sp JS520 produces exceptionally high quantities of undecylprodigiosin with antibacterial, antioxidative, and UV-protective properties

Stankovic, Nada; Radulovic, Vanja; Petković, Miloš; Vučković, Ivan; Jadranin, Milka; Vasiljevic, Branka; Nikodinović-Runić, Jasmina

(Springer, New York, 2012)

TY  - JOUR
AU  - Stankovic, Nada
AU  - Radulovic, Vanja
AU  - Petković, Miloš
AU  - Vučković, Ivan
AU  - Jadranin, Milka
AU  - Vasiljevic, Branka
AU  - Nikodinović-Runić, Jasmina
PY  - 2012
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/1125
AB  - A Gram-positive, red-pigment-producing bacterial strain, designated JS520 was isolated from the pristine sediment from the cave on mountain Miroc in Serbia. Strain was confirmed to belong to Streptomyces genus based on phenotypic and genetic analysis. Streptomyces sp. JS520 has the ability to produce exceptionally high amounts of deep red pigment into both solid and liquid media. Liquid chromatography and mass spectroscopy of the purified pigments revealed the major component to be undecylprodigiosin (93 %) with minor component being oxidatively cyclized derivative. The pigment production was affected by medium composition, temperature, pH, and the aeration rate. By medium optimization, yields of undecylprodigiosin of 138 mg l(-1) were achieved, what is the highest level of undecylprodigiosin production reported for the members of Gram-positive Streptomyces genus. Purified pigment had antimicrobial properties against bacterial Bacillus and Micrococcus species (50 mu g ml(-1)) and against Candida albicans species (100-200 mu g ml(-1) range). The ability to affect auto-oxidation of the linoleic acid was demonstrated for the purified undecylprodigiosin, suggesting antioxidative properties of this pigment. Multiple ecophysiological roles of the pigment were revealed by comparing cultures grown under pigment-producing and pigment-nonproducing conditions. Cells grown under undecylprodigiosin-producing conditions could tolerate presence of hydrogen peroxide exhibiting three times smaller zones of inhibition at 100 mM H2O2. Undecylprodigiosin-producing cells were also less susceptible to tetracycline, kanamycin, chloramphenicol, and 8-hydroxyquinoline. While the growth of the cells not producing pigment was completely inhibited by 15 min of exposure to ultraviolet light (254 nm), cells producing undecylprodigiosin and cells supplied with purified pigment in vitro showed survival rates at 22 and 8 %, respectively.
PB  - Springer, New York
T2  - Applied Microbiology and Biotechnology
T1  - Streptomyces sp JS520 produces exceptionally high quantities of undecylprodigiosin with antibacterial, antioxidative, and UV-protective properties
VL  - 96
IS  - 5
SP  - 1217
EP  - 1231
DO  - 10.1007/s00253-012-4237-3
ER  - 
@article{
author = "Stankovic, Nada and Radulovic, Vanja and Petković, Miloš and Vučković, Ivan and Jadranin, Milka and Vasiljevic, Branka and Nikodinović-Runić, Jasmina",
year = "2012",
abstract = "A Gram-positive, red-pigment-producing bacterial strain, designated JS520 was isolated from the pristine sediment from the cave on mountain Miroc in Serbia. Strain was confirmed to belong to Streptomyces genus based on phenotypic and genetic analysis. Streptomyces sp. JS520 has the ability to produce exceptionally high amounts of deep red pigment into both solid and liquid media. Liquid chromatography and mass spectroscopy of the purified pigments revealed the major component to be undecylprodigiosin (93 %) with minor component being oxidatively cyclized derivative. The pigment production was affected by medium composition, temperature, pH, and the aeration rate. By medium optimization, yields of undecylprodigiosin of 138 mg l(-1) were achieved, what is the highest level of undecylprodigiosin production reported for the members of Gram-positive Streptomyces genus. Purified pigment had antimicrobial properties against bacterial Bacillus and Micrococcus species (50 mu g ml(-1)) and against Candida albicans species (100-200 mu g ml(-1) range). The ability to affect auto-oxidation of the linoleic acid was demonstrated for the purified undecylprodigiosin, suggesting antioxidative properties of this pigment. Multiple ecophysiological roles of the pigment were revealed by comparing cultures grown under pigment-producing and pigment-nonproducing conditions. Cells grown under undecylprodigiosin-producing conditions could tolerate presence of hydrogen peroxide exhibiting three times smaller zones of inhibition at 100 mM H2O2. Undecylprodigiosin-producing cells were also less susceptible to tetracycline, kanamycin, chloramphenicol, and 8-hydroxyquinoline. While the growth of the cells not producing pigment was completely inhibited by 15 min of exposure to ultraviolet light (254 nm), cells producing undecylprodigiosin and cells supplied with purified pigment in vitro showed survival rates at 22 and 8 %, respectively.",
publisher = "Springer, New York",
journal = "Applied Microbiology and Biotechnology",
title = "Streptomyces sp JS520 produces exceptionally high quantities of undecylprodigiosin with antibacterial, antioxidative, and UV-protective properties",
volume = "96",
number = "5",
pages = "1217-1231",
doi = "10.1007/s00253-012-4237-3"
}
Stankovic, N., Radulovic, V., Petković, M., Vučković, I., Jadranin, M., Vasiljevic, B.,& Nikodinović-Runić, J.. (2012). Streptomyces sp JS520 produces exceptionally high quantities of undecylprodigiosin with antibacterial, antioxidative, and UV-protective properties. in Applied Microbiology and Biotechnology
Springer, New York., 96(5), 1217-1231.
https://doi.org/10.1007/s00253-012-4237-3
Stankovic N, Radulovic V, Petković M, Vučković I, Jadranin M, Vasiljevic B, Nikodinović-Runić J. Streptomyces sp JS520 produces exceptionally high quantities of undecylprodigiosin with antibacterial, antioxidative, and UV-protective properties. in Applied Microbiology and Biotechnology. 2012;96(5):1217-1231.
doi:10.1007/s00253-012-4237-3 .
Stankovic, Nada, Radulovic, Vanja, Petković, Miloš, Vučković, Ivan, Jadranin, Milka, Vasiljevic, Branka, Nikodinović-Runić, Jasmina, "Streptomyces sp JS520 produces exceptionally high quantities of undecylprodigiosin with antibacterial, antioxidative, and UV-protective properties" in Applied Microbiology and Biotechnology, 96, no. 5 (2012):1217-1231,
https://doi.org/10.1007/s00253-012-4237-3 . .
71
46
71