Holló, Berta Barta

Link to this page

Authority KeyName Variants
8bfd2129-9fae-4ec8-8ad0-b36d164a9f73
  • Holló, Berta Barta (2)
Projects

Author's Bibliography

A detailed experimental and computational study of Cd complexes with pyridyl-based thiazolyl hydrazones

Kokanov, Sanja B.; Filipović, Nenad R.; Višnjevac, Aleksandar; Nikolić, Milan; Novaković, Irena; Janjić, Goran; Holló, Berta Barta; Ramotowska, Sandra; Nowicka, Paulina; Makowski, Mariusz; Uğuz, Özlem; Koca, Atıf; Todorović, Tamara

(Wiley, 2022)

TY  - JOUR
AU  - Kokanov, Sanja B.
AU  - Filipović, Nenad R.
AU  - Višnjevac, Aleksandar
AU  - Nikolić, Milan
AU  - Novaković, Irena
AU  - Janjić, Goran
AU  - Holló, Berta Barta
AU  - Ramotowska, Sandra
AU  - Nowicka, Paulina
AU  - Makowski, Mariusz
AU  - Uğuz, Özlem
AU  - Koca, Atıf
AU  - Todorović, Tamara
PY  - 2022
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/5474
AB  - Interest in Cd complexes has been growing in recent years. Cd complexes are considered a potential solution in the search for novel antibiotics that can fight antimicrobial resistance. In addition, Cd complexes draw attention to material chemistry. The main objective of this work was to prepare the first Cd(II) complexes with anionic forms of pyridine-based thiazolyl hydrazone (THs) ligands HLS2 [(E)-4-(4-methoxyphenyl)-2-(2-[pyridine-2-ylmethylene]hydrazinyl)thiazole] and HLS3 [(E)-2-(2-[pyridine-2-ylmethylene]hydrazinyl)-4-(p-tolyl)thiazole] and perform their structural and spectroscopic characterization, as well as stability in solution and upon heating. Studies related to their biological activities and possible electrochromic applications are also being conducted. Complexes [Cd(HLS2)2] (1) and [Cd(HLS3)2] (2) have been characterized by a single-crystal X-ray diffraction and computational analysis of intermolecular interactions responsible for their solid-state structures was performed. Thermal stability of 1 and 2 in the solid-state was analyzed by TGA/MS, where as their solution stability was determined by the spectrophotometric titration method. Electrochemical and in situ UV–Vis spectroelectrochemical analyses of 1 and 2 were carried out to determine redox mechanisms and the influence of the substituents and electrolytes on their redox responses. The antioxidant capacity of both complexes was tested in antioxidant assays, while their antimicrobial activity was tested against five Gram-positive and four Gram-negative bacteria, as well as against three fungi. The obtained results indicate their potent antioxidant capacity. The antimicrobial activity of investigated compounds on almost all tested bacterial strains was stronger than that of the standard antibiotic erythromycin. The results of docking studies indicate that the minor groove DNA is the possible biological target of 1 and 2.
PB  - Wiley
T2  - Applied Organometallic Chemistry
T1  - A detailed experimental and computational study of Cd complexes with pyridyl-based thiazolyl hydrazones
DO  - 10.1002/aoc.6942
ER  - 
@article{
author = "Kokanov, Sanja B. and Filipović, Nenad R. and Višnjevac, Aleksandar and Nikolić, Milan and Novaković, Irena and Janjić, Goran and Holló, Berta Barta and Ramotowska, Sandra and Nowicka, Paulina and Makowski, Mariusz and Uğuz, Özlem and Koca, Atıf and Todorović, Tamara",
year = "2022",
abstract = "Interest in Cd complexes has been growing in recent years. Cd complexes are considered a potential solution in the search for novel antibiotics that can fight antimicrobial resistance. In addition, Cd complexes draw attention to material chemistry. The main objective of this work was to prepare the first Cd(II) complexes with anionic forms of pyridine-based thiazolyl hydrazone (THs) ligands HLS2 [(E)-4-(4-methoxyphenyl)-2-(2-[pyridine-2-ylmethylene]hydrazinyl)thiazole] and HLS3 [(E)-2-(2-[pyridine-2-ylmethylene]hydrazinyl)-4-(p-tolyl)thiazole] and perform their structural and spectroscopic characterization, as well as stability in solution and upon heating. Studies related to their biological activities and possible electrochromic applications are also being conducted. Complexes [Cd(HLS2)2] (1) and [Cd(HLS3)2] (2) have been characterized by a single-crystal X-ray diffraction and computational analysis of intermolecular interactions responsible for their solid-state structures was performed. Thermal stability of 1 and 2 in the solid-state was analyzed by TGA/MS, where as their solution stability was determined by the spectrophotometric titration method. Electrochemical and in situ UV–Vis spectroelectrochemical analyses of 1 and 2 were carried out to determine redox mechanisms and the influence of the substituents and electrolytes on their redox responses. The antioxidant capacity of both complexes was tested in antioxidant assays, while their antimicrobial activity was tested against five Gram-positive and four Gram-negative bacteria, as well as against three fungi. The obtained results indicate their potent antioxidant capacity. The antimicrobial activity of investigated compounds on almost all tested bacterial strains was stronger than that of the standard antibiotic erythromycin. The results of docking studies indicate that the minor groove DNA is the possible biological target of 1 and 2.",
publisher = "Wiley",
journal = "Applied Organometallic Chemistry",
title = "A detailed experimental and computational study of Cd complexes with pyridyl-based thiazolyl hydrazones",
doi = "10.1002/aoc.6942"
}
Kokanov, S. B., Filipović, N. R., Višnjevac, A., Nikolić, M., Novaković, I., Janjić, G., Holló, B. B., Ramotowska, S., Nowicka, P., Makowski, M., Uğuz, Ö., Koca, A.,& Todorović, T.. (2022). A detailed experimental and computational study of Cd complexes with pyridyl-based thiazolyl hydrazones. in Applied Organometallic Chemistry
Wiley..
https://doi.org/10.1002/aoc.6942
Kokanov SB, Filipović NR, Višnjevac A, Nikolić M, Novaković I, Janjić G, Holló BB, Ramotowska S, Nowicka P, Makowski M, Uğuz Ö, Koca A, Todorović T. A detailed experimental and computational study of Cd complexes with pyridyl-based thiazolyl hydrazones. in Applied Organometallic Chemistry. 2022;.
doi:10.1002/aoc.6942 .
Kokanov, Sanja B., Filipović, Nenad R., Višnjevac, Aleksandar, Nikolić, Milan, Novaković, Irena, Janjić, Goran, Holló, Berta Barta, Ramotowska, Sandra, Nowicka, Paulina, Makowski, Mariusz, Uğuz, Özlem, Koca, Atıf, Todorović, Tamara, "A detailed experimental and computational study of Cd complexes with pyridyl-based thiazolyl hydrazones" in Applied Organometallic Chemistry (2022),
https://doi.org/10.1002/aoc.6942 . .

Zn(ii) complexes with thiazolyl-hydrazones: structure, intermolecular interactions, photophysical properties, computational study and anticancer activity

Araškov, Jovana B.; Višnjevac, Aleksandar; Popović, Jasminka; Blagojević, Vladimir; Fernandes, Henrique S.; Sousa, Sérgio F.; Novaković, Irena; Padrón, José M.; Holló, Berta Barta; Monge, Miguel; Rodríguez-Castillo, María; López-De-Luzuriaga, José M.; Filipović, Nenad; Todorović, Tamara

(Royal Society of Chemistry, 2022)

TY  - JOUR
AU  - Araškov, Jovana B.
AU  - Višnjevac, Aleksandar
AU  - Popović, Jasminka
AU  - Blagojević, Vladimir
AU  - Fernandes, Henrique S.
AU  - Sousa, Sérgio F.
AU  - Novaković, Irena
AU  - Padrón, José M.
AU  - Holló, Berta Barta
AU  - Monge, Miguel
AU  - Rodríguez-Castillo, María
AU  - López-De-Luzuriaga, José M.
AU  - Filipović, Nenad
AU  - Todorović, Tamara
PY  - 2022
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/5431
AB  - Earth-abundant, cheap and non-toxic zinc-based coordination compounds are drawing research attention as promising candidates for various applications, such as photoluminescent materials and anticancer agents. In this paper we report six zinc complexes (1-3-NO3 and 1-3-Cl) with pyridyl-based thiazolyl-hydrazone ligands, which differ in the nature of substituents at the ligands' periphery, anion type, and geometry around the metal ion. The complexes were characterized by single-crystal and powder X-ray diffraction analysis, as well as IR and NMR spectroscopy. The symmetrical complexes 2-Cl and 3-Cl, where zinc atoms are located at a two-fold axis, do not exhibit photophysical properties, unlike their asymmetrical analogs 2-NO3 and 3-NO3 with the same complex cation. Asymmetrical pentacoordinated 1-Cl and hexacoordinated 1-NO3 complexes exhibit photophysical properties. An admixture of allowed intra-ligand (1IL) and chloro (X)-to-ligand charge-transfer (1XLCT) electronic transitions is responsible for the fluorescence of the 1-Cl complex. The origin of the emission of the 1-NO3 complex is ascribed to an admixture of 3IL and ligand-to-ligand charge-transfer (3LLCT) forbidden electronic transitions, while for 3-NO3 most electronic excitations are of LLCT character. The thermal stability of the complexes is in accord with the strength of respective intermolecular interactions. The antiproliferative activity of the complexes was in the nanomolar range on some of the investigated cancer cell lines. Contrary to the increase of antiproliferative activity of the complexes in comparison to the free ligands in cancer cell lines, an acute toxicity determined in the brine shrimp assay follows the opposite trend. The overall results suggest that Zn(ii) thiazoyl-hydrazone complexes have considerable potential as multifunctional materials.
PB  - Royal Society of Chemistry
T2  - CrystEngComm
T1  - Zn(ii) complexes with thiazolyl-hydrazones: structure, intermolecular interactions, photophysical properties, computational study and anticancer activity
VL  - 24
IS  - 29
SP  - 5194
EP  - 5214
DO  - 10.1039/d2ce00443g
ER  - 
@article{
author = "Araškov, Jovana B. and Višnjevac, Aleksandar and Popović, Jasminka and Blagojević, Vladimir and Fernandes, Henrique S. and Sousa, Sérgio F. and Novaković, Irena and Padrón, José M. and Holló, Berta Barta and Monge, Miguel and Rodríguez-Castillo, María and López-De-Luzuriaga, José M. and Filipović, Nenad and Todorović, Tamara",
year = "2022",
abstract = "Earth-abundant, cheap and non-toxic zinc-based coordination compounds are drawing research attention as promising candidates for various applications, such as photoluminescent materials and anticancer agents. In this paper we report six zinc complexes (1-3-NO3 and 1-3-Cl) with pyridyl-based thiazolyl-hydrazone ligands, which differ in the nature of substituents at the ligands' periphery, anion type, and geometry around the metal ion. The complexes were characterized by single-crystal and powder X-ray diffraction analysis, as well as IR and NMR spectroscopy. The symmetrical complexes 2-Cl and 3-Cl, where zinc atoms are located at a two-fold axis, do not exhibit photophysical properties, unlike their asymmetrical analogs 2-NO3 and 3-NO3 with the same complex cation. Asymmetrical pentacoordinated 1-Cl and hexacoordinated 1-NO3 complexes exhibit photophysical properties. An admixture of allowed intra-ligand (1IL) and chloro (X)-to-ligand charge-transfer (1XLCT) electronic transitions is responsible for the fluorescence of the 1-Cl complex. The origin of the emission of the 1-NO3 complex is ascribed to an admixture of 3IL and ligand-to-ligand charge-transfer (3LLCT) forbidden electronic transitions, while for 3-NO3 most electronic excitations are of LLCT character. The thermal stability of the complexes is in accord with the strength of respective intermolecular interactions. The antiproliferative activity of the complexes was in the nanomolar range on some of the investigated cancer cell lines. Contrary to the increase of antiproliferative activity of the complexes in comparison to the free ligands in cancer cell lines, an acute toxicity determined in the brine shrimp assay follows the opposite trend. The overall results suggest that Zn(ii) thiazoyl-hydrazone complexes have considerable potential as multifunctional materials.",
publisher = "Royal Society of Chemistry",
journal = "CrystEngComm",
title = "Zn(ii) complexes with thiazolyl-hydrazones: structure, intermolecular interactions, photophysical properties, computational study and anticancer activity",
volume = "24",
number = "29",
pages = "5194-5214",
doi = "10.1039/d2ce00443g"
}
Araškov, J. B., Višnjevac, A., Popović, J., Blagojević, V., Fernandes, H. S., Sousa, S. F., Novaković, I., Padrón, J. M., Holló, B. B., Monge, M., Rodríguez-Castillo, M., López-De-Luzuriaga, J. M., Filipović, N.,& Todorović, T.. (2022). Zn(ii) complexes with thiazolyl-hydrazones: structure, intermolecular interactions, photophysical properties, computational study and anticancer activity. in CrystEngComm
Royal Society of Chemistry., 24(29), 5194-5214.
https://doi.org/10.1039/d2ce00443g
Araškov JB, Višnjevac A, Popović J, Blagojević V, Fernandes HS, Sousa SF, Novaković I, Padrón JM, Holló BB, Monge M, Rodríguez-Castillo M, López-De-Luzuriaga JM, Filipović N, Todorović T. Zn(ii) complexes with thiazolyl-hydrazones: structure, intermolecular interactions, photophysical properties, computational study and anticancer activity. in CrystEngComm. 2022;24(29):5194-5214.
doi:10.1039/d2ce00443g .
Araškov, Jovana B., Višnjevac, Aleksandar, Popović, Jasminka, Blagojević, Vladimir, Fernandes, Henrique S., Sousa, Sérgio F., Novaković, Irena, Padrón, José M., Holló, Berta Barta, Monge, Miguel, Rodríguez-Castillo, María, López-De-Luzuriaga, José M., Filipović, Nenad, Todorović, Tamara, "Zn(ii) complexes with thiazolyl-hydrazones: structure, intermolecular interactions, photophysical properties, computational study and anticancer activity" in CrystEngComm, 24, no. 29 (2022):5194-5214,
https://doi.org/10.1039/d2ce00443g . .
6
8
7